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Off-Energy-Shell Behavior of Partial-Wave Scattering Amplitudes*
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We compare the oB-energy-shell behavior of several potential models for the nucleon-nucleon interaction.
This is done by comparing the Kowalski-Noyes half-oR-shell functions f&(p,k) resulting from the different
models.

I. INTRODUCTION II. EQUATIONS AND CONVENTIONS

K have presented several separable-potential
models of the nucleon-nucleon interaction and

claimed that these models will be useful in probing
the off-energy-shell behavior of the nucleon-nucleon
scattering amplitude. "Therefore, it seems useful to
display the off-energy-shell behavior of our models and
compare this oG-shell behavior with the off-she'll be-
havior produced by some other potential models of the
nucleon-nucleon interaction.

The point of the present paper is that the off-energy-
shell behavior of separable-potential models is rot
qualitatively different from the off-shell behavior pro-
duced by local soft-core Yukawa-potential models.
Thus, separable-potential models lead to off-energy-
shell scattering amplitudes that are as close to physical
reality as the amplitudes resulting from these local
potential models. Therefore, at the present state of our
knowledge of the nucleon-nucleon interaction, the use
of separable-potential models in calculations involving
off-energy-shell nucleon-nucleon scattering amplitudes
is strongly indicated because of the great convenience
and simplicity of the separable-potential models.

If the half-o6-energy-shell partial-wave scattering
amplitude Tt(p, k; k') goes to zero as k' —+ po, which is
true in potential theory, the half-oG-shell amplitude
is determined by the scattering region (ks) 0) values
of the on-shell amplitude and the Kowalski-Noyes'4
half-o8-shell function ft(p, k), where ft(p, k) is a real
function. Similarly, it can be shown that the full off-
shell amplitude Tt(p, p'; k') is determined for all values
of k' by the scattering region (k') 0) values of the on-
shell amplitude and the half-off-shell function ft(p, k),
if Tt(p, p'; k') ~ 0 as k'~ po. ' Consequently, in this
paper we compare the oG-energy-shell behavior of
several types of potential models of the nucleon-
nucleon interaction by displaying the half-oG-shell
functions ft(p, k) for k')0, generated by the various
models.

The half-off-shell partial-wave nucleon-nucleon scat-
tering amplitude Tt(p, k; k') is determined in potential
theory by the two-particle nonrelativistic Lippmann-
Schwinger equation

T,(p,k; ks) = V, (p,k)

2tt "q'dq Vt(p, q)Tt(q, k; k')

k' p k' q'+—i e

where the c.m. kinetic energy 8=k'k'/2tt, and tt is the
reduced mass of the two nucleons.

It can be shown' on the basis of time reversal and
unitarity alone, that the half-off-shell amplitude
Tt(p, k; k') can be written

Tt(p, k; k') = ft(p, k) Tt(k'),

where ft(p, k) is a real function, and Tt(k') is the on-shell
partial-wave scattering amplitude

Tt (k') = —(k'/trttk) e*'t &"l sinbt (k') .

In fact, by performing a Fredholm reduction on the
singular integral Eq. (1), we can show' that the half-off-
shell function ft(p, k) is determined in potential theory
by the nonsingular integral equation

Vt(p, k) 2tt " q'dq
s(p») = +

Vt(k, k) trt' p k' —q'

Vt(p, k) Vt(k, q))
Xl Vt(p, q) — ' '—ilt(q, k) . (2)

v, (k,k) )
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Vt(p, p') =e(p)gt(p') kt(p)kt(p'), —

and the half-o8-shell function can be written

ft (p,k) = 1Vt (p,k)/tVt (k,k),
atory ' M. I. Sobel, Phys. Rev. 157, 81517 (1965).
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The real function ft(p, k) has the threshold behavior
ft(pk) p' as p~0 and ft(pk) k ' as k —+0. Of
course, ft(k,k)—= 1 and ft(p, k) ~ oo, when Tt(k') ~ 0.

In the separable-potential models we presented
earlier, the potential in uncoupled partial waves is
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where

( 2p
&l(P») =gl(P)gl(h)l 1+—&

h2

"dqqshP(q))

h2 —q'

(v) the local soft-core potential models of Reid. r In
the partial wave 'Sp, the potentials are

V~(x) = —h(e /x) —1650.6(e 4 /x)+6484. 2(e—"~/x),

( 2p,—hl(P)hl(h)i 1 I—'—
h2

dq q
gl'(q)

I

h2 —q' ) V/2(x) = —h(e */x)+105.32(e '*/x) —2401.9(e 4*/x)

+5598.2(e '*/x) .
2p

-Lgl (P)hl (h)+hl(P)gl (h)j—~
A2

" dqq'
gl(q)hl(q) p In the partial wave 'Pr, the potentials are

$2 q2

V~(x) =3h(e */x) —634.39(e 2*/x)+2163.4(e '*/x)
&

and I' indicates a principal-value integral. For a single-
term separable potential, we have Vl(P,P') = Xgl(P)
Xgl(P'), with ) = +1, and the half-off-shell function is

or

Va(x) = 3h(e /x) —240(e */x)+17000(e s*/x) .

f/(P») =gl(P)/gl(&). (4) Finally, in the partial wave 'D2, the potentials are

We have compared the half-off-shell functions in the
uncoupled partial waves 'Sp, 'I'~, and 'D2 resulting
from four different separable-potential models of the
general form

V (P P')=g (P)g (P') —h (P)h (P')

and from three different local soft-core Yukawa-
potential models of the nucleon-nucleon interaction.
These potentials are:

(i) separable-potential case I of Ref. 2 with

g (P') =G P/(P"+
h (P) G Pl/(P2+/l 2)(l+1)/2

Vg(x) = —h(e */x) —318.64(e 2 /x)+526. 27(e '*/x),

or

Vs(x) = —h(e */x) —12.322 (e ' /x) —1112.6(e 4 /x)

In all these potentials, h=10.463 MeV and x=pr, with
@=0.7 F ';

(vi) the local soft-core potential model of Ulehla,
Bystricky, and Lehar. ' In the partial wave 'Sp, this

TABLE I. Potential parameters for the separable
potentials of Ref. 2.

Case I
The potential parameters in the different partial waves
are given in Table I;

(ii) separable-potential case II of Ref. 2, with

gl(P) =G~P'/(P'+~~') "+""
Ill (P) g&P l/(P2+ /l&2) (l+2) /2

The potential parameters for the different partial waves
are displayed in Table I;

(iii) separable-potential case III of Ref. 2 with

GIl P2

gl(P)=, Q/I 1+
(/p+-'g ') — p' E 2p')-

p~2)
—1/2

hl(P) =G~ Ql 1+
~P' 2P2&

Partial
wave
'Sp
1+1
'Dp

Partial
wave

1+P
1PI
'Dp

Partial
wave

ag
lD

Gz
(MeV F)"2

52.45
49.83
0.0

Ga
(MeV/F) '/'

302.0
40.88
0.0

(MeV F)'"
20.84
26.53
0.0

(p ')
2.331
1.138

Case II

( ')
6.157
1.410

Case III

(p ')
2.225
0.644

Case IV

Gg
CMev F)»2

41.36
46.16
4.817

G~
(Me V//F) '/'

27.33
30.21
21.09

(MeV F)'"
10.00
31.53
10.61

ag
(p ')
1.855
1.103
1.418

(p ')
1.786
1.258
1.944

PA
(p ')
1.300
1.256
1.415

where Ql(x) is the I.egendre function of the second kind
and the potential parameters are again given in Table
I

(iv) separable-potential case IV of Ref. 2 with

Partial
wave
'Sp
1P1
lD2

Ga az
LMeV P (2l+1)$1/2 (P-r)

302.0 6.157
121.6 1.967

0.0 ~ ~ ~

P/[eV P-(2l+Il jl/2 (P—r)

27.33 1.786
49.73 1.566

530.5 2.721

gl(P) =G~P'/(P'+~a')"',
hl (P) =G~P'/(P'+&~')'+'

Note that (iv) is identical to (ii) in the partial wave
Sp. The potential parameters in the different partial

waves are entered in Table I;

7Roderick V. Reid, Jr., Center for Theoretical Physics, Lab-
oratory for Nuclear Science, Massachusetts Institute of Tech-
nology Report No. CTP-40, 1968 (unpublished).

SI. Ulehle, J. Bystricky, and F. Lehar, in EroceeCings of the
International NNclear I"hysics Conference, Gatlinburg, Tenn. , 1966,
edited by R. L. Becker (Academic Press Inc., New York, 1967),
p. 687.
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TABLE II. Parameters of the soft-core local potentials of Reid and Ulehla et al.

y (p ) p Gs
q

P+g+Ija

where the p; are in inverse ferrnis (F '), and 6; are in MeV F.

Potential pq (F' ~) Gq (MeV F) 444 (F 4) Gq (MeV F) 444 (F ) Gr (MeV F) 444 (F ) G4 (MeV F)

Reid A
Reid 8
Ulehla et al.

Reid A
Reid 8
Ulehla eI al.

Reid A
Reld 8
Ulhela eI, al.

0.7
0.7
0.707

0.7
0,7
0.707

0.7
0.7
0.707

—14.947—14.947—60.5

31.389
31.389—38.5

—14.947—14.947—28.3

2.8
2.1
1.414

1.4
1.4
1.414

2.1
1.4
1.414

Partial wave 'Sp
—2358.0

150.46
934.0

Partial wave 'Pl
—906.27—342.9

359.7
Partial wave 'D2

—455.20—17.603
71.0

4.9
2.8
2.121

2.1
4.2
2.121

3.5
2.8
2.121

9263.1—3431.3—5277.0

3090.6
24285.7

0.0

751.81—1589.4
5.9

~ ~ ~

4.2
2.828

~ ~ ~

2.828

4 ~ ~

2.828

0.0
7497.4
6234.0

0.0
0.0
0.0

0.0
9263.1—1150.0

TABLE III. Sp phase shift in degrees generated by different potential models at selected values of the laboratory kinetic energy.

ab KE
Mod (MeV)

Mongan case I
Mongan case II
Mongan case III
Reid A
Reid 8
Ulehla et al.
Tabakin single

separable

40.0
40.4
30.3
38.6
38.4
39.6

37.0

100

24.6
25.0
16.9
24.3
24.1
24.9

22.9

150

14.1
14.4
9.1

14.0
13.9
14.6

13.2

200

6.2
6.4
3.8
5.8
5.7
6.6

250

—0.11—0.05—0.06—1.1—1.0—0.09

103

300

—5.2—5.4
3.1—7.0—6.8—5.4

350

—9.6—10.0—5.5—12.2—11.9—10.1

—13.0

TABLE IV. I& phase shift in degrees generated by diferent potential models at selected values of the laboratory kinetic energy.

Lab KE
Model (MeV)

Mongan case I
Mongan case II
Mongan case III
Mongan case IV
Reid A
Reid 8
Ulehla et al.

50

302—2.7—30—3.6—4.3—5.5—5.7

100

—11.6—12.3—13.0—12.3—11.5
1103—12.3

150

—18.2—197—20.0—19.7—18.7—18.0
170 1

200

2303—24.9—24.7—25.3—25.2—24.6—20.5

250

27.2—28.3—28.0—29.2—30.9—30.9
2302

300

—30.3—30.6—30.3—31.8—35.9—36.9—25.4

350

—32.8—32.0—32.0—33.3—40.4—42.4—27.1

potential is

V(x) = (tm '/tr4t4)f —2.06(e /x)+31.8(e '*/x)
—179.6(e s*/x)+212.2(e 4*/x)j,

while in 'I'~, the potential is

V(x) = (its s/nest)L —1.31(e ~/x)+12. 25(e s*/x) j
and in 'D~, the potential is

TABLE V. 'Ds phase shift in degrees generated by di6'erent
V( ) ( s/ )t- 0 962( / )+2 4( s / )potential models at selected values of the laboratory kinetic

energy. —0.2(e '*/g) —39.2(e 4*/g) j,
iLab KE

Model+�(MeV)

50

Mongan case I 1.1
Mongan case II 0.9
Mongan case III 1.4
Mongan case IV 0.8
Reid A 1.7
Reid J3 1.7
Ulehla et al. 2.0

100 150 200 250 300 350

3.3 5.5 7.1 8.4 9.2 9.9
3.1 5.4 7.2 8.5 9.3 9.8
3.5 5.4 6.9 8.2 9.1 9.9
2.8 5.2 7.2 8.6 9.5 9.8
3.6 5.3 6.8 8.0 9.0 9.8
3.6 5.4 6.9 8.1 8.9 9.4
3.5 5.2 7.1 9.1 11.3 13.4

where m =139.51 MeV, m~=937.0 MeV and x=pr,
with @=0.707 F—'.

In momentum space, the potentials of Reid and
Ulehla et al. are given by

p'+q'+4 "&
V~(p, e) =2 — Qt

i=4 trpb 2pg
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where Q~(x) is the Legendre function of the second kind.
The coupling strength G; and the inverse ranges p, ;
in the three cases are given in Table II.

Additionally, in the partial wave Sp we consider
Tabakin's' single-term separable-potential model of the
'Sp interaction. In Tabakin's model

«(p, p )=g (p)g (p"),
with

g, (p) =cr (k s—ps) p(ps/ ds)/(ps+ y))Ll/(p4+ gc)g

where 0,'=4008434 F ' k =1.7 F ', @=4.05 F ',
b= 1 08548 F ' and d= 1.683 F '

III. CALCULATIONS AND RESULTS

O

O
O

V

ED

co
1

V
O
I

o

33.8

—7.8
0

~ ~ ~ 0 t ~
~ ~ ~ ~ ~ y ~ ~ ~

io
c.m. m om entum ( inve r se fermi s )

First we check the on-shell properties of the different
potential models. In Tables III—V, we present the
values of the phase shifts generated by the different
potential models at selected values of the laboratory
kinetic energy.

Next, we obtain the half-off-shell functions fl(p, k)
resulting from our separable-potential models from
Eq. (3) and we display f&(p,k) versus p for axed values
of the laboratory kinetic energy E&,b=2(hsks/2p) in
Figs. 1—8. Note that in the partial wave 'Sp the case II
and IV potentials are identical and the case III poten-
tial of Ref. 2 has an off-shell behavior substantially
different from the other separable-potential models.
This behavior is also characteristic of the case I and II
fits of Ref. 1, which have specially modified repulsive
form factors. The different behavior of f~(p, k) for
large p in the various separable-potential models is
clearly displayed in Figs. 5—8.

We now compare the off-shell behavior of our
separable-potential models of the nucleon-nucleon inter-

8.5

O
+
CP

0

cn

Vl

l
V

O
I

O

-35.3
0

c.m. momentum ( inve rse fe rmi s )

Fzo. 3. Noyes-Kowalski half-off-shell functions f~(p,k) for the
separable-potential models of Ref. 2 in the partial wave 'So at a
lab KE of 270 MeV. Description of the curves is as for Fig. 1.

FIG. 2. Noyes-Kowalski half-o6-shell functions f&(p,k) for the
separable-potential models of Ref. 2 in the partial wave So at a
lab KE of 230 MeV. Description of the curves is as for Fig. 1.

Ol

EO

I
V

O
I

I,'

—0.3
~ 0

~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

IO

c.m. momentum (inverse fermis)

O

O
0

CIJ

Ch

I

O
I

O
K

FxG. 1. Noyes-Kowalski half-off-shell functions f&(p,k) for the
separable-potential models of Ref. 2 in the partial wave 'So at a
lab KE of 0 MeV. The dashed curve represents the case I 6t.
The solid curve marks the case II and IV its, which are identical
in the partial wave 'So. The case III Qt is indicated by the dotted
curve.

9 F. Tabakin, Phys. Rev. 174, 1208 (1968).

—6.4 '

0
c.m. momentum (inverse fermis)

IO

FlG. 4. Noyes-Kowalski half-oG-shell functions f&(p,k) for the
separable-potential models of Ref. 2 in the partial wave So at a
lab KE of 400 MeV. Description of the curves is as for Fig. &.
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VI

I
'II
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1
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Fro. 5. Noyes-Kowalski half-off-shell functions ft(p, k) for the
separable-potential models of Ref. 2 in the partial wave 'Pj at a
lab KE of j.00 MeV. The dashed curve represents the case I fit,
the solid curve marks the case II fit, the dotted curve indicates
the case III Gt, and the dot-dash curve denotes the Case IV fit.

j I I I I I I

m momentum (inverse fermis)

Fzo. g. Noyes-Kowalsiri half-off-shell functions f&(p,k) for the
separable-potential models of Ref. 2 in the partial wave ~D2 at a
lab KE of 300 MeV. Description of the curves is as for Fig. 5.
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I

O
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O
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Fzo. 7. Noyes-Kowalski half-off-shell functions f&(p, k) for the
separable-potential models of Ref. 2 in the partial wave 'D~ at a
1@b KF of 100 MeV. Description of the curves is as for Fig. 5,

IO

c.m. momentum (inverse fermis)

Fro. 6. Noyes-Kowalski half-off-shell functions f~(p, k) for the
separable-potential models of Ref. 2 in the partial wave 'P~ at a
lab KE of 300 MeV. Description of the curves is as for Fig. 5.

c.m. momentum ( inverse fermi s )

Fxo. 9. Comparison of the Noyes-Kowalski half-oQ-shell
functions fq(p, k) resulting from local-potential models and separ-
able-potential models in the partial wave 'S0 at a lab KE of
0 MeV. The solid curve denotes f~(p, k) resulting from the separ-
able-potential case II of Ref. 2 which has been chosen as repre-
sentative of the separable-potential models of Ref. 2. The so il'

curve marked with d represents fg(p, k} resulting from Tabakin's
single-term separable-potential model of the '$0 interaction. The
dotted curve displays f&(p,k) produced by the local potential
model of Ulehla et al. The dashed curve indicates fg(p, k) generated
by the local-potential model of Reid which we have called A in
the text. The dot-dash curve signifies f~(p, k} resulting from the
local-potential model of Reid which we have called J3 in the text.

action with the Reid and Ulehla et al. local-potential
models and Tabakin's separable 'So potential. We
shall choose case II of Ref. 2 to represent our separable-
potential models in this comparison, because it gives the
best ht to the on-shell data.

For the local-potential mode1s, f1(P,k) is obtained by
solving the integral Eq. (2) numerically as a matrix
inversion problem. For the case II of Ref. 2 separable-
potential model, f1(P,k) is obtained from Eq. (3), while
Eq. (4) yields f1(P,k) for the Tabakin model. We
display the results as curves of f1(p,k) versus p at
6xed values of k, in Figs. 9—16.
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When we compare the off-shell behavior resulting
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And that the off-shell functions in pin artial waves,
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models, because e, b the case IV potentials lea
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l.4
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c.m. momentum ( inverse fermi s )
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FIG. 15. Comparison of the Noyes-Kowalski half-oG-shell
functions fg (p,k) resulting from local-potential models and
separable-potential models in the partial wave 'D2 at a lab KE
of 100 MeV. Description of the curves is as for Fig. 13.

potential model of the So interaction given by Tabakin
seems to lead to an off-shell function somewhat different
from those produced by other models.

Our contention that the oQ-energy-shell behavior of
separable-potential models is not in contradiction with
experiment and is not drastically diBerent in a calcula-
tional sense from the o8-shell behavior produced by
local potentials is borne out, respectively, by the success
of Tabakin's earlier separable-potential model of the
nucleon-nucleon interaction in nuclear physics calcul. a-
tions' and by the agreement of the separable-potential
p-p bremsstrahlung calculation of Pearce, Gale, and
Duck, "with the local-potential calculations and with
experiment.

Our results have been checked by utilizing programs
which solve the I.ippmann-Schwinger Eq. (1) as a com-
plex matrix inversion problem to obtain the amplitudes
Tg(p, k; k') and Tq(k'). These amplitudes determine
f&(P,k) by the equation f&(P&k) = T&(P,k,ks)/T&(k'), and
this result is checked against fE(p,k) calculated from
Eqs. (2) and (3).

Iv. COMMENTS AND CONCLUSIONS

Cl

CA

I

o
I

O 4

-0.4
0

c.m. momentum ( inverse fermis )

lo

which is the same as the asymptotic behavior resulting
from a superposition of Yukawa potentials. Corre-
spondingly, the agreement of the oG-shell functions
resulting from the local Yukawa models with the oK-
shell functions generated by the separable model is
somewhat worse in cases I and III.

The greatest difference between the off-shell func-
tions resulting from the local potentials and our separ-
able-potential models is in the partial wave 'So at a
laboratory kinetic energy of 400 MeV and momentum
p=0, where f~(p,k)=0 for the local-potential models
and fg(p, k) is of order 1 for the separable models. Also,
in the partial wave 'Se, the function f&(p,k) produced by
our separable-potential models falls o8 more slowly
as p ~ ee than the oG-shell functions resulting from the
local-potential models. Notice that the single separable-

FrG. 16. Comparison of the Noyes-Kowalski half-oG-shell
functions f~(p, k) resulting from local-potential models and separ-
able-potential models in the partial wave 'D2 at a lab KE of
300 MeV. Description of the curves is as for Fig. 13.

We would first like to remark on Tabakin's' single-
separable-potential model of the 'So nucleon-nucleon
interaction as set forth in Eq. (5). This model leads to
a pole in the full off-energy-shell amplitude T&(p,p'; k')
at kt=k, 2, which does not occur in the actual full off-
shell amplitude. 5 If the Tabakin model is used in
three-body scattering calculations, this spurious singu-
larity or "positive-energy bound state, " as Tabakin
calls it, will lead to cuts in the three-body scattering
amplitudes similar to those resulting from the scattering
of a free particle ofI a real physical bound state of the
other two."It is dificult to predict the effects or assess
the physical significance of these somewhat artificial
cuts. Although the Tabakin potential yields an off-shell
function f~(p, k) that is rather different from the off-shell
functions resulting from our separable-potential models
or from the local soft-core Yukawa-potential models, we
believe that the Tabakin potential may provide a useful
model for the o6-shell function ft(p, k) If the Ta. bakin
model is used only to generate the off-shell function
f&(p,k), the half-off-shell scattering amplitude may be
written Tq(P, k; k') =u~(P)Pg(k)Tq(k'), with T~(k')
written in terms of the experimental phase shifts and
ng(p) and pq(k) obtained directly from the Tabaion
model. Additionally, a separable model of the off-shell
factor fg(P, k) in the form fg(P, k)=ug(P)P~(k) is very
useful when studying the full off-shell amplitude. s

It seems that the necessity of 6tting the on-shell data
constrains our separable-potential models and the

'0 F. Tabakin, Ann. Phys. (N.V.) 30, 51 (1964)."W. A. Pearce, W. A. Gale, and I. M. Duck, Nucl. Phys. SB,
241 (1967)."C. Lovelace, Phys. Rev. 135, B1225 (1964).
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local soft-core Yukawa potentials to share the same
qualitative o6-shell behavior. This is not surprising
in view of the smoothness of the mathematical forms
of the potentials.

Our separable-potential models do show some varia-
tion in off-shell behavior, especially for large values of p
in f~(P,k). This reinforces our hopes that the use, in
calculations involving the oQ-energy-shell two-body
scattering amplitude, of the form

with F&(P,p'; k') determined by the separable-potential
models and Tq(k') written in terms of the experimental
phase shifts, will enable us to discern the sensitivity

of these calculations to the off-energy-shell behavior
of the amplitudes.

We have demonstrated that separable-potential
models lead to an off-energy-shell behavior, which is
rot qualitatively diferent from the off-shell behavior
resulting from local soft-core Yukawa-potential models
of the nucleon-nucleon interaction. Since separable-
potential models do not produce any freakish effects
off the energy shell, they seem to have an equally valid
claim to presenting a realistic representation of the off-
shell nucleon-nucleon interaction as the local-potential
models. Therefore, since the separable-potential models
are so much simpler, their use in calculations involving
the oG-energy-shell nucleon-nucleon partial-wave scat-
tering amplitude is strongly indicated.
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Effect of Weak Interactions on Electromagnetic Properties of Leptons*
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We have investigated the electromagnetic properties of leptons in the presence of weak interactions, using
a model essentially similar to the one recently developed by Gell-Mann, Goldberger, Kroll, and Low. We
find that the effect is very small in the anomalous magnetic moment and in the Lamb shift of hydrogen.
However, the charge radius of the neutrino turns out to be much larger than the previous estimate of
Bernstein and Lee.

I. INTRODUCTION

ECENT investigations in the theory of weak
interactions have brought to surface the fact that

the conventional (V—A) theory, with or without the
intermediate vector boson, runs into serious difIIculties,
once it is regarded as a full-Qedged Geld theory. The
origin of these difhculties lies in the nonrenormalizability
of the theory, with the result that one cannot subtract
away the in6nities arising out of integration of the
internal momenta in a higher-order diagram. However,
the Grst-order results are not divergent and are in good
agreement with experimental data at low energies.
In trying to get rid of the divergence difficulties without
essentially disturbing the first-order low-energy results,
one assumes that the basic interaction somehow gets
cut off or damped out at high energies and high virtual
momenta, thus providing the required convergence to
make all higher-order graphs 6nite. Now, the energy at
which the first-order theory must necessarily fail is the
energy at which it starts violating unitarity, and in
the absence of anything more suggestive, it is natural
to use this as the cutoff value in the internal-momenta
integrations. The resulting cutoff value h.

„
turns out to

*Research supported in part by AFOSR under Grant No. f288-
67.

be Q(1/G), ' where G is the Fermi coupling constant.
However, its use in the conventional theory leads to
serious conQicts with experiments since it then predicts
strong violation of strong selection rules and far too large
an amplitude for second-order weak processes like
E' —+ p+p . In a recent paper, Gell-Mann, Goldberger,
K.roll, and Low' have proposed a modification of the
conventional theory which bypasses these difficulties.
In their model the hadronic current interacts not only
with an intermediate vector boson but also with a set of
scalar and pseudoscalar mesons and the various inter-
actions are so arranged such that if one uses the
cutoff A„in internal-momenta integrations one has no
disagreements with experimental facts at the order-of-
magnitude level. In this note we investigate, in a theory
of this type, the effect of weak interactions on the elec-
tromagnetic properties of leptons.

In Sec. II, we present a simplified version of the GG&~-
model which contains all the essential aspects of their
basic idea. In Sec. III, we introduce electromagnetic
interactions and evaluate the electromagnetic prop-

' 4'is the value of the formally divergent integral (27r) 4J'd4g/q',
after it has been regularized. With this definition, the expansion
fails for GA.'~1, which can be considered as the definition of the
unitarity cutoG.


