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We examine the possibility of using multiparticle unitarity to write self-consistency equations for Regge
trajectories. On the assumption that the dominant mechanism for inelastic processes at high energy is pro-
vided by multi-Reggeized meson exchange, and using the integral-equation approach suggested by Chew,
Goldberger, and Low, the self-consistency conditions on the trajectory intercept and slope leave only one
free parameter. The numerical values obtained are physically quite reasonable. It is also possible to generate
the Pomeranchuk trajectory via the same dynamical mechanism. The slope of the Pomeranchuk trajectory
thus obtained is similar to the slope of the meson Regge trajectory.

I. INTRODUCTION

INCE the beginnings of Regge theory, it has been
recognized that the expression of the imaginary
part of the elastic amplitude as a sum of contributions
from multiparticle intermediate states provides a
scheme to study the high-energy behavior of two-body
processes.! In other words, given a model for the many-
particle production, it is possible to deduce high-energy
properties of the elastic amplitude.

Amati, Bertocchi, Fubini, Stanghellini, and Tonin?
used for the production amplitude a multiperipheral
model with elementary-pion exchange, and were able to
derive a Regge behavior for the absorptive part of the
elastic scattering. More recently, a multiperipheral
model in which the exchanged particles are Reggeized?
has been considerably successful both in fitting experi-
mental data on particle production? and in calculating
shadow elastic scattering.® It has also been suggested by
Chew and Pignotti (CP)® that the multi-Regge model,
in conjunction with the unitarity relation, can be used
to obtain bootstrap-like conditions involving Regge pa-
rameters. This is achieved by imposing the condition
that the Regge behavior obtained for a suitably chosen
two-body amplitude at high energies is controlled by
the same trajectory that is exchanged along the multi-
Regge line. Here we pursue this approach and succeed
to impose self-consistency conditions on the value and
slope of a Regge trajectory at zero momentum transfer.
In this way we are able to construct a dynamical model
in which there is only one free parameter.
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To sum the multiperipheral graphs we use the inte-
gral-equation approach proposed by Chew, Goldberger,
and Low,” which is a generalization of the method used
in Ref. 2 to the more complicated case of multi-Regge
exchanges. Because we are more interested in exploiting
the restrictions imposed by the self-consistency require-
ments than in detailed data fitting, we try to minimize
the number of parameters; therefore, we study the over-
simplified model in which an average meson trajectory
represents the combined effect of the various meson ex-
changes that we believe to be present. As a first approxi-
mation we neglect Pomeranchuk exchange, because we
know that this mechanism is not important in produc-
tion processes.® As in CP, we only consider ladder-type
diagrams in which pions are produced in the inter-
mediate stated and baryon exchange is neglected.

In Sec. II, we derive for completeness the integral
equation for the absorptive part of the elastic scattering
amplitude, with some simplifications. In Sec. III, we
solve this equation, and in Sec. IV, we impose the self-
consistency requirements on the meson trajectory. The
generation of the Pomeranchuk trajectory is described
in Sec. V. Section VI discusses the results and suggests
some lines for possible future work.

II. DERIVATION OF INTEGRAL EQUATION

We consider the high-energy and small-momentum-
transfer elastic scattering of two particles, which we as-
sume for simplicity to be spinless and identical. We
introduce for convenience three independent four-
vectors, Q, ko, and k¢, in terms of which the momenta, of
the initial particles are Q—ko and —Q+-%,’, and those of
the final particles —Q—ko and Q%o (see Fig. 1). The
total energy squared is s= (ko'—ko)? and the invariant
momentum transfer is 40%. We expect the asymptotic
behavior of the amplitude at fixed Q2 to be characterized
by the “t-channel” internal quantum numbers, and

7 W. R. Frazer, Rapporteur talk, in Proceedings of the Fourteenth
International Conference on High Energy Physics, Vienna, 1968
(CERN, Geneva, 1968), p. 415. A similar approach was inde-
pendently proposed by I. G. Halliday, Imperial College, London,
report ICTP/67/36.

8 G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078
(1968). In this paper it is pointed out that addition of resonance
production can lead to double counting.

1525



1526 L.

o
Fic. 1. Definition of mo-
menta for the two-body ampli-
tude.
Q-k, -Qq + ki

therefore we study amplitudes in which these quantum
numbers are well defined.

As indicated in the Introduction, we express the
imaginary part of the two-body amplitude using the
unitarity relation and summing over the contribution of
intermediate states in which # pions are produced:

ImA (s5,0%) =2 ImA"(s5,0%), 2.1)
with

IIIIA"(S,QZ) =/d<§nA 2nA Z'n*- (2.2)

Here d®" is the usual phase space for the intermediate
state, and As, is the #-pion production amplitude. We
are going to adopt for this amplitude a Reggeized multi-
peripheral model, namely to consider contributions of
Reggeized ladder diagrams, with the kinematics defined
in Fig. 2. In this figure, wavy lines represent the ex-
changed Regge pole, dotted lines represent pions, and
solid lines represent the external particles. With these
variables the phase space can be written

ddr= 5[(k1—~k0)2—m2]d4k16[(k2—k1)2~,u2:|d4k2~ ..
d4kn5[(kn+1—kn)z—u2]d4kn+1
X[ (ko' —kni1)?—m?],
where u and m are the masses of the pion and of the ex-
ternal particles. In this model the amplitude 4., can be

written as a product of Regge factors and vertex func-
tions (we identify ko with &),

A2n(Q,k0,k1, * + kny1,kd) =Z(Q,k1) Z(Q kg 1)

(2.3)

n n+1
XIT 2(Q,kiv,kikirs ki) IT F(Qkin,kikiv) .  (2.4)
i=1 =1

Here F(Q,kj_1,kj,k;+1) is a function having the asymp-
totic Regge behavior and Regge signature factor, i.e.,

kjr1—k;_r\2*((@—E)D
R S

exp{ —ira((Q—k;)?)}=£1
X , (2.5)
( sinra((Q —k;)?) ) (

where « is the Regge trajectory of the pole considered,
and s is a parameter introduced as usual for dimensional
reasons. The functions Z are the residues for the cou-
pling of the Regge poles to two on-mass-shell particles
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and the functions z describe the coupling of two Regge
poles to a pion. Therefore in our model we have

ImA*(Q,ko,kd)
- [ 200412, ~102@ 120, —bus)
XL (ks — ko)=L (b st —]
XTI #(Q,kikiskiriskiss)

=1

X3(Q, —ki—1, —ki, —kiy1, —kiys)

n+1
X[ (kir1—k:)? —MZJHI F(Q,kj1,k;,ki11)
e

XF*(Q; _ki—l;

The zeros of the factor sinra((Q=k;)?) in the denomi-
nator of Eq. (2.5) cannot produce singularities in the
region we are interested in, and the vertex functions
have to provide a cancellation mechanism at the right-
signature points. Therefore we extract from the product

F(Q)ki——lykf;kf—i-l)F*(Q; _ki~17 _kj> _kj-i—l)

a factor

—kj, —kjr1)d*k;.  (2.6)

Biy1— k]._1>2[a<(q—kn +a((Q+k)D)]

R(Qikj—-lykj,kj_l_l) = <___\};___

XS((Q _kj)27 (Q+ kf)z) )
S(x,y) = exp{Fin[a(y) —al(x)]}, (2.8)

and absorb the remaining factors in the definition of new
vertex functions G and g, which are no longer required
to provide cancellation of unwanted singularities.
Furthermore, we introduce some simplifying assump-
tions on the structure of the internal vertex functions.
These depend on three variables which we can choose to
be the two invariant momentum transfers of the Regge
lines, and an angular variable w.® We neglect this last
dependence and assume that the dependence on the
first two factorizes in the following way at the vertex at

2.7
with

F16. 2. Unitarity diagram for the n-pion-production
contribution to Im4.

( 9 1\71) F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572
1967).
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which the ith pion is emitted:

80 kikis) = 2V2g((Q— k) WA((Q—Fkir1)?).  (2.9)
The function ¢ is normalized by requiring that
0
f dx $A(x)=1. (2.10)

With these assumptions we can write

ImA(Q,ko,k0")

=/d4kn+1Bn(Q’k(),kn-l-l)kol)a[(ko,—k"'+1)2—m2:l

XG((Q+n)G(Q—nr)?) . (2.11)
Comparing (2.11) with Eq. (2.6), we find
BYQ,ko,kr,ko’) =G(Q—k))G(Q+E1)?)
X O[(k1—ko)2—m?]R(Q,ko,k1,k0"), (2.12)
and the recursion relation
B (ko fens k) = | 4 aBr(Q, k0 fen fns)
XK (Q,knknir,kd’), (2.13)
with
K(Q,k % E")

=8¢ ((Q—R)W((Q+ &) W((Q—F)W((Q+E)?)

XR(Q,kk k" )OL(K'—k)*—p¥]. (2.14)
Of course, for a given energy of the two-body scattering
process, there is a maximum number 72 of pions that can
be produced in the intermediate state. The mechanism
for the vanishing of B* when # is bigger than 7 is pro-
vided by the structure of the function K. We can there-
fore define a function

Bk E) =3 Br(Qko "),
n=0

the actual contributions coming from the first 7 terms.
The function B satisfies the integral equation

B(Q,ko,k’,k”) =BO(Q7k0)k,;k”)
+/d4k K(Q,k,k,,k")B(Q,ko,k,k’) ’ (215)

and the imaginary part of the scattering amplitude is
given by

ImA4 (Q,ko,ko’) =/d4k B(Q,ko,k,ko')

XG((Q—R)H)G((Q+k))L (ko' —k)*—m].

Following Chew, Goldberger, and Low,” we propose
to use Eqgs. (2.15) and (2.16) to study the high-energy
behavior of ImA4.

(2.16)
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4Q

Fic. 3. Diagram showing the variables on which B depends.
Next to each line the corresponding four-momentum and invariant
mass squared have been indicated.

The function B(Q,k,k,k") depends effectively on seven
invariants, which we can choose to be (see Fig. 3)

s=(k—ko)?, t=(Q—k),
r=(Q+k)?, §'=F—ko)?, (2.17)
r=(Q—K), #=Q+F), and O~
Defining
P=k—ky p=k—Fk, (2.18)
we can, in Eq. (2.15), replace
/ dwSL( — Ry =]+
with
(V=)
/2 ds[d4Pd4p5(P2—s)6(p2—,u2)
" X4 (P+p—k +ko) -+, (2.19)

which has the form of an integration over the phase
space for an intermediate state of two particles of masses
u and /s, integrated over s (see Fig. 3). Because we are
interested in the high-energy behavior of the solution,
we neglect the pion mass with respect to the total en-
ergy and also terms of order m?/s’, {/s’, and 7'/s’. We
can now go to a “center-of-mass” frame in which we
have

P+4p=(+/5",0,0,0)
and define three angles 0, 6, and ¢ such that
Q—ko=[3v/'s', 5(/s') sin3®, 0, 3(v/s') cos30],
—Q—ko=[3v/s’, =3(v/¢') 5in®, 0, 3(V/5) cos30],

(2.20)

s'+s §s'—s
P =|: , — sinf sing,
2§ 2§

(2.21)
s’ —s

s'—s
sinf cose, cosf | .

23/s’ 2vs'
In the forward direction (Q=0) we have

t=r=1,
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where
f=—1(s’—s)(1—cosh). (2.22)

At Q%0 we define two quantities e and 6 such that
iH7=2tH "¢,

2.23
t—r=39. ( :
We find, for small Q?,
3~ —4(1—s/s")12(Q*) 12 sing, (2.24)
e’zZ(l—S/S/)Qz. .
We can now write the integration in (2.19) as
Sds 0 rirde
f __/' dt/ ¢ (2.25)
m? 8s’ s—sg’ 0 2

At this stage we achieve an important simplification by
the replacement of the factor (kj1—Fk;—1)%/so in the
Regge propagator of Eq. (2.5) with!®

(kjp1—ko)?/(ki—Fko)?. (2.26)

This substitution is valid in the limit in which
all the subenergies of pairs of adjacent particles,
si= (kiy1—ks;—1)?, are large compared with the masses
squared and momentum transfers involved, and is
equivalent to the assumptions leading to Eq. (B10)
of CP.

We can now rewrite Eq. (2.15) as

B(Q*t',7',s',s")
=G )G(r)o(s' —m?)(s" /s )2 eI S(Y 7')

Yds O rrde
e / = f @ / U

s” a(t)ta(r’)
x(—/) S(,7)B(Q%rys,s) . (2.27)

N

Because neither the kernel nor the inhomogeneous term
depend on #’'=(Q—Fk")? and 7'=(Q4%")? in the ap-
proximation used, we have dropped these arguments
from the function B. We have also extended the range
of integration in # to — o ; if the vertex function y(?)
decreases rapidly (e.g., exponentially) with negative ¢,
this amounts to corrections of order 1/s”.

III. SOLUTION OF THE INTEGRAL
EQUATION FOR SMALL Q?
We can substitute in Eq. (2.27)
B(Q*1,7',s,s")
= (5" /) S VU W)
+G()G(")o(s'—m?)], (3.1)
and obtain an integral equation for the function

10 The choice of the form (2.26) implies a choice for so, which in
turn defines unambiguously the vertex functions.
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B(O*):

1 0 rrdy
B ) =— / i / 2 GO

m? —w JO 2w .

ddy 0 Prde
>< (xl)a(t)+zx(r)-—1S(t}T)+g2/ I / dt/ _—
1 %’ —w0 0 2

/)

a(t)ta(r)
xwaw(r)(—) SO (3.2)

X

Expanding this integral equation to first order in Q* and
performing the d¢ integration, we obtain

1 0 ) )
B ) =— / 4 GO
m?J _o
X (o )2earten Fea @ (=1 /a1-1

X[14+2((" =1)/2)Q*DEGY)]

! dx 0 } ~ x/“‘x -
4 / - / di ¢4(t>[1+2<—f>02D(t,¢,¢)]
1 ¥ Jw ®

K\ 2leartany’ tay’ Q2 (2'—2) /a']
X (—) b(Q%x).

X

(3.3)

We have assumed here a linear trajectory a(f)=an
+ay't and we have used the notation

D(,01,02)=D'Lo1(E) 02(8) JHUD L 01(F) 2(t) 1— m%an™)
with
DLFE)]= (@"/dt) WD) . (3.4)

We look for a solution of Eq. (3.3) of the form of a
Mellin transform:

1 C+1i%
wow=— [ i@, 6
27t J ¢—ico
where C is chosen to leave all singularities of 5(Q2,8) to
the left of the path of integration, and we assume (and
verify a posteriori) that 5(Q%8) vanishes at least as fast
as [In(8) ]2 for |8] — . It follows that the singulari-
ties of 5(Q2,8) control the behavior of 5(Q?x) for large x.
Introducing the notation

0 F(x')
H(x,F(x'))= ,dx’ , (3.6)
w0 XX
we define the following functions:
U(Q%8)= (1/2ax)H(y(Q*8) ¥*(x)),
V(Q%8)= (1/2ax") H(y(0%,8),G*(«"W* (")),
W (Q2,8)= (1/2ax")H(y(Q%,8),G* (")), 3.7)

U1(0%,8)= (1/2aa)H(y(Q%,8) ¥*(«") D(x' W) ,
VI(Q2;:3) = (l/zaMl)H(y(Q27:3);G2(x/)"l/2(xl)D(x,)G7\[/)) ’
W1(Q%,8) = (1/2x) H (5(Q%,8),G* (") D(+',G,G)) ,



180

where
¥(Q%8) = (1/2an")(B— 20— 20/ Q*+1).
We also define

U(Q28)=U(Q%8)—U(Q% B+ 1)+U(0, 8+1)
+20°LU(02,8)—U:(Q?, B+1)] (3.9)

with analogous definitions for 7(02,8) and W(Q2,8). By
construction, these functions are analytic in 8 with cuts
running from — e« to 2ay—+2ax’Q?—1.

Substituting (3.5) in (3.3) we obtain, after some
manipulation, the following solution for 6(Q2,8)!:

5088 = V(@8
w1 U(Q8)

Using now (3.10), (3.1), and (3.16), we can write the
Mellin representation for the imaginary part of the
amplitude:

1 ‘“‘”/ dﬁ( s )ﬂ
ImA (5,0%) =— ——
(0" 2 /c—,-w m? \m?

><<W(Q2,ﬁ)-g2{W(Q",B)17(Q2,B)—[V(Qz,ﬁ)]z})
1—gT(0%8)

(3.8)

(3.10)

(3.11)

Translating Eq. (3.11) into the usual Regge language,
we can say that the asymptotic behavior of ImA4 (Q?,s)
is given by a Regge pole, the position of which, aou:(Q?),

is defined by _
U(Q%00u(QM))=1/¢%, (3.12)

and a Regge cut starting at 2(as+ax’Q?) — 1. The slope
of the trajectory at Q?=0 is

10U(Q8)/00

_ (3.13)
4 oU(Q%8)/38 ! s—acu, @?—0

)

1 w2ay,

Qou ! =la[ +
toE (atout—2a 2+ 1) (Qout —202r+2) 2a \

Defining py=2an’/a and pow=200u’/a, We see that
ous and pow; depend on py, but not on ay’ and @

separately. i
In the limit py — 0, the function »(0,8) becomes

1 par

FO(pn?), (4.6)
pu>0 B—2apy+1 (B—2apu+1)?

(0,8)

11 A similar result at Q*=0 was obtained by G. F. Chew, C. de
Tar, P. Ting, and A. Pignotti (unpublished).
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where we have put
aout(Q2) = Olout"_ 4aout/Q2 .

IV. SELF-CONSISTENCY CONDITIONS ON THE
MESON TRAJECTORY

In this section we consider the amplitude correspond-
ing to the exchange of the quantum numbers of our
meson. Therefore we require for the absorptive part of
the amplitude a behavior s*m+tan’@® ot Jarge s.

The equations in Sec. III are considerably simpler if
we assume an exponential parametrization for the vertex
function ¢, i.e.,

Y(O)= ([ a)eer/s. (4.1a)
We also use the same parametrization for G(z):
GO=G{ a)ex/4, (4.1b)

although this choice of the coupling to the external par-
ticles is of no consequence on the output Regge trajec-
tory [see Eq. (3.10)]. With these assumptions, we have

W(E28)=GT(Q*8),

7(02,8)=GU(26), (42)

and
U(Q28)=u(Q%8)—u(Q? B+1)+u(0, B+1),
with
#(Q%,8) =2(0%,8)
X[1+aQ*— 30’ (B—2aa+1—2a/'Q?)].  (4.3)

Here v is simply given in terms of the confluent hyper-
geometric function ¥ by!2:

a

o(02,8) = w(l,l,iw—zaM+1>—an). (4.4)
’ 203

ZOZM

The slope of the output Regge trajectory at 02=0 is

Aout—2ay+1
/(aout—ZaM+2)v(aout+ 1,0) _~t_~L>} /

g2

[2;'(%“_21%“_5;)] - (43)

* and we find again the results of CP in which no Regge

cut is present. By an opportune choice of g2 we can
satisfy the self-consistency condition on the intercept
of the meson trajectory, namely aou=ay. We observe,
however, from Egs. (4.5) and (4.6) that

lim Pout = [g2/(1+g2):l )
p~>0

12 Bateman M anuscript Project, Higher Transcendental Func-
tiog;S(McGra.w-Hill Book Co., Inc., New York, 1953), Vol. 1,
p- .
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TABLE I. Some numerical solutions of the self-consistency
equations. The various quantities are defined in the text.

an g oy ap'for’ g/ A B

0.4 0.96 0.52 1.19 1.67 1.58 0.16
0.45 0.88 0.48 1.18 1.67 1.44 0.09
0.5 0.81 0.45 1.18 1.66 1.27 0.05
0.55 0.75 0.42 1.18 1.66 1.11 —0.07
0.6 0.66 0.38 1.18 1.65 1.00 —0.16

and therefore this limit does not correspond to a self-
consistent meson generation. This happens because the
¢ dependence of the vertex functions produces an output
Regge slope, even in the absence of an input one. We
therefore look for self-consistent solutions satisfying
out= 037 and pout= par. These conditions force our three
parameters aur, par, and g? to satisfy two nonlinear con-
straints. We find that upon choosing, for instance, rea-
sonable values for ay, a solution exists, and the other
two parameters determined by the self-consistency
equations are also quite reasonable. (See Table I, col-
umns 1-3.)

Indeed, if we take ax’=1/GeV?, the range of values
obtained for p corresponds to a width 1/a in the internal
momentum transfer distribution between 0.2 and 0.25
GeV?2. The parameter g2 gives good results when related
to the average number of particles produced. (See the
discussion at the end of Sec. V).

In the solutions obtained, ps being different from
zero, we have both a Regge pole at B=au and a cut
starting at 8,=2ay— 1. The function v(0,8) is positive
for 8>8., has a logarithmic singularity at =43, and
goes to 0 as 8— . Therefore it is guaranteed that a
pole exists and that it is located to the right of the cut,
and this implies that the intercept of the self-consistent
meson must be smaller than 1.1% The high-energy be-
havior of Im4 in the forward direction can be written!!

m?
— ImA(0,s)
G4
2(0,ar) ( s >°‘M+ 2ap—1 dB( s )ﬁ
- - 2[61/(0:.3)/3:8] B=am m? /;co 14 m?

e(B—2anrt1) /p
X .
[1—g Re o(0,8) 1+ (gn/p)et 6-2airs1)

The residue of the pole, i.e., the coefficient of the term
(s/m?)e¥, is approximately 0.89. The discontinuity
across the cut has alogarithmic zero at the upper branch
point and is a rapidly decreasing function of 8; its width

4.7)

13 A similar argument in models with repeated Pomeranchuk
exchange leads to violation of unitarity if the Pomeranchuk tra-
jectory has intercept strictly equal to one, unless a zero in the
vertex functions avoids the logarithmic singularity. See I. A.
Verdiev, O. V. Kancheli, S. G. Matinyan, A. M. Popova, and K. A.
Ter-Martirosyan, Zh. Eksperim i Teor. Fiz 46, 1700 (1964)
[English transl.: Soviet Phys.—JETP 19, 1148 (1964)7; J. Finkel-
stein and K, Kajantie, Phys. Letters 26B, 305 (1968).
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is the order of 2p=~0.9. The integrated discontinuity of
the cut is 0.11, and we see that the summation has
depressed it with respect to the “Born term” [in which
the denominator in the integrand of Eq. (4.7) is 1] by
a factor of 9.

V. GENERATION OF THE POMERANCHUK
TRAJECTORY

Having achieved self-consistency for the meson tra-
jectory, we want to examine in our formalism the possi-
bility of generating the Pomeranchuk pole via the same
dynamical mechanism, i.e., multi-Regge meson ex-
change. In Sec. V, we have evaluated the contribution of
ladders of the type of Fig. 2 to the amplitude with the
t-channel quantum numbers of our self-consistent
meson. The same kind of ladders also contribute to the
amplitude for the exchange of the quantum numbers of
the vacuum. In specific models, the relation between
these two amplitudes can be easily expressed in terms
of Clebsch-Gordan coefficients, which effectively only
redefine the coupling constants. For instance, in a
model in which our building meson has isospin 1 (e.g.,
alternate exchange of degenerate p and A, poles), we
have to replace g2 by ga®*=2g? in the vacuum exchange
amplitude. On the other hand, if the dominant mecha-
nism is alternate 7=0 and /=1 exchanges (such as
degenerate w and p, or P’ and A, trajectories), the sub-
stitution leading from the 7= 1 exchange to the vacuum
exchange amplitude is g2 — g2=V3g% Of course, any
one of these models is oversimplified, and we adopt the
attitude of determining this model-dependent ratio
v=gu?/g* by requiring an intercept for the Pomeran-
chuk trajectory equal or very close to 1. Thus, v is
given by the equation

v=9(0,asr)/v(0,ap) . (5.1)

The values of v for the set of solutions obtained in Sec.
IV are listed in Table I, and turn out to be very stable
around the value 1.66. This value does not change ap-
preciably if we impose an intercept for the Pomeranchuk
trajectory slightly below one. From Eq. (4.5) we can
now compute the ratio ap’/ax’, where ap’ is the slope
of the Pomeranchuk trajectory. This ratio is also stable,
and its value is slightly larger than 1 (see Table I).

We can compute from this model the average number
of particles produced, using the optical theorem and the

relation
) >onan(s) , 9 ot
a(s)= o) =g Py Inotot(s). (5.2)
We obtain 7i(s) = A4 In(s/m?)+ B, with
A=p/(R-1),
(5.3)

B=[pR*—gs*(R—1)]/[ga*(R—1)*]—2,
where

R=}gu*/(1—any). (5.4)
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The values of 4 and B in our solutions are also in Table
I. The logarithmic growth of multiplicity with energy is
a common feature of multiperipheral models and is com-
patible with cosmic-ray data.!* The predicted values of
A4 and B listed in Table I compare well with experiment,
the data from cosmic rays slightly preferring solutions
of lower ay than the accelerator experiments, in both
cases within the range considered in Table I.

VI. CONCLUSION

We have examined in this paper the possibilities of
the bootstrapping of Regge poles suggested in CP. The
essential ingredients in this approach are multiparticle
unitarity and the assumption that the multi-Regge
model gives a satisfactory representation for the produc-
tion amplitude, not only in the multi-Regge asymptotic
region but throughout phase space.

With these assumptions we have found some reason-
able solutions in which the meson trajectory satisfies
self-consistency conditions. We have indicated how the
Pomeranchuk pole can also be generated by multiple
meson exchange. Not surprisingly, the slope obtained in
this way for the Pomeranchuk trajectory is similar to
the meson slope. Present experimental data seem to
favor a flatter Pomeranchuk trajectory.’ We know,
however, that secondary trajectories are still important
at present energies, and that therefore it is not easy to
isolate the Pomeranchuk contribution.

Our bootstrap is not complete in many senses. In par-
ticular, in the approximation in which the Pomeranchuk
trajectory is not exchanged, we cannot force it to obey
self-consistency conditions. To consider also Pomeran-
chuk exchange, it is necessary to solve a coupled-channel
problem, and this is possible, but is more complicated
and involves more parameters.

Whereas here we have kept only the channel in which

14 M. Koshiba, Rapporteur’s talk at the Tenth International
Conference on Cosmic Rays, Denver, 1967 (unpublished).

15 See, for example, W. Rarita, R. J. Riddell, Jr., C. B. Chiu,
and R. J. N. Phillips, Phys. Rev. 165, 1615 (1968).
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mesons are exchanged, Goldberger and Low'® have
suggested the alternative point of view of considering
that multiple Pomeranchuk exchange, even though re-
sponsible for a very small fraction of the observed multi-
plicity, is still the dominant mechanism for the genera-
tion of the Pomeranchuk trajectory itself. As a result,
they obtain a solution in which there are three small
numbers of the same order of magnitude; the Pomeran-
chuk-Pomeranchuk-meson coupling constant squared,
the slope of the Pomeranchuk trajectory, and the dis-
tance from 1 of the intercept of the Pomeranchuk tra-
jectory.l” If one takes this attitude, one may also have
to keep Pomeranchuk exchange in the diagrams generat-
ing the meson trajectory, instead of the mechanism con-
sidered here.

The solution of the more complicated problem in-
volving coupled channels, and a good knowledge of some
quantities like the intercept of the Pomeranchuk trajec-
tory and its coupling constant in inelastic processes, may
clarify the relative importance of the various channels,
and therefore the validity of these two complementary
points of view. For the time being, we find our approach
more appealing, because in it the high-energy behavior
of the total cross section is intimately related to the
dominant mechanism for particle production.
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