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Feynman Rules and Quantum Electrodynamics at In6nite Momentum
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We have studied the Feynman rules in terms of the new variables s=p —p', ri =p'+p', and q= (p', p') in
the qP model and in quantum electrodynamics. The connection between the new variables and the dynamics
at in6nite momentum is established. In the qP model, one easily deduces Weinberg's rules at in6nite mo-
mentum upon integrating over the s variables in the propagators without taking the P' —+ ~ limit. The new
Feynman rules lead to much simpler calculation of the second-order self-energies and the magnetic moment
in quantum electrodynamics. It is still unclear if there is advantage in computing higher-order terms in
quantum electrodynamics with the new rules.

I. INTRODUCTION

ECENTI Y, there appears to be increasing interest
in analyzing the structure of Feynman diagrams

in the reference frame in which the momenta of the
particles approach infinity. This interest is mainly
motivated by the recent development in the current
algebra. ' It is suggested that the Fubini —Dashen —Gell-
Mann sum rules obtained by sandwiching the local
commutator of two current densities between hadron
states with infinite momentum may be used as an
alternative framework to handle the strong interactions.
The advantages for introducing the infinite-momentum
frames are': (i) The disconnected diagrams and the
pair creation and annihilation from the vacuum are
suppressed; (ii) all intermediate states will have the
same infinite momentum, and consequently, we may
saturate the current commutator by states of the same
infinite momentum; (iii) the operator current algebra
gives rise to a simpler matrix algebra of form factors.
Since the properties of the infinite-momentum frame
is crucial in this analysis, it is important to study the
Feynman rules in this special frame.

Weinberg made importan. t advances by examining
the infinite-momentum limit of the old-fashioned

perturbation theory. ' He showed that in the infinite-

momentum frame, the contribution of the old-fashioned

diagrams, at least in the g' or P' coupling theory, either
vanishes or tends to a finite limit. He has also shown

that those diagrams which drop out at the infinite-
momentum limit are precisely those diagrams that cause
most trouble. These diagrams include all processes
which involve the creation and annihilation of particles
from the vacuum.
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In this paper, we shall give an alternative derivation
of Weinberg's result without actually going to the
infinite-momentum limit. We introduce, for every
momentum pe, a set of new variables ri =p'+ p',
s=ps —p', and tl = p~. This is equivalent to a rotation in
the 0-3 plane. We then obtain a new set of Feynman
rules by expressing the usual covariant Feynman rules
in terms of these new variables. As we shall see, Wein-
berg's infinite-momentum rules can be recovered after
the s integrations. Since there is no limiting process
involved in the derivation, the validity of the new
rules can be justified step by step.

Sy introducing a new time variable v. conjugate to s,
and after a Fourier transformation, we have a clear
physical picture that all particles with p&0 move
forward in ~, and those with g&0 move backward in ~.
This variable 7-, apart from an irrelevant infinite con-
stant, can be identified as the usual time variable at
the infinite-momentum frame. There is then a simple
and intuitive reason why certain diagrams must drop
out at infinite momentum. We have applied the new
rules to quantum electrodynamics (QED). The calcu-
lations based on the new rules are simpler and lead to
correct results for all the second. -order self-energy dia-
grams and for the lowest-order anomalous magnetic
moment. However, it seems to us that there are com-
plications in higher-order diagrams to which the ap-
plicability of the new technique is still uncertain.

The order of this paper is as follows: In Sec. II, we

give a simple derivation and discussion of the new
Feynman rules. In Sec. III, the connection between our
derivation and the infinite-momentum frame is estab-
lished. In Secs. IV and V, we apply our technique to
QED and carry out some second-order calculations
explicitly. The diKculties in calculating higher-order
diagrams are discussed in Sec. VI.

II. FEYNMAN RULES

In this section, we shall obtain a set of new rules from
the usual Feynman rules by a simple change of vari-
ables. Some simple features of the new rules are studied.
We shall restrict our discussion in this section to a
Q' model.
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A. New Rules

l.et us introduce the new variables g, s, and q defined

by
~=p'+p', s=p' p'—, «=(p', p'), (2.1)

where p& is the four-momentum of a single particle.
These new variables play an essential role in our new
rules.

Our new rules are simply the usuat Feynman rules
written in terms of the new variables (s,rt, q). The prop-
agator has the form G=ih~,

1'xo. 1. (a) and (b) Second-
order self-energy in two difer-
ent r orderings. (c) Lowest-
order vacuum diagram. v axis
points upward.

tip
plp

p+p

G(p) =i(rts q'—m—'+ie) ', (2.2)

since p"p„=r)s—q' The momentum-space integral expression for M(s) above Eq. (30) of Ref. 3, i.e.,

becomes 1

d p=a d q d'gds. (2.3)
-'g'(27r) ' d'q dcrt sn(1 —rr) —q' —m'+isa ' (2.8)

0

The energy-momentum conservation at each vertex
becomes the conservation of s, q, and q.

Although the new rules are identical to the old ones
except for a 45' rotation of the p' and p' axes, they make
the practical calculation very different. As a simple
example, consider the self-energy diagram shown in
Fig. 1(a). Taking p= (s,rt, 0), we have

Z(p) =i,' ( ig-)'(—2m-) ' d'q'drt'ds'G(p')G(p'+p) . (2.4)

Using (2.2), the s' integral is

——1

Pr)'(rt+r)') j ' ds' s'—(m'+q" —ie)

where n= —g'. Equation (2.8) is derived in Ref. 3 to
illustrate the advantage of the diagram rules based on
the old-fashioned perturbation theory with all particles
having infinite momenta. The variable n, which is
shown in Ref. 3 to be just the Feynman parameter of
combining denominators, may now be related directly
to r)=p'+p'. It seems a bit surprising that a simple
change of variables has the advantage, which the
infinite-momentum rules of Ref. 3 has, of bypassing some
complicated steps of combining denominators. In the
following few paragraphs, we shall show that our new
rules are already the rules at infinite momentum in the
sense that the rules derived in Ref. 3, plus some correc-
tions, follow immediately from our rules without taking
any limit of the form p' ~ eo.

——1

X s+s' ——(m'+q" —ie) . (2.5)
n+~'

Suppose z&0. Clearly, if p') 0, both of the poles of the
integrand are below the real axis, and the integral
therefore vanishes. For q'& —g, both poles are above
the real axis, and the integral again vanishes. It is
nonvanishing only when

0& —~'&~, (2.6)

Xgrt'(rt+r)')s+r)(q"+m' ie)j ' (2.7—).
If we set g= 1, this expression becomes identical to the

which sets the limits for the g' integration. If g&0, the
same argument leads to 0(rt'( ~rt~. The fact that rt'

has a finite range after the s' integral is an outstanding
feature of the new rules. Performing the s' integration,
one obtains

B. Ordered Diagrams

We define the new time variable 7 conjugate to $ by

r = ,' (t+s), -

and the propagator in the v. representation by

G(,n, q) =
dS

G(s ~ q)e rrs 0(~r)
~ ~ ~

—le (ss+mrr)lrls-
27r

for g/0
= —i(m'+q') '8(r), for g=0. (2 9)

Apart, from the case g=0, which will be shown later to
be important only for vacuum diagrams, (2.9) shows
that for rt) 0, G(r,rt, q) is nonzero only when r) 0, and
for &&0, only when v&0. If we call the quantity
(q'+m')/rt in (2.9) the "single-particle energy, " then
(2.9) says that positive-energy states propagate forward
in r and negative-energy states propagate backward.
The latter may also be regarded as an antiparticle
(which is the same as a particle in this case) with

energy (q'+m')/ ~rt ~
propagating forward in r
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k-1

s,q

S -'g

Before we give a general proof, let us analyze the
lowest-order vacuum diagram shown in Fig. 1(c), and
see why the point p=0 may not be ignored.

Figure 1(c) may be obtained from Fig. 1(a) by closing
the two external lines and integrating over g and s. The
variable q is irrelvant for the present discussion and
will be ignored for simplicity. This vacuum diagram is
then expressed as

Fro. 2. (a) General diagram in the g' model. (s,q) labels an arbi-
trary internal line. (b) Diagram (a) with (s,q) pulled out.

(2.12)

By a Fourier transformation, we may use G(r, ri, rl)
for the propagators in a Feynman diagram, which can
now be interpreted as a set of mt v.-ordered sequences of
interactions. e is the order of the diagram. In a given
ordering and between any two interactions, the inter-
mediate state p has a total energy

(2.10)

where Z is given by (2.4). By Lorentz invariance
Z(s, ri) =Z(stan), i.e., Z is a function of the product sti

only. According to our previous discussion, E is zero if
the point g=0 is ignored. However, for g=0, the s
integral of (2.12) diverges linearly suggesting that it is
proportional to 8(ri).

To exhibit 8(ri) explicitly, we write Z(sr)) in the form
of a Fourier transform

where the sum is taken over all the particles in the
intermediate state. Now the rules of the old-fashioned
perturbation theory say that, for each intermediate
state p, one should write down an energy denominator
(5 Sr+ie)—' and sum over y, where n denotes the
initial state. The q-conservation law can be written as

(2.13)

where F (P) is found to be, after a little algebra. ,

F(X) = dard)25(X((r+t2) $r$2)e —'~'&'&"". (2.14)

P lri~l =constant, (2.11)
The ( integrals come from the identity

as one passes from one intermediate state to the next.
The constant in (2.11) is determined by the initial
state, of course.

What we have just obtained is the prescription of
calculating the contribution of a given v-ordered dia-
gram analogous to that of calculating a time-ordered
diagram in the old-fashioned perturbation theory. This
prescription is exactly that derived by Weinberg in the
infinite-momentum frame, which we shall discuss later
in detail in Sec. III.

(x+ie) '= i—d( ed((@+~el (2.15)

d'g dS —Z dg), pp)&isa(x+sl —
immit

which we have used to replace the denominators in
(2.4). Using (2.15) for the denominator in (2.12), and
substituting (2.13) in (2.12), we have

C. Bounds of the g Variables and Vacuum Diagrams

The fact that g is conserved at each vertex, and that
a line with ri) 0 (ti(0) must point forward (backward)
in 7, enables one to find the range of the p variables by
simply inspecting the diagram. For example, in Fig. 1(a)
we must have ti'(0 andri'+ti)0 for ri)0. If ri(0, the
two external lines must point downward, and the whole
diagram must be turned upside down implying- p'&0,
ri'+ri(0. The diagram shown in Fig. 1(b) is forbidden,
since it violates the g conservation at the vertices.

It also follows that all vacuum diagrams should
vanish. This conclusion needs modification, however,
due to the contribution from the point ri =0 Lsee (2.9))
which we have ignored so far. We shall show that the
point p =0 may be ignored except for vacuum diagrams.

—2' Z d/dXFP, )P.+$) 'e ' '& 8(r))

(2.16)

It is thus clear that this vacuum diagram is contributed
by the point &=0 only.

We proceed to generalize the above argument.
Consider an arbitrary diagram & (p3, p4, . . ., p&) with
k —2 external lines shown in Fig. 2 (a), which may be a
part clipped out of a still bigger diagram. Now, we pull
out an arbitrary internal line, labeled by (s,ri), which
is integrated over (i.e., by cutting this line, the dia-
gram will not fall into two disconnected pieces). Let I'
denote the remainder of 2 with the (s,ri) line removed.
The removal of the (s,ri) line generates two more
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Now, one applies the rules of the old-fashioned per-
turbation theory with (3.3) serving as the expression of
the single-particle energy. For a given intermediate
state y, the ener denominator is

vertices, 1 and 2. We write

~(p3 p~)

gy
dg ds(gs m'—+is) 'I'(P—i, , P1,), (2.17)

Z.—Z, =Z.—P P I &, I

where Pi ——(g,s), and Pu
——(—p, —s). By Lorentz

invariance, I' must be a function of q;s,+s,g;,
i, j=1, , k.' Analogous to (2.13), we write I', as
well as the denominator in (2.17), in the form of a
Fourier transform

1
+ g (q1,'+nz')+0(P ') . (3.4)

2P s fop„f

The integration over y becomes an integral over q and
q. By a careful counting of the power of P, it is observed
in Ref. 3 that only those intermediate states with all

g) 0 contribute, and

('gs —tlP+'l 6)

Xexpigg X;,(g;s,+q,s;)), (2.18)

d( expLi(its —m'+is) (j. (2.19)

where
P E= (—2P) '(5„—S,),

5,=P (qi.'+m') .

(3.5)

(3.6)

The exponential factor containing the variable s in
(2.17) is then

exp(isf qf (+2'.11+4'—42)$

+g g, (X,—X,)j) . (2.20)

III. INFINITE-MOMENTUM LIMIT

The in6nite-momentum frame, i.e., the reference
frame in which all particles have infinite rnomenta,
provides a physical interpretation of our new rules. We
begin by reviewing briefly Weinberg's derivation of
rules at in6nite momentum. '

The momentum y of a given particle may be written

p=qP+q,
P.q=0 (3.1)

where P approaches infinity. If we take P= (0,0,P) to
be the total momentum of the particles in a given state,
we have, summing over all the particles

P gp
——1.

k
(3.2)

The energy of a particle with momentum y is

p0 (p'2+gg2)1/2

= IHIP+(1/2lg IP)(nz'+q')+O(P ') . (3.3)

By symmetry, terms like e p~,ppp, t'p &p„~ will not appear.

Thus, the s integral in (2.17) will produce a 8 (z) only if
all g;, i=3, , k are zero. In other words, b(g) will not
appear unless the diagram 2 has no external line or is
a piece of a vacuum diagram. Thus, one may ignore the
point g=0 unless one deals with a vacuum diagram,
which is in general nonzero due to the factor 8(g). In
Ref. 3, the point p=0 is always ignored, and the con-
tribution from vacuum diagrams is thus lost.

Q~Q&
po pR ~ e x(p0 pR)—

In the infinite-momentum frame, by (3.3)

(3.7)

p'+p'= I~I2P
p' —p'= (1/I~ I) (q'+~') (») ' (3 8)

Thus, p'+ p' and p' —p' are, respectively, the large and
snsaQ components of the four momentum in the infinite-
rnomentum frame. Ef we apply a I.orentz transformation
defined by

e—"=2I', (3.9)

we have, in the new frame, which we call the "standard
decelerated frame, "

p'+p'= I~l,
p' —p'= (1/I ~ I) (q'+~'), (3.10)

which may be regarded as the on-shell values of our
variables g and s. (On-shell means p'= gs —q'= ez'. )

Therefore, our variables p and s may be, respectively,
interpreted as the large and small components of the
four-momentum at infinite momentum, apart from the
in6nite multiplicative constant 2I', which may be
viewed as the e " factor of a I-orentz transformation.

When an invariant quantity is calculated, a Lorentz
transformation is irrelevant, and the factor 2I' must
drop out. When a vector quantity is calculated at

The 6nal expression for the contribution to the invariant
amplitude does not involve I'. Ke may thus identify
(3.6) with (2.10), and (3.2) with (2.11). Thus, the q
variable defined by (3.1) is proportional to the absolute
value of our previously defined z variable, i.e., p'+p'.
To make the correspondence clearer, we observe that
under a Lorentz transformation in the s direction

po+ p' ~ e (po+ pa)
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momentum frame, r approaches t, it approaches p'
(apart from an irrelevant infinite factor), and Wein-
berg's rules become identical to the old-fashioned rules.

Finally, we notice that under the reAection through
the xy plane, p' changes sign, and s and p are inter-
changed. All our previous discussion may be carried out
with s and g interchanged.

Fro. 3. Fourth-order polarization diagram.
IV. NEW RULES APPLIED TO QUANTUM

ELECTRODYNAMICS (QED)

infinite momentum, the large (i.e., 0+3) component is
proportional to I' while the small (i.e., 0—3) component
is proportional to I '. In other words, when a standard
frame [i.e., a finite-momentum frame given by (3.10)j
is boosted to the infinite-momentum frame, we have

i(t2P), s —& s(2E) ', its -+ qs. (3.11)

Similar conclusions may be drawn for any component
of a tensor.

Thus, the tensor matrix elements, such as the photon
self-energy and the anomalous magnetic moment
analyzed in Sec. IV, separate into large and small
components as I' —+ ~. By going to the infinite-
momentum frame, these large components, referred to
by Gell-Mann as "good components, " usually become
simpler and easier to compute, while the small com-
ponents become more complicated and dBBcult to
handle. For example, assume that the original matrix
elements need two subtractions. By separating these
matrix elements into large and small components, the
large components may have the advantage that they
need one subtraction, but the small components may
now need three subtractions. In other words, the
simplification in one part of the calculation is often
associated with the complication generated in the other
part of the calculation. The real advantages, however,
are realized in some simple cases in which we only need
to deal with these good components. In Sec. V, we shall
compute certain matrix elements by evaluating only
the large components. The full matrix elements can be
recovered in these cases by the requirements of I,orentz
coval lance.

Thus, we have given in this section the physical
interpretation of s and g in terms of the small and large
components in the in6nite-momentum frame. We have
also shown that Weinberg's rules are the rules of the
old-fashioned perturbation theory in terms of the new
variable g for r-ordered diagrams. In the indnite-

In terms of the variables (s, it, q), the electron
propagator is

&.(p) = E:(~'+-v')+', ~(v' v')-—~ q+ j
&& (sit —m' —q'+ie) '. (4.1)

The photon propagator is

D"(P) = r"(sn —q'+ie)—' (4.2)

The appearance of s, g, and q in the numerator of the
electron propagator indicates that one would encounter
integrals that are more divergent than those in the gP
model. Thus, one expects that some of the conclusions
of the previous sections will not be valid for QED. We
now examine this point.

The main conclusion of Sec. II is that the s integrals
automatically set limits for the p integrals, and these
limits can be easily determined by inspecting the
Feynman diagram. This simple feature is a consequence
of the fact that the s integrals define the directions of
particle lines and restrict g)0 (q&0) lines to point
forward (backward) in r. Equation (2.9) may be viewed
as the basic formula. Therefore, to see the implications
of the numerator of 5~(p), we Fourier transform (4.1)
as we did for G(p)

Sp(r, it,q) = — (ds/27ri)5p(s, rt, q)e

=2(V'+v') (i~ /~ )rG(r ~ q)

+I!.b'-~')-~ q+ jG(..q), (4.3)

where G(r, it,q) is given by (2.9).
As a function of r, the first term in (4.3) behaves

quite differently from G(r,g,q). By differentiating (2.9),
oa.e obtains

i(8/Br) G(r,q, q)
= (1/it~) (~2+qm)e '~~'+~'&~&a e(r~) sgn~+ (1/rt)g(r),

for g/0
=$6'(r)/(m'+q') j for it =0. (44)

The erst term defines a direction of propagation in r
according to the sign of q. However, the second term,
which is absent in the qP model, is nonzero for all values
of g. Thus, for this term there is no longer any limit for
the value p, consequently, the Z diagrams as in Fig.
1(b) are no longer forbidden.
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On the other hand, the other two terms in (4.3) are
well behaved. As will be seen explicitly in the following
sections, the first term of (4.3) can be avoided as far as
second-order calculations are concerned, and the new
rules make the calculations very simple. For some
higher-order diagrams, BG/Br can also be avoided
entirely by special choices of components. For example,
the fourth-order polarization diagram (Fig. 3) can be
calculated without BGj8r by choosing the 0+3 com-
ponent as the polarization of the external lines. This is
because (ys&y')'=0. In these cases, all our previous
conclusions remain valid. We shall discuss some of the
features of the new rules involving higher-order dia-
grams after applying them to the second-order diagrams.

Fio. 4. (a) Eiectron self-
energy. (h) Photon self-energy.
(c) Magnetic moment.

V. SECOND-ORDER DIAGRAMS IN QUANTUM
ELECTRODYNAMICS (QED)

We shall evaluate the second-order self-energies and
the anomalous magnetic moment to illustrate the new
rules. ln the following, we shall take advantage of the
fact that as I"~ ~, certain leading terms dominate
the processes. As we shall see, these leading terms are
unambiguous and easy to compute. After we obtain the
leading terms, we can express them easily in the
covariant form.

F,(s,t})=—
2(2s-)'

dn'( —2v') [n'(n —v')] '

( m,'+q" q" ) '
Xi s— —

i
. (5.5)„—„')

Fs(s, r})=-', (27r)
—'ti

sP —nsg
nkvd ln +Bri, (5.6)

m'(1 —n)

Performing the q' integration and introducing the
variable a through g'=ng, one finds

A. Electron and Photon Self-Energies
where 8 is a logarithmically divergent constant. Fs(st)

For the electron self-energy, the diagram given by is obtained by using the last term of (5.2) for the
Fig. 4(a) leads to numerator of (5.1). Similar steps lead to

~(p)= ' d'p' q„(p'+m)q~
(5.1) F, (sr})=m(2')-'

i(2s-) 4 (P" eP+ie—)[(P P')'+i—e]

Spy —ngs
du ln +A mB, (5.7)—

vis(1 n)—
We choose p= (q & ()) and p'= (q', ti', q'). The numerator where A is a logarithmic divergent constant. Substitut-
of the integrand may be reduced to ing (5.7) and (5.6) in (5.3), and taking (5.4) into

account, we have
v.(p'+~)~ =-2p'+4~

= —2[—'(y + ')+— '( —') — q']+4 . (5.2)
Z(p) =A+ a(p —~)+S.,

The term y g' will not contribute because of the cylin-
drical symmetry we have chosen. We can write

S.=-,'e'(2s-) —' ( tN —np
dn(np —2m) ln~ —,(5.8)

knP(1 —u)

~(p) =-;(~+~)F.(,.)
+-,("-")F.(,.)+F.(,.)

Fr(s, ti) =F,(ii,s) . (5.4)

Fs is the leading term at p'= ~, and F3 remains
6nite at the same limit. For our purpose, we only need
to compute F2 and Ii 3. They will give us the correspond-
ing coeKcients of P and 1 in (5.1). To calculate Fs, we

take the second term in (5.2) for the numerator of
(5.1). The s' integral is well defined and simply gives
an old-fashioned denominator; one finds

Under reflection through the xy plane, s and g are
interchanged and y3 —+ —y'. We thus conclude that

II~"(k) =e'
d'p Trv&(p+k+tN)p" (p+m)

( )2'i (p' —m')[(p+k)' —ms]

—regulator terms

= (k "k' g"")[II(k')——regulator terms]. (5.9)

We let k= (s,rt,0), p= (s',gn, q). The computation is
greatly simplified if we calculate only the leading term

where we have identified r}s with p' and —',(y'+y')s
+ s (y' —y')ri with p. The infinite constants A and 8 are
disposed of by renorma/ization.

As the second example, we consider the photon self-
energy diagram shown in Fig. 4(b). The diagram shown
in Fig. 4(b) gives
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at p'= ~. This leading term is specified by ss= s =0+3,
so that II(k') is obtained by finding the coe%cient of
gs in (5.9). The numerator of the integrand is then

T {("+~)(-:(~-").(1--)+~ q+ )(~+")
Xl--, (~ —~')„n—~ q+m7}, (5.10)

where we have made use of the fact that (go+ps)s=0,
so that terms proportional to s', s—s' do not appear.
The coefficient of gs is easily read off from (5.10).

The s' integral provides the denominator for the
electron-positron intermediate state. We have

II(ks) =4es(2sr) ' dsq dn

qs+.ms «2+ms —1

yl k'—— — . (5.11)
1 —n

We have written 0' for gs and counted for the fact that

TrL(~o+~s) (~o ~s) (~o+~s) (~o ~s)7 32 (5 12)

Performing the q integral, one obtains

II(k') =-'essr ' k'n(1 —n)
dn(1 —n)nln 1— +C,

m'
(5.13)

where C is again a logarithmically divergent constant
and can be removed by a charge renormalization. Notice
that our final result is only logarithmically divergent
and we have used no additional regulators other than
the ordinary cutoff.

As a last example, we compute the anomalous
magnetic moment of an electron. The lowest-order
diagram is Fig. 4(c) and leads to

d'q (p')v (p' q+m)v—"(p q+m)~—"u(p)
~~= es =eu(p')(F, (ks)y&+ F I (k') o ""k )u(p) . (5.14)

i(27r)' L(p' —q)s —ms+ip7Lqs —ms+ip7l (p —q)' —m'+ipj 2m

'We choose for simplicity, p'= (s,g, -'sk), p= (s, p, —sk),
k = (0,0,k), and q = (s', g'= nq, q), where p' and p are on
the mass shell. Since we are only interested in the
magnetic moment, we may ignore all "charge terms, "
which are of the form u(p')y"u(p).

Let us erst simplify the numerator. Making use of
the Dirac equations

reduced to

—4mq&u (p')u (p)+4 (p'+ p —q) &u (p')qu (p) . (5.17)

In the in6nite-momentum frame, we evaluate only the
leading term of M&, i.e., 3P+'. For this leading term,
we have P'"=P"~ q"=np"=np'". (5.»)

(p —m)u(p) =o,
u(p') (p' m) =0,— (5.15)

If we ignore the charge term and make use of the
cylindrical symmetry and the fact that k&M"=0, it is
straightforward to verify that

we have u(p') qu (p) = nmu (p')u (p) . (5.19)

(p —q+m)v'u(p) = (2P"—e")u(P),
u(p')vi(P' —q+m) =u(P') (2P~' —v~q) . (5.16)

Then, the leading term in the numerator reduces to

2mn(1 —n) (p'+ p) &u (p')u (p)+ charge term (5.20.)

Then the numerator of the integrand in (5.14) can be
Now, we apply our new rules and integrate over s'.
We find

d g
e'(P'+P) "u(P') u—(P)

p 2(2sr)s

dn 2mn(1 —n)

n(1 —n)' {(m'+-,'k') —
l
ms+ (-', k+q)'7/(1 —n) —qs/n}

X +charge term
{(m'+4k') —Lm'+(sk —q)'7/(1 —n) —«'/n}

d g= —e' ' l'I ' I
o 2(2~)s

1

2mn'(1 —n) dn
Lqs+ns(ms+sks)7s ns(k q)s

(5.21)

After the q' integration, which is elementary, we have

dn 2n'(1 —n)—Fs(k) =—
p 4(2sr)s

,(P'+P)"
M& = —e' u(p')u (p)— e (p'+p)—u(p') u(p) Fs(k),

4(2sr)' m
(5.22)
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where
m' 1+0/(4ms+lr')'"

Fs(k) = —ln
kLm'+-'ir. 'j'" 1—k/(4m'+k')'"

Fs(0) =1. (5.23)

Since

Fsr(k) = (n/2s-)Fs(k), (5.25)

which is the well-known result for the second-order
magnetic moment.

In the above examples, the simplicity of algebra is
achieved by judicious choices of the particular terms
which are easy to calculate. All the other terms are
inferred by symmetry.

VI. REMARKS ON HIGHER-ORDER TERMS

After seeing the remarkable simplicity, as compared
to the conventional method, in the second-order QED
calculations with the new rules, one naturally asks if
similar simplicity would remain in higher-order calcula-
tions. As the following discussion will indicate, the
answer seems to be no.

There are mainly two complications that appear in
the higher-order QED terms, the multiple numerator
and the multiple denominator. Let us consider the
latter first with an example.

Consider the self-energy diagram shown in Fig. 3. In
the conventional method, one combines the five denomi-
nators by the Feynman technique of introducing four
variables 0&a;(1.One then "completes the square" in
the denominator and performs the two four-dimensional
integrals with the help of the Wick rotation. Finally,
there is the four-dimensional integral over n; to do.
With the new technique, one writes down the three
denominators for the three intermediate states by
inspection. There are two g integrals and two 2-dimen-
sional q integrations to do. The question now is whether
one can do the two q integrations quickly. In the
absence of any special trick, the q integrations can
always be performed at the high cost of introducing two
Feynman parameters to combine the three denomi-
nators. Integrating over these two Feynman parameters
and then over the two g variables, is expected to involve
complexities similar to the conventional integration
over the four Feynman parameters. It thus appears
that we have gained nothing using the new technique
unless a shortcut is found to evaluate the q integrals,
which are 2-dimensional integrals and are responsible

(p'+p)„u(p')u(p) = iu—(p')o„„k"u(p)+2mu(p')y„u(p)
iu—(p')o.„„k"u(p)+charge term,

(5.24)
we then have

for much of the simplicity observed in Sec. V. Such a
shortcut is not in sight so far.

The second complication of higher-order diagrams in
QED is the complicated numerator involving many
y matrices as well as powers of momenta, which cause
divergence. In the second-order calculations, we were
able to avoid the occurrence of s or q in the numerator.
Since the g integrals are over a finite range, we got
around the regularization required in the conventional
calculation. For higher-order diagrams, this cannot be
done in general. For example, the numerator of the
self-energy diagram shown in Fig. 3 contains four
powers of momenta. By fixing the external lines to the
0+3 components, one removes all powers of s, but two
powers of q remain. In the conventional method, one
also pulls out two powers of momentum outside the
integral. In general, s, g, q will all appear in the numer-
ator. When a product of s and g appears in the numer-
ator, the undesirable features mentioned previously will

appear I see the discussion around (4.4)$. The s integral
tends to bring more powers of q to the numerator and
more p to the denominator. Consequently, the q inte-
grals become more divergent and the q integrals may
blow up in the lower limits. One thus needs more
regulators than the conventional method. In addition,
there will be terms with an unlimited range of q. These
features are readily verified even in calculating the
second-order photon self-energy if one chooses the 0—3
components (i.e., the small component rather than the
large 0+3 component) which would bring two powers
of s' to the numerator, and insists on performing the
s' integral erst.

We thus conclude that, in calculating higher-order
terms in QED, our new rules are not practical until
further progress in technique is made. This conclusion,
however, by no means excludes the possibility that the
new Feynman rules will be useful in other applications.

Note added in Proof We have fo. und that the infinite-
momentum techniques developed in the present paper
can be used to compute certain leading terms of the
high-energy limit of the electron-electron, electron-
positron, Compton, and photon-photon scattering
amplitudes. The difficulties discussed above do not
appear in these terms. The lowest-order amplitudes,
as computed by Cheng and Wu, ' can be reproduced in
a much simpler manner. ' We have also computed and
summed up the amplitudes with an arbitrary number
of photons exchanged.
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