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We compare the off-energy-shell behavior of several potential models for the nucleon-nucleon interaction.
This is done by comparing the Kowalski-Noyes half-off-shell functions f(p,k) resulting from the different

models.

I. INTRODUCTION

E have presented several separable-potential

models of the nucleon-nucleon interaction and
claimed that these models will be useful in probing
the off-energy-shell behavior of the nucleon-nucleon
scattering amplitude.l'? Therefore, it seems useful to
display the off-energy-shell behavior of our models and
compare this off-shell behavior with the off-shell be-
havior produced by some other potential models of the
nucleon-nucleon interaction.

The point of the present paper is that the off-energy-
shell behavior of separable-potential models is #ot
qualitatively different from the off-shell behavior pro-
duced by local soft-core Yukawa-potential models.
Thus, separable-potential models lead to off-energy-
shell scattering amplitudes that are as close to physical
reality as the amplitudes resulting from these local
potential models. Therefore, at the present state of our
knowledge of the nucleon-nucleon interaction, the use
of separable-potential models in calculations involving
off-energy-shell nucleon-nucleon scattering amplitudes
is strongly indicated because of the great convenience
and simplicity of the separable-potential models.

If the half-off-energy-shell partial-wave scattering
amplitude T(p,k; k%) goes to zero as k2 — oo, which is
true in potential theory, the half-ofi-shell amplitude
is determined by the scattering region (£2>0) values
of the on-shell amplitude and the Kowalski-Noyes®*
half-off-shell function fi(p,k), where fi(p,k) is a real
function. Similarly, it can be shown that the full off-
shell amplitude T:(p,p’; k?) is determined for all values
of k2 by the scattering region (k2>0) values of the on-
shell amplitude and the half-off-shell function fi(p,k),
if Tu(p,p’; k%) — 0 as k2— .5 Consequently, in this
paper we compare the off-energy-shell behavior of
several types of potential models of the nucleon-
nucleon interaction by displaying the half-off-shell
functions fi(p,k) for k2>0, generated by the various
models.
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II. EQUATIONS AND CONVENTIONS

The half-off-shell partial-wave nucleon-nucleon scat-
tering amplitude 7(p,k; k?) is determined in potential
theory by the two-particle nonrelativistic Lippmann-
Schwinger equation

Ti(pe; B =Vi(p,k)
2u = ¢?dg Vi(p,9)Tu(g,k 5 k%) W
w2 J, B—gtie

where the c.m. kinetic energy E=%%2/2u, and u is the
reduced mass of the two nucleons.

It can be shown® on the basis of time reversal and
unitarity alone, that the half-off-shell amplitude
Ti(p,k; k?) can be written

Tl(P7k7 kz)zfl(pak)Tl(kz) ’

where fi(p,k) is a real function, and T';(k2) is the on-shell
partial-wave scattering amplitude

T1(k?) = — (72/wuk)e®1*" sing; (k2).

In fact, by performing a Fredholm reduction on the
singular integral Eq. (1), we can show? that the half-off-
shell function fi(p,k) is determined in potential theory
by the nonsingular integral equation

Vz(P,k) 2“ * qqu
fl (P:k) = f /
0

Vi) 2o B—g

Vi(p,k)Vi(k,g)

X<Vt(17;9)— e >fz(q,k)~ @)

The real function fi(p,k) has the threshold behavior
fi(p,ke)~p* as p— 0 and fi(p,k)~k™? as k— 0. Of
course, fi(k,k)=1 and fi(p,k) = », when T;(k?)— 0.
In the separable-potential models we presented
earlier, the potential in uncoupled partial waves is

Vi(p,p")=g(p)g(p") —h(p)(p’)
and the half-off-shell function can be written
fl(Pyk)=Nl(P1k)/Nl(ksk) )

6 M. I. Sobel, Phys. Rev. 137, B1517 (1965).
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where (
2u_ [ dq@*h? q))
Ni(p k)= Zp [ 22T
e =ane(tr [ —
2 00 d 2
—h:(p)h(k)(l—-‘fP f el gﬁ(q)>
hZ 0 k?_q2

2u [ dqg
—L& hl k 1 l - 81 hl )
Lo Hupa®IP [ g

and P indicates a principal-value integral. For a single-
term separable potential, we have Vi(p,p")=Agi(p)
Xgi(p"), with A===1, and the half-off-shell function is

Ji(p.R)=g(p)/g:(%). 4)

We have compared the half-off-shell functions in the
uncoupled partial waves 1S, 'P;, and 1D, resulting
from four different separable-potential models of the
general form

Vi(p,p) =gu(p)gi(p") = (p)lu(p')

and from three different local soft-core Yukawa-
potential models of the nucleon-nucleon interaction.
These potentials are:

(1) separable-potential case I of Ref. 2 with

g(p)=GrpY/ (P*+ag?) 012
hi(p)=GapY (p*+a2) D2,

The potential parameters in the different partial waves
are given in Table I;
(ii) separable-potential case II of Ref. 2, with

21(p)=GrpY/ (p*+ag?) D12
hi(p)=GapY (p-a42) D12,

The potential parameters for the different partial waves
are displayed in Table I;
(iii) separable-potential case III of Ref. 2 with

» Grp? I: 1 <1+“R2>:|1/2
o o\ )]

1 “'AZ 1/2
I (p) =GA[;‘P‘2Q1<1 +§;>:| )

where Q;(x) is the Legendre function of the second kind
and the potential parameters are again given in Table
I

, (iv) separable-potential case IV of Ref. 2 with
§(p)=Grp'/ (p*+ar’)*,
m(p)=Gap'/ (P*+aa?)*".

Note that (iv) is identical to (ii) in the partial wave
1So. The potential parameters in the different partial
waves are entered in Table I;
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(v) the local soft-core potential models of Reid.” In
the partial wave 1Sy, the potentials are -
Valx)=—h(e2/x)—1650.6(¢74=/x)+6484.2(¢7"*/x) ,
and

Ve(x)=—h(e=/x)+105.32(¢732/x)— 2401.9(e**/x)
+5598.2(¢5%/x).

In the partial wave 1P;, the potentials are
Va(x)=3h(e=/x)—634.39(e72*/x)+2163.4(e73% /%) ,
or
V g(x)=3h(e~=/x)— 240(e2=/x)+17000(¢ %= /x) .
Finally, in the partial wave 'D,, the potentials are
Valx)=—h(e=/x)—318.64(e7%/x)+526.27 (¢ /x),
or

Ve(x)=—h(e=/x)—12.322(e2*/x)—1112.6(¢74*/x)
+6484.2(¢7 "2 /x) .
In all these potentials, £=10.463 MeV and x=pur, with
p=0.7 F1;
(vi) the local soft-core potential model of Ulehla,
Bystricky, and Lehar.® In the partial wave 1Sy, this

TasLE 1. Potential parameters for the separable
potentials of Ref. 2.

Case I
Partial Gr ar Ga a4
wave (MeV F)1/2 (F1) (MeV F)12 (F1
1S 52.45 2.331 41.36 1.855
1p, 49.83 1.138 46.16 1.103
1D, 0.0 e 4.817 1.418
Case 11
Partial Gr aR Ga a4
wave (MeV/F)1/2 (F1) (MeV/F)1/2 (F)
1S, 302.0 6.157 27.33 1.786
1p, 40.88 1.410 30.21 1.258
1D, 0.0 e 21.09 1.944
Case III
Partial Gr BB Ga na
wave MeV F)12 (F3) (MeV F)1/2 (F1)
1S, 20.84 2.225 10.00 1.300
1py 26.53 0.644 31.53 1.256
1D, 0.0 cee 10.61 1.415
Case IV
Partial Gr aRr Ga a4
wave [MeV F-@HDJU2 (F1) [MeV F-@+niz  (F1)
1S, 302.0 6.157 27.33 1.786
ip, 121.6 1.967 49.73 1.566
1D, 0.0 530.5 2.721

7 Roderick V. Reid, Jr., Center for Theoretical Physics, Lab-
oratory for Nuclear Science, Massachusetts Institute of Tech-
nology Report No. CTP-40, 1968 (unpublished).

81, Ulehle, J. Bystricky, and F. Lehar, in Proceedings of the
International Nuclear Physics Conference, Gatlinburg, Tenn., 19606,
edite(; by R. L. Becker (Academic Press Inc., New York, 1967),
p. 687.
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TasrE II. Parameters of the soft-core local potentials of Reid and Ulehla et al.
4 2 2 2
Vitr0=3, Lo EHLEED),

1 7pg 2pq
where the u; are in inverse fermis (F1), and G; are in MeV F.

Potential m (F) G; (MeV F) pe (F7Y) Gy (MeV F) ps (F71) Gs (MeV F) e (FY) Gs MeV F)

Partial wave 15

Reid 4 0.7 —14.947 2.8 —2358.0 4.9 9263.1 e 0.0

Reid B 0.7 —14.947 2.1 150.46 2.8 —3431.3 4.2 7497 4

Ulehla et al. 0.707 —60.5 1.414 934.0 2.121 —5277.0 2.828 6234.0
Partial wave 1P;

Reid 4 0.7 31.389 14 —906.27 2.1 3090.6 0.0

Reid B 0.7 31.389 1.4 —342.9 4.2 24285.7 e 0.0

Ulehla et al. 0.707 —38.5 1.414 359.7 2.121 0.0 2.828 0.0
Partial wave 1D,

Reid 4 0.7 —14.947 2.1 —455.20 3.5 751.81 s 0.0

Reid B 0.7 —14.947 1.4 —17.603 2.8 —1589.4 44 9263.1

Ulhela et al. 0.707 —28.3 1.414 71.0 2.121 5.9 2.828 —1150.0

TasiLE III. 1S, phase shift in degrees generated by different potential models at selected values of the laboratory kinetic energy.

Lab KE
Model\ (MeV) 50 100 150 200 250 300 350
Mongan case I 40.0 24.6 14.1 6.2 —0.11 —5.2 —9.6
Mongan case IT 404 25.0 14.4 6.4 —0.05 —54 —10.0
Mongan case 11T 30.3 16.9 9.1 3.8 —0.06 -3.1 —5.5
Reid 4 38.6 24.3 14.0 5.8 —1.1 —7.0 —12.2
Reid B 384 24.1 13.9 5.7 —1.0 —6.8 —11.9
Ulehla ef al. 39.6 24.9 14.6 6.6 —0.09 —54 —10.1
Tabakin single
separable 37.0 22.9 13.2 54 —1.3 —74 —13.0

TasLE IV. 1P, phase shift in degrees generated by different potential models at selected values of the laboratory kinetic energy.

Lab KE
Model\ (MeV) 50 100 150 200 250 300 350
Mongan case I —3.2 —11.6 —18.2 —23.3 —27.2 —30.3 —32.8
Mongan case II —2.7 —12.3 —19.7 —24.9 —28.3 —30.6 —32.0
Mongan case IIT -=3.0 —13.0 —20.0 —24.7 —28.0 —30.3 —32.0
Mongan case IV —3.6 —12.3 —19.7 —253 —29.2 —31.8 —33.3
Reid 4 —4.3 —11.5 —18.7 —25.2 —30.9 —35.9 —40.4
Reid B —5.5 —11.3 —18.0 —24.6 —30.9 —36.9 —42.4
Ulehla et al. —5.7 —12.3 —17.1 —20.5 —23.2 —25.4 —27.1
potential is while in 1P, the potential is
V(@)= (me?/my)[—2.06(e*/x)+ 31.8(e72/x) V(@)= (me?/mx)[—1.31(c/x) +12.25 (/)]

—179.6(¢7%/x)+212.2(e**/x) ],
and in 1D,, the potential is

TaBLE V. 1D, phase shift in degrees generated by different 9 . i
potential models at selected values of the laboratory kinetic V(@)= (ms*/my)[—0.962(¢~=/x)+2.4(e7*/x)

energy. —0.2(e%/x)—39.2(e % /x) ],

where m,=139.51 MeV, my=937.0 MeV and x=upr,

Lab KE

. . . 1 4 9.2 A s :
11&833:2 povios %I (1)51) g? gi ;2 g s 03 gg In momentum _space, the potentials of Reid and
Mongan case IIT1.4 3.5 54 69 82 91 99 Ulehla ef al. are given by
Mongan case IV 0.8 2.8 5.2 7.2 8.6 9.5 9.8
Reid 4 1.7 3.6 5.3 6.8 8.0 9.0 9.8 21 o
Reid B 1.7 3.6 54 6.9 8.1 8.9 9.4 P +q Fud
Ulehlaetal. 20 35 52 71 91 113 134 Vi(p,9) = Z )

‘ =1 mpg 2pq
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where Q;(x) is the Legendre function of the second kind.
The coupling strength G; and the inverse ranges u;
in the three cases are given in Table II.

Additionally, in the partial wave S,, we consider
Tabakin’s? single-term separable-potential model of the
LSy interaction. In Tabakin’s model

Vl(P:P’)=gl(P)gl(P’), (5)

with
a(p)=alkd—P)L+E/ (P+ P (pah],

where a?=400.8434 F-3, k,=1.7 F-1, q=4.05 F-,
5=1.08548 F1, and d=1.683 F1.

III. CALCULATIONS AND RESULTS

First we check the on-shell properties of the different
potential models. In Tables III-V, we present the
values of the phase shifts generated by the different
potential models at selected values of the laboratory
kinetic energy.

Next, we obtain the half-off-shell functions f;(p,k)
resulting from our separable-potential models from
Eq. (3) and we display fi(p,k) versus p for fixed values
of the laboratory kinetic energy Ein=2(#%2?/2u) in
Figs. 1-8. Note that in the partial wave 1S, the case 1T
and IV potentials are identical and the case III poten-
tial of Ref. 2 has an off-shell behavior substantially
different from the other separable-potential models.
This behavior is also characteristic of the case I and II
fits of Ref. 1, which have specially modified repulsive
form factors. The different behavior of f;(p;k) for
large p in the various separable-potential models is
clearly displayed in Figs. 5-8.

We now compare the off-shell behavior of our
separable-potential models of the nucleon-nucleon inter-

[ v T T T T

Half-off-shell factor fl(p, k')

c.m. momentum ‘(inverse fermis)

F1G. 1. Noyes-Kowalski half-off-shell functions f;(p,k) for the
separable-potential models of Ref. 2 in the partial wave 15, at a
lab KE of 0 MeV. The dashed curve represents the case I fit.
The solid curve marks the case IT and IV fits, which are identical
in the partial wave 1So. The case III fit is indicated by the dotted
curve.

9 F, Tabakin, Phys. Rev. 174, 1208 (1968).
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33.8 T T T T

Half-off~shell factor fl(p, k)

c.m. momentum (inverse fermis)

F16. 2. Noyes-Kowalski half-off-shell functions fi(p,k) for the
separable-potential models of Ref. 2 in the partial wave 1S at a
lab KE of 230 MeV. Description of the curves is as for Fig. 1.

Half-off-shell factor fl(p, k)

-35,3 . . L . L L . s L
0 10

c.m. momentum (inverse fermis)

F16. 3. Noyes-Kowalski half-off-shell functions f;(p,k) for the
separable-potential models of Ref. 2 in the partial wave 15, at a
lab KE of 270 MeV. Description of the curves is as for Fig. 1.

Half-off-shell factor fl (p, k)

-6.4 L L L L L s L

c.m. momentum (inverse fermis)

F1c. 4. Noyes-Kowalski half-off-shell functions fi(p,k) for the
separable-potential models of Ref. 2 in the partial wave 1Sy at a
lab KE of 400 MeV. Description of the curves is as for Fig. 1.
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Half-off-shell factor fl(p, k)

I TR L 1 1 1

(o] 1

c.m. momentum (inverse fermis)

F1c. 5. Noyes-Kowalski half-off-shell functions f;(p,k) for the
separable-potential models of Ref. 2 in the partial wave 1P; at a
lab KE of 100 MeV. The dashed curve represents the case I fit,
the solid curve marks the case II fit, the dotted curve indicates
the case III fit, and the dot-dash curve denotes the Case IV fit.

T T

Half-off~shell factor fl(p, k)

c.m. momentum (inverse fermis)

F16. 6. Noyes-Kowalski half-off-shell functions f;(p,k) for the
separable-potential models of Ref. 2 in the partial wave 1P; at a
lab KE of 300 MeV. Description of the curves is as for Fig. 5.

1.5 T T T © T T T T

Half-off-shell factor fl(p, k)

c.m. momentum (inverse fermis)

F1c. 7. Noyes-Kowalski half-off-shell functions f;(p,k) for the
separable-potential models of Ref. 2 in the partial wave 1D, at a
lab KE of 100 MeV. Description of the curves is as for Fig. 5.
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Half-off-shell factor fl(p, k)

c.m. momentum (inverse fermis)

F1c. 8. Noyes-Kowalski half-off-shell functions fi(p,k) for the
separable-potential models of Ref. 2 in the partial wave 1D, at a
lab KE of 300 MeV. Description of the curves is as for Fig. 5.

Half-off-shell factor f,(p, k)
il
1

_['] I 1 1 1 1 . [RUUUSEN. INSUSRS IV TSs—
0 10
c.m. momentum (inverse fermis)

Fic. 9. Comparison of the Noyes-Kowalski half-off-shell
functions f;(p,k) resulting from local-potential models and separ-
able-potential models in the partial wave 1S, at a lab KE of
0 MeV. The solid curve denotes f;(p,k) resulting from the separ-
able-potential case II of Ref. 2, which has been chosen as repre-
sentative of the separable-potential models of Ref. 2. The solid
curve marked with A represents f;(p,k) resulting from Tabakin’s
single-term separable-potential model of the 1S interaction. The
dotted curve displays fi(p,k) produced by the local potential
model of Ulehla et al. The dashed curve indicates f;(p,k) generated
by the local-potential model of Reid which we have called 4 in
the text. The dot-dash curve signifies f1(p,k) resulting from the
local-potential model of Reid which we have called B in the text.

action with the Reid and Ulehla et al. local-potential
models and Tabakin’s separable 1S, potential. We
shall choose case IT of Ref. 2 to represent our separable-
potential models in this comparison, because it gives the
best fit to the on-shell data.

For the local-potential models, f;(p,k) is obtained by
solving the integral Eq. (2) numerically as a matrix
inversion problem. For the case II of Ref. 2 separable-
potential model, f;(p,k) is obtained from Eq. (3), while
Eq. (4) yields fi(p,k) for the Tabakin model. We
display the results as curves of fi(p,k) versus p at
fixed values of &, in Figs. 9-16.
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k)

Half-off-sheil factor f,(p,

c.m. momentum (inverse fermis)

F1c. 10. Comparison of the Noyes-Kowalski half-off-shell
functions fi(p,k) resulting from local-potential models and separ-
able-potential models in the partial wave 15, at a lab KE of 230
MeV. Description of the curves is as for Fig. 9.
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F1c. 11. Comparison of the Noyes-Kowalski half-off-shell
functions fi(p,k) resulting from local-potential models and separ-
able-potential models in the partial wave 1S, at a lab KE of 270
MeV. Description of the curves is as for Fig. 9.
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F1c. 12. Comparison of the Noyes-Kowalski half-off-shell
functions fi(p,k) resulting from local-potential models and
separable-potential models in the partial wave 1Sy at a lab KE
of 400 MeV. Description of the curves is as for Fig. 9.
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TF1e. 13. Comparison of the Noyes-Kowalski half-off-shell
functions fi(p,k) resulting from local-potential models and
separable-potential models in the partial wave 1P, at a lab KE
of 100 MeV. The solid curve denotes fi(p,%) resulting from the
separable-potential case IT of Ref. 2, which has been chosen as
representative of the separable-potential models of Ref. 2. The
dotted curve displays fi(p,k) produced by the local-potential
model of Ulehla ef al. The dashed curve indicates f;(p,k) generated
by the local-potential model of Reid which we have called 4 in
the text. The dot-dash curve signifies fi(p,k) resulting from the
local potential model of Reid which we have called B in the text.

Half-off~shell factor fl(p, k)

c.m. momentum (inverse fermis)

Fic. 14. Comparison of the Noyes-Kowalski half-off-shell
functions fi(p,k) resulting from local-potential models and
separable-potential models in the partial wave 1P; at a lab KE
of 300 MeV. Description of the curves is as for Fig. 13.

When we compare the off-shell behavior resulting
from the local Yukawa-potential models with the separ-
able-potential models represented by case II of Ref. 2,
we find that the off-shell functions in partial waves,
with /=1 and /=2, are quite similar, especially at high
energy (i.e., a laboratory kinetic energy of 300 MeV).
The agreement would be even better if we had chosen
case IV of Ref. 2 to represent our separable-potential
models, because the case IV potentials lead to an
asymptotic behavior

Sipk)~1/p™*

asp—>oo,
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Half-off-shell factor fl(p k)
L

«—"
.-

D

-0.3 1 1 1

c.m. momentum (inverse fermis)

F1c. 15. Comparison of the Noyes-Kowalski half-off-shell
functions fi(p,k) resulting from local-potential models and
separable-potential models in the partial wave 1D, at a lab KE
of 100 MeV. Description of the curves is as for Fig. 13.

Half-off-shell factor fl(p,k)
//
~

-0.4

L . P . . , P
[0} 10
c.m. momentum (inverse fermis)

Fi1c. 16. Comparison of the Noyes-Kowalski half-off-shell
functions f3(p,k) resulting from local-potential models and separ-
able-potential models in the partial wave 'D; at a lab KE of
300 MeV. Description of the curves is as for Fig. 13.

which is the same as the asymptotic behavior resulting
from a superposition of Yukawa potentials. Corre-
spondingly, the agreement of the off-shell functions
resulting from the local Yukawa models with the off-
shell functions generated by the separable model is
somewhat worse in cases I and ITI.

The greatest difference between the off-shell func-
tions resulting from the local potentials and our separ-
able-potential models is in the partial wave 1S, at a
laboratory kinetic energy of 400 MeV and momentum
p=0, where fi(p,k)=~0 for the local-potential models
and fi(p,k) is of order 1 for the separable models. Also,
in the partial wave 1Sy, the function f;(p,k) produced by
our separable-potential models falls off more slowly
as p — oo than the off-shell functions resulting from the
local-potential models. Notice that the single separable-
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potential model of the 1S, interaction given by Tabakin
seems to lead to an off-shell function somewhat different
from those produced by other models.

Our contention that the off-energy-shell behavior of
separable-potential models is not in contradiction with
experiment and is not drastically different in a calcula-
tional sense from the off-shell behavior produced by
local potentials is borne out, respectively, by the success
of Tabakin’s earlier separable-potential model of the
nucleon-nucleon interaction in nuclear physics calcula-
tions! and by the agreement of the separable-potential
p-p bremsstrahlung calculation of Pearce, Gale, and
Duck," with the local-potential calculations and with
experiment.

Our results have been checked by utilizing programs
which solve the Lippmann-Schwinger Eq. (1) as a com-
plex matrix inversion problem to obtain the amplitudes
Ti(pk; k*) and T:(k%). These amplitudes determine
fi(p,k) by the equation fi(p,k)=Ti(p,k,k?)/T1(k%), and
this result is checked against fi(p,k) calculated from
Egs. (2) and (3).

IV. COMMENTS AND CONCLUSIONS

We would first like to remark on Tabakin’s® single-
separable-potential model of the Sy nucleon-nucleon
interaction as set forth in Eq. (5). This model leads to
a pole in the full off-energy-shell amplitude 7;(p,p’; #?)
at k?=%k.2, which does not occur in the actual full off-
shell amplitude.® If the Tabakin model is used in
three-body scattering calculations, this spurious singu-
larity or “positive-energy bound state,” as Tabakin
calls it, will lead to cuts in the three-body scattering
amplitudes similar to those resulting from the scattering
of a free particle off a real physical bound state of the
other two.! It is difficult to predict the effects or assess
the physical significance of these somewhat artificial
cuts. Although the Tabakin potential yields an off-shell
function f;(p,k) that is rather different from the off-shell
functions resulting from our separable-potential models
or from the local soft-core Yukawa-potential models, we
believe that the Tabakin potential may provide a useful
model for the off-shell function f;(p,k). If the Tabakin
model is used only to generate the off-shell function
fi(p,k), the half-off-shell scattering amplitude may be
written T.(p,k; B)=ai(p)B:(k)T1(k?), with T,(k?)
written in terms of the experimental phase shifts and
ai(p) and Bi(k) obtained directly from the Tabakin
model. Additionally, a separable model of the off-shell
factor fi(p,k) in the form fi(p,k)=ai(p)B:(k) is very
useful when studying the full off-shell amplitude.®

It seems that the necessity of fitting the on-shell data
constrains our separable-potential models and the

1 F. Tabakin, Ann. Phys. (N.Y.) 30, 51 (1964).

11'W, A. Pearce, W. A. Gale, and I. M. Duck, Nucl. Phys. B3,
241 (1967).

2 C. Lovelace, Phys. Rev. 135, B1225 (1964).
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local soft-core Yukawa potentials to share the same
qualitative off-shell behavior. This is not surprising
in view of the smoothness of the mathematical forms
of the potentials.

Our separable-potential models do show some varia-
tion in off-shell behavior, especially for large values of p
in fi(p,k). This reinforces our hopes that the use, in
calculations involving the off-energy-shell two-body
scattering amplitude, of the form

Tu(p,p'; ) =Fu(p,p’; k) T:(k?),

with F;(p,p’; #¥?) determined by the separable-potential
models and 77;(k?) written in terms of the experimental
phase shifts, will enable us to discern the sensitivity
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of these calculations to the off-energy-shell behavior
of the amplitudes.

We have demonstrated that separable-potential
models lead to an off-energy-shell behavior, which is
not qualitatively different from the off-shell behavior
resulting from local soft-core Yukawa-potential models
of the nucleon-nucleon interaction. Since separable-
potential models do not produce any freakish effects
off the energy shell, they seem to have an equally valid
claim to presenting a realistic representation of the off-
shell nucleon-nucleon interaction as the local-potential
models. Therefore, since the separable-potential models
are so much simpler, their use in calculations involving
the off-energy-shell nucleon-nucleon partial-wave scat-
tering amplitude is strongly indicated.
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We have investigated the electromagnetic properties of leptons in the presence of weak interactions, using
a model essentially similar to the one recently developed by Gell-Mann, Goldberger, Kroll, and Low. We
find that the effect is very small in the anomalous magnetic moment and in the Lamb shift of hydrogen.
However, the charge radius of the neutrino turns out to be much larger than the previous estimate of

Bernstein and Lee.

I. INTRODUCTION

ECENT investigations in the theory of weak
interactions have brought to surface the fact that

the conventional (V' —4) theory, with or without the
intermediate vector boson, runs into serious difficulties,
once it is regarded as a full-fledged field theory. The
origin of these difficulties lies in the nonrenormalizability
of the theory, with the result that one cannot subtract
away the infinities arising out of integration of the
internal momenta in a higher-order diagram. However,
the first-order results are not divergent and are in good
agreement with experimental data at low energies.
In trying to get rid of the divergence difficulties without
essentially disturbing the first-order low-energy results,
one assumes that the basic interaction somehow gets
cut off or damped out at high energies and high virtual
momenta, thus providing the required convergence to
make all higher-order graphs finite. Now, the energy at
which the first-order theory must necessarily fail is the
energy at which it starts violating unitarity, and in
the absence of anything more suggestive, it is natural
to use this as the cutoff value in the internal-momenta
integrations. The resulting cutoff value A, turns out to

7* Research supported in part by AFOSR under Grant No. 1288-

be +/(1/G),! where G is the Fermi coupling constant.
However, its use in the conventional theory leads to
serious conflicts with experiments since it then predicts
strong violation of strong selection rules and far too large
an amplitude for second-order weak processes like
K°— u*ru~. In a recent paper, Gell-Mann, Goldberger,
Kroll, and Low? have proposed a modification of the
conventional theory which bypasses these difficulties.
In their model the hadronic current interacts not only
with an intermediate vector boson but also with a set of
scalar and pseudoscalar mesons and the various inter-
actions are so arranged such that if one uses the
cutoff A, in internal-momenta integrations one has no
disagreements with experimental facts at the order-of-
magnitude level. In this note we investigate, in a theory
of this type, the effect of weak interactions on the elec-
tromagnetic properties of leptons.

In Sec. IT, we present a simplified version of the GGKL
model which contains all the essential aspects of their
basic idea. In Sec. III, we introduce electromagnetic
interactions and evaluate the electromagnetic prop-

1 A?is the value of the formally divergent integral (2=)~%/fd%q/¢?
after it has been regularized. With this definition, the expansion
fails for GA2~1, which can be considered as the definition of the
unitarity cutoff.



