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Adler has shown that in perturbation theory for spinor electrodynamics, suitably regularized, the diver-
gence of the unrenormalized axial-vector current contains, in addition to the expected mass term, a term of
the form e p»F pF». Motivated by this result, we study here the renormalized axial-vector current j„.We
explicitly construct the essentially unique 6nite local j„'and 6nd it to be invariant under local gauge trans-
formations. Taking the divergence B„j„gives the renormalized analog of Adler s additional term. Similar
"noncanonical" operator terms are seen to occur in equal-time commutators involving j„~. Although all
matrix elements of B„j„'are finite, we find that the oR-shell Green's function (TB„j„'(x)rp(y)p(s) ) is divergent
and, correspondingly, that equal-time commutators involving j„are in general singular. We show that
Ward identities can nevertheless be given a meaning. The algebraic properties of j„are seen to be reflected
in the scattering amplitudes of the theory. Renormalized integral representations of axial-vector vertices
are constructed, and radiative corrections to weak interaction are discussed. We conclude with a discussion
of the axial-vector currents in other spinor models.

L INTRODUCTION

A DLER' has recently studied the axial-vector vertex
in spinor electrodynamics and found that in

perturbation theory, suitawy regularized, the divergence
B„jo„ofthe nnrenormalised axial-vector current jo„'
contains, in addition to the expected 2imojo term, the
term' (ns/4v. )e„p~sFs„sFs~s. This rather surprising result.
shows that 8„j»' does not vanish when no= 0 and gives
rise to divergences in the usual wea¹interaction theory
of lepton-neutrino scattering. In the context of the 0.

model, the additional term resolves a discrepancy be-
tween perturbation theory and partially conserved
axial-vector current (PCAC) and gives a good account
of the~' —+ 2p decay.

Motivated by Adler's results, we study here the
renornsalised axial-vector current j„ in spinor elec-
trodynamics, We explicitly construct' the essentially
unique finite local j~ and find it to be invariant
under local gauge transformations. Thus all of the
Green's functions (Tj „'P g ~ i'd A) are finite
and gauge-invariant without subtractions or regulariza-
tions. Taking the divergence B„j„'of this j„'gives the
renormalized analog of Adler's additional term. Al-

though all matrix elements of 8„j„'are finite, we find

that the off-shell Green's function (TB„j„s(x)P(y)P(s))
is divergent and, correspondingly, that equal-time com-
mutators involving j„are in general singular. We show

that Ward identities can nevertheless be given a
meaning.

* Supported in part by the U. S. Air Force under Grant No.
AFOSR 68-1453.

' S. L. Adler, Phys. Rev. 177, 2426 (1969).' We designate unrenormalized quantities with a subscript 0.
3 Expressions for some 6nite local-current operators have

been previously derived by R. A. Brandt LAnn. Phys. (N.Y.) 44,
221 (1967)j and W. Zimmermann LCommun. Math. Phys. 6, 161
(1967)g. We refer to the former paper as I. References to earlier
work. can be found in these papers.' That is, they satisfy the conditions of gauge invariance.

Our work shows that the results of a calculation in
renormalized perturbation theory will not contradict
the local formulation of the theory provided this
formulation employs the proper definition of current
operators. In order to obtain a finite local axial-vector
current j„', one must subtract explicit functions of the
electromagnetic field from the product P(x)y„y,P(x). It
is these subtraction terms which give rise to the extra
"noncanonical" operator terms in both equal-time com-

mutators of j„' and in its divergence B„j„'.' The
m —& 2p decay indicates the empirical significance of
these subtractions. It is the algebraic properties of the
resulting renormalized current which are reflected in

the scattering amplitudes of the theory.
In Sec. II we review and simplify some results of the

local formulation' of spinor electrodynamics for later
reference. In Sec. III we derive the properties of j„'
stated above. In part A we exhibit the general form of

j„'.In part 8 we give integral representations for the
primitively divergent axial-vector vertex functions and
use them to define a particular 6nite j„'.In part C we

show that the j„' of part 8 is unique apart from an
over-all finite multiplicative constant, and in part D we

show that it is gauge-invariant and obtain a more

explicit form for it. In part E we define and derive equal-

time commutation relations involving j„.In part F we

calculate B„j„5, first for an external electromagnetic
field and then in the general case. We then use this
result together with one of part E to conclude that
(TB„j„gf) is divergent but that the corresponding
Ward identity is still meaningful. In part G, we present
some 'speculations concerning radiative corrections to
weak interactions. In Sec. IV, we discuss the extension
of our results to other spinor models.

'The extra terms in each are, of course, related by Ward
identities.

fl R.. A. Brandt, Ann. Phys. (N. Y.) 52, 122 (1969).
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zA „(x)=ej„(x)=e lim j„(x;$),
$~0

(2.2)

and the current definitions

f(x4 ri) = TA(x+r))l((x) —Di(rf)lf (x)—Ds„(r))4)„$(x)
—Ds(ri) f(x), (2.3)

j„(x;$)= Tf(x)y„lk(x+ $)—Ci„($)—Cs„,($)A,(x)
—Cs„,„(&)A„,„(x)—C4„„„g(P)A,,„g(x)
—Cs„„„g(&):A, (x)A „(x)Ag(x):-c ...4):A()~,(*):. (2.4)

All of the parameters and field operators are the re-
normalized ones. The functions D,(ri) have singularities
for g —+ 0 which compensate those of the local product
A(x)lf(x) so that the limit rl —+ 0 in (2.1) exists. The
operators occurring in (2.3) are all those in the theory
with dimensions (in mass units) —, or less and with ap-
propriate transformation properties. ' Since the leading
singularities in perturbation theory are mass-indepen-
dent, one has Di(rl) rf ', Ds„(ri) 1, and Ds(ri) 1, to
within logarithmic factors, for g 0. Analogous re-
marks apply to (2.4). Here the "generalized Wick
products":A'(x): and:f(x)lt (x): must be defined by
similar expansions, In general there is a one-one cor-
respondence between free-field Wick products and
"generalized Wick products" which transform in the
same way and which are finite in perturbation theory.
Possible arbitrariness in defining such products is just
the usual arbitrariness of choosing basis vectors in a
vector space and corresponds to the usual renormaliza-
tion invariance.

The functions D;, C; can be essentially uniquely
determined by imposing the usual normalization condi-
tions on the "primitively divergent" proper part
functions9

rl„„(0)=11„,'(0) = Ir„,"(o)=o, (2.5)

z(p=~) =z'(p=m) =o, (2.6)

II. FINITE LOCAL FORMULATION OF
SPINOR ELECTRODYNAMICS

The local formulation' of spinor electrodynamics is
based on the 6eld equations~

(iy 8 —m)lt (x) =ef(x) =e lim f(x; 4f), (2.1)
y~o

I'""(p p') = ' "+' 9 "G(k)H'(»p p')G(k —p+p')

+tC,.„(k)I';;-& (p,p')+sC„, (k) I"„„'(p,p') j, (2.11)

where H;;si(k, p,p') is the proper electron-electron scat-
tering amplitude and I' and I" are electron vertex func-
tions corresponding to vertices:AAA: and:4PQ:. The
iteration of this in6nite set of coupled integral equa-
tions yields perturbation expansions (in terms of the
renormalized charge e) for all the Green's functions of
the theory and these expansions have been shown to be
the same as those given by the usual diagrammatic re-
normalization prescription of Feynman and Dyson, "
Bogoliubov and Parasiuk~u and Hepp i3 Thus, the
limits in (2.1) and (2.2) exist and yield the correct finite
local current operators.

A major advantage of the above formalism is that it
enables a direct imposition of local gauge invariance. It
is shown in II that the requirement that the Geld equa-
tions are invariant under the local gauge transformations

lt (x) ~ exp) ie/t(x)—5$(x),
A„(x)~ A„(x)+B„h.(x),

(2.12)

is equivalent to the requirement that the theory
satisfies all of the generalized Ward identities and
divergence conditions. It was further shown that the
theory determined by the normalizations (2.5)—(2.8)
satisfies these conditions. For later reference we exhibit
here the simplest of these conditions:

k„rr„„(k)= o, (2.13)

Here II and Z are the proper self-energy parts defined
in terms of the photon and electron Green's functions
D and G by

(ksg„i,+Il„i,(k))Di„(k)= —g„„(2.9)

Lp — -~(p) jG(p) =1 (2.10)

I' is the proper vertex part, and X the proper photon-
photon scattering amplitude.

The conditions (2.5)-(2.8) are implemented by impos-
ing them on integral equations relating all the proper
functions of the theory. An example of such an equation
islo

I'.(P,P')
I f =f =.x=x =V. ,

X p, s(0,0,0,0)=0.
(2 &)

(2.8)

ki X p,s(ki, ks, ks, k4)=ks X=ks X=k4 X=0, (2.14)

—~.G(p) =G(p)1'.(p p)G(p) (2 15)

' We employ the notation and conventions of J.D. Bjorken and
S. D. Drell, Eclat&istic QNcetwm Fields (McGraw-Hill Book Co.,
Inc. , New York, 1965},except that we do not raise indices when
employing the summation convention, and we quantize the elec-
tromagnetic Geld in the Lorentz gauge. We write

P Y P VfsPP&

(8/Bxl')F(x) =ri„t(x) =F,„(x).
' The rules describing such expansions were 6rst clearly

formulated by K. Wilson (unpublished). See I for more details
concerning the general case.

The primes in (2.5) and (2.6) indicate differentiation.

e'B„B„G(k)=G(k) O„„(k,o,o)G(k) . (2.16)

Here O„,(k,p,g) is the proper electron-photon scattering
amplitude Le(k)+y(p, p) ~ e(k —p —g)+y(g, i)j which

' For momentum-space integrations we use the notation
jj,= j'd4k/(24r)4. We denote the Fourier transform of a function
C(x) by C(k) = J'd4x expPik xjC(x)

"See Ref. 7.
"N. Bogoliubov and O. Parasiuk, Acta Math. 97, 227 (1957}.
~' K. Hepp, Commun. Math. Phys. 2, 301 (1966}.
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satisfies the Bose symmetry condition

o„„(k,p, ~l) = o„„(k,g,p)

and the on-shell divergence conditions

(2 17)

"By a Lorentz covariant limit we mean simply that

88p g
(o P 4'

"R, A. Brandt, Phys. Rev. 166, 1795 (1968). We refer to this
paper as III and to its Eq. (A.B) as (III A.B).

"Here so=so'.

p„o„,(k,p, g) =g,o„.(k,p, q) = 0

(on electron mass shell) . (2.18)

Equations (2.13)—(2.15) are consistent with (2.5)—(2.8).
Equation (2.14) implies further that

X(0)kz,kz, k4)=X(ki, o,kz, k4)= =0. (2.19)

Now the limit P
—+ 0 in (2.2) can be taken in any

direction. Since the resulting current operator is
covariant, however, it is convenient to explicitly take
the limit in a covariant way. '4 It is also convenient to
explicitly impose on the subtraction functions the
analyticity properties of perturbation theory which
prohibit the occurrence of expression such as QP. Then,
for example, C6„(g)=C(P)y„, with C(P) logarithmically
divergent, since a $„y $/P term is equivalent and a
$„/(P)"' term is forbidden. Also, we formally have
C(0) =Zi i—1. In this way, (2.4) can be formally

simplified to

ej.(*; t) = ', eZ Z 'I 4-(~)vA-(~+() vA(~)0(~—+k)]
+(1—Zz

—') B„B,A.(x)+e'ZiZz —'Ltd„. G(P)]

&&(( A(x)+ —', (& 8)'& A(x) ——',e'LP A(x)]':}.(2.20)

We shall work with such simplified expressions through-
out this paper. For this reason, some of our results may
be of only formal validity.

Equal-time current commutation relations in electro-
dynamics can be defined and calculated by interchang-
ing the $ —+ 0 limit in (2.2) with the equal-time limit. "
In order to use the field equal-time commutation rela-
tions in this connection, the $~ 0 limit must be taken
in a spacelike direction, say &o——0. Then the appropriate
simplified expressions for j„(x; $) are given by Eqs.
(III 5.39) and (III 5.40). In this way, one finds, for
example '6

"Lj.(~),jo(~')]
= ~ Bi,b(x —x') —zZ,—'(e'/12zr') Bi,V'8(x —x')+iZ3 '

&&(e4/12zr')( A'Bi, +2:AiA&. 8&)8(x—x'). (2.21)

This expression was explicitly shown to be correct
through fourth order in the sense that it is the same
result as that obtained by defining the equal-time com-
mutator as the limit of the ordinary commutator
smeared with smooth testing functions f„(xo—xo')

converging to 6(xo—xo') in 8'.

j.'(~) —=:0(~)V.Vz4(~):, (3.3)

we can invert (3.2) and write

.'( ) = l' L2'4( ) . 4(*+&)+&'(&)"- 4~ A (*)

+E z(() „e. Pv. A(x)apAv(x):+Rz'(&)j„'(x)]. (3.4)

The generalized Wick product:A8. 4: is itself an
expression of the form (3.4). It is convenient (and pos-
sible) to consider simultaneously the behavior (3.2) and
that of A(x)BA(x+(). Thus we write

with

j„'(x)=lim j„'(x;P), (3.5)

j.'(; ~) =2'~(*h.~.O(+~)+&.(~) ..P,~-~PA, ( )
+I'-z(k)"-pvA-(~)~PAv(*+5)+&z(k)j. '(*) (3 6)

The existence and uniqueness of the quantities involved
in (3.6) will be discussed below.

B. Vertex Functions and Subtraction Functions

We define the axial-vector —photon vertex II„„'(p)
(which actually vanishes), the axial-vector —photon-
photon vertex F„„„'(p,q), and the axial-vector —electron-
electron vertex I'„'(p,p') from the Fourier transforms
(symbolically denoted by 5) of Green's functions as
follows:

(3.7)

(3.8)

&(Tj."'(~)A.(y))= II„'(p)D,.(p),

~(Tj.'(*)A.b)A. (s) )=~yp. '(p, a)D,.(p)D-(a),

s(Tj„'(~)ipse)p(s)) =G(p) r„'(p,p')G(p')
+II-'(p+ p')D"(p+ p')G(p)

&«.(p,p')G(p'). (39)

~7 We are using here the simplifying assumptions mentioned
above Eq. (2.20l.

III. AXIAL-VECTOR CURRENT

A. General Form of the Current

I.et us now construct the most general local axial-
vector operator with dimension three. The basis vectors
are in one-one correspondence with the free-field Wick
products"

:Pvi'rA': ) ei ~pvk~~pAv ~ ei ~pv: A~ ~PAv: (3 1)

Correspondingly, we have the expansion (see I, II)

2'~( h.v.~(*+~)-~.(~),.P,~.~PA, ( )
+Rz(&)e„pv A (x)BPAv(x):

+~ (5):f( )7.7 4(*): (3 2)

for $ 0, for some singular functions R, and some cor-
resPonding definitions of:ADA: and:iPy„yzf:. @&i(f),
Ez($), and R&(g) will be at worse logarithmically diver-

gent for $—+ 0. Denoting the (yet to be uniquely defined)
axial-vector current by
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Equations (3.5) and (3.6) then lead to the integral
representations

II„.'(p) =
I ie try„ysG(k) I'„(k, k —p)G(k —p)

—8,Ei(k)e„e„pe+Es(k)II„,'(p)7, (3.10)

F„„„'(p,q) = $i try„y, G(k) O~„,(k,p, q)G(k+p+q)

II„„'(0)=0,

&-II,.'(P) I.-s= o

B.cjell„,'(P) I,=o=0,

F„„„'(0,0) =0,

(3.16)

(3.17)

(3.18)

(3.19)
(~/~p )F".'(P 0) I ~=o

/gq-)F„„„(o,q) I, ,=O, (3.20

tion conditions in the functions (3.10)—(3.12). We take

+i Es(k+k') e„e,H,„„(k',p,q) ke'

+E3(k)F"'(P q)7, (311)

r„s(p,p') =&„&,+ Li tr~„~,G(k)H(k, p,p')G(k —p+p')

where"

+i E,(k+ k')e„.e,K.,(k',p,p')ke'

+Es(k) I".'(P P')7, (3 12)

(k' P q) =g-g"~(k'+q)+ g..g,.&(k'+p)
+D(k')X „„„( k' p q,

—k', p—, q)—D(k'+p+q) (3.13)

and

&-7(k',p,p') =D-,(p p' k') O„.— —
X(P', P—P' —k', k')D„(k'). (3.14)

The vertex functions (3.10)—(3.12) correspond to the
primitive divergencies involving one primitive axial-
vector —spinor vertex y„ys. The function (3.11) also
contains, via the first two terms in (3.13), a primitive
axial-vector —photon vertex which can formally be
written

I„(p,p)I, , „„„,= „, (3.21)

F„„„'(p,0)=F„„,'(O,q) =0 (3.22)

of gauge invariance. 's Finally, the condition (3.21) will

be seen to simply 6x the over-all normalization of j„'.
We proceed to impose the conditions (3.16)-(3.21)

on Eqs. (3.10)—(3.14) in order to determine the subtrac-
tion functions. We begin with Eq. (3.10) which we note
is consistent with (3.16) since try~ysG(k)1'„(k, k)G(k)
vanishes by symmetry Lor, explicitly, by the Ward
identity (2.15)7.The condition (3.17) imposed on (3.10)
implies

~-Ei(k) e.-e.= ie(~/~p') «~.»G(k) I'

X(k, k —p)G(k —p) I „=,. (3.23)

Thus we are subtracting as mass-shell values of the ex-
ternal momental pnioto~= 0 aiid pe]eetron= tts (in the
usual sense). The number of subtractions is given by
the superficial divergences v of the functions (i.e., by
naive power counting): vu=3, pp= 2, sr= 1.

Since the well-defined quantities II„„'(P)and F„„„'(0,0)
must vanish by symmetry, " the conditions (3.16)—
(3.19) are clearly required ones. Equation (3.20) is also

required if we want to maintain the usual consequence

f&s(k q) e„„e„qe+Es(k——p) e„„e„pe7. (3.15)

The expression (3.15) will be explicitly evaluated below.
The vertex functions in any order can be found from

(3.10)—(3.12) by substituting the appropriate pure elec-
trodynamic functions G, I'„, O~.„, D„„, X e~&, and H
Lobtained by iterating the integral Eqs. (2.11), etc.7 as
well as the appropriate lower-order axial vertices in the
right-hand sides. The as yet unspecihed subtraction
functions E; are to be chosen in each order so that the
resulting integrands yield 6nite integrals. They are, a
priori, otherwise arbitrary. As in I and II, it can be
shown to follow from renormalization theory that such
E; exist. In this context the arbitrariness in the E; s
is the arbitrariness in the points at which the re-
normalization subtractions are made.

Let us now choose a specilc set (E;}by fixing the
subtraction points. This amounts to placing normaliza-

"We have written here D„,(k) =-g„„D(k')+k„k„D'(k') and have
used (2.14).

The consistency of (3.11) and (3.19) follows from the
vanishing of trp„p&G(k)O', „(k,0,0)G(k) by symmetry"

I
since, by the Bose symmetry (2.17), the expression is

symmetric in v and ~7 together with the relation (2.19)
in (3.13).We see, in fact, that (3.11) implies (3.19).The
condition (3.20) imposed on (3.11), using (3.13) and

(2.19), implies

Es(k) c„„„=—(8/r)p ) try„ysG(k) 0'„„

X(k,p,o)G(k+ p) I,=o. (3.24)

The equivalence of the two conditions (3.20) follows
from the Bose symmetry relation (2.17).

We finally consider Eq. (3.12). We define the func-
tions X and I' by

i try„psG(k)H(k, p,p')G(k) I ~ p =„——X(k)pp s (3.25)

'~ We use this expression in place of "there exists no axial tensor
depending on a single four-vector p„,"etc.

We see below that we have no choice but to maintain (3.22).
'The vanishing explicitly follows from the Ward identity

(2.16).
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(a) (b)

+ O(e")

(a)

+ \ ~ ~

FIG. 1. Diagrams contributing to the lopvest-order
axial-vector-photon-photon proper vertex.

(e')

(e) (g)

i Es(k+ k)e„p„kp'K r(k', p,p') ~,=s =
Ic,'

=F (k)vsvs, (3 26)

the equalities holding in the sense of distributions on
invariant" testing functions f(k') of sufficiently fast
decreases for k' —&Do. Then the condition (3.21) im-
posed on (3.12) leads to

FIG. 2. Diagrams contributing to the axial-vector-
electron-electron proper vertex in orders e~ and e4.

in (3.11), and (b) represents the second term in (3.11),
given by (3.15), which is formally [by (3.24)j

iEs—' (]=0)e„„p„(Qp Pp)—

-=(~p-»)new p)~...& i(P,0)j,=' (3»)
—Es(k) =X(k)+ I'(k) .

YVe have the formal identity

(3.27)

Es&'&()=0)= e'/8s. s (3.32)

If the integration in (3.30) is done symmetrically, the
finite result

X(&=0)= X(k) =Zi ' —1, (3.28)

(3.30)

'2This restriction is a consequence of our taking a covariant
limit.

"This then implies (3.23), which has not yet been used.
'4 We indicate by T&"& the term of order p" in the perturbation

expansion of the function T,

where Z~ ' is the usual vertex renormalization constant
which is 1 in order eo and logarithmically divergent in
order e' and higher. The function I' is first nonvanishing
in order e4 and is logarithmically divergent.

The methods of I and II can be used to show that,
with the values of Ei—Es specified by (3.23), (3.24), and
(3.27), the expressions (3.10)—(3.12) are finite. The ex-
pressions are, furthermore, guaranteed to satisfy (3.16)—
(3.21). In particular, since II„„(p) is finite, it must
vanish. " It will be shown in part C that the E; are
essentially unique. Explicit forms for Ej and E2 will be
given in part D.

Back in position space, we have the result that, with
E,($) given by the Fourier transforms of (3.23), (3.24),
and (3.27), the limit (3.5) exists and yields a finite local
axial-vector 6eld operator. In particular, all of the re-
normalized Green's functions

(Ti. (*)4(») .0(*-)k(yi) . .f(y-)~.,
X(.,) ~.„(..)) (3.29)

are finite in each order of perturbation theory.
We conclude this subsection by illustrating Eqs.

(3.11) and (3.12) in low orders of perturbation theory.
Equation (3.11) in order e is given in Fig. 1. Diagram
(a) represents the first term"

I' t'&(~)=+-.'( / )' 1.8 (3.33)

C. Uniqueness of the Subtraction Functions

In part 3 we exhibited subtraction functions Ej—I'3
such that (3.10)—(3.12) are finite. We now search for all
other functions with this property. These will give all
other axial-vector currents (3.6). We shall find that our

25 L. Rosenberg, Phys. Rev. 129, 2786 (1963}.
"We here simply replace the momentum cuto6 A by 1//&'. A

more accurate description of F(f) is that it satisfies J'd( F(f)@(f)=+J'dk F(k)p(k) for every smooth function @($) of fast de-
crease, where d, (k) is the Fourier transform of d (f), and

fdk F&(k)L—it'/(k' —h.') g~ ——,'(n/s)' ink'

is the appropriate cutoff-dependent piece of (d)+(e) PEq. (3.26)).

is obtained. The resultant function (3.11) is that given

by Rosenberg" and studied by Adler. '
Equation (3.12) is illustrated in Fig. 2 through order

e4. Diagram (a) represents the lowest-order vertex given

by the first term on the right-hand side of (3.12).
Diagrams (b)—(d), (e), and (f)—(g) represent, respec-
tively, the first, second, and third terms in the integral
in (3.12). The omitted diagrams (c) represent other
radiative corrections to (b). The blob in (e) represents
(3.32) and the rest of (e) corresponds to (3.14) in second
order. The blob in (f) represents the sum of

Es(4) = X(4) Ir(4) = (1 Zi—i)14) P'14)

and E "1= —X&'&= (1—Zi ') &". The blob in (g) repre-
sents E3('& and the rest of the diagram represents
I'„'&'&. The (1—Zi ') terms renormalize diagrams
(b)—(c) in the usual way. Adler has shown that (d)+ (e)
diverges like y„ys(—ss)(u/ir)s in', as does (e) alone, so
that (d) is finite. According to (3.26), this divergence is
canceled by the I' t'& piece of Es&4& in (f)":
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previous expression for (3.6) is unique (in a sense we
shall specify) to within an over-all constant factor.

From the renormalization theory viewpoint we need
essentially simply make subtractions at points other
than those used to define E~—E3. It is more convenient,
however, to work directly with the integrals (3.10)—
(3.12). This involves no loss of generality since there is
a one-one correspondence between conventional re-
normalization theories and theories defined by integrals
of the type (3.10)—(3.12).'r

Let us suppose there exist other subtraction functions
E&'—E3' which yield finite expressions for the vertex
functions via (3.10)—(3.14). We call the resulting vertex
functions II„„",Ii„„„',and I'„".As discussed in part 8,
we must have

It is nevertheless instructive to consider (3.40) with
bWO (but b =0) in order to see what goes wrong in
terms of the integral equations. The E, corresponding
to (3.40) are

jv ~ —jv~

E,'= E,+ (b/a) (1 E,—),
Es'= Es+51—(I/~)l(1 —Es)

(3.41)

(3.42)

(3.43)

(8 Es)eH—k'

Fquation (3.41) follows directly from (3.34). Equations
(3.11) and (3.12) give, symbolicaliy, 's

and
II„."(p)= 0 (3.34)

I'."(P,P')
I p-p =-=Re.vs (3.37)

The relation between the new and the old integral
equations can be simply expressed in terms of the cur-
rent definition (3.6) which can be written (with sup-
pressed arguments)

kvuvs4-(1 Ea)i' E—ie. pwca—~pA~

Ese„pvA, BpA „—(3.38)

for g 0. Now (3.38) does not uniquely define the set

(3.39)

since if (3.39) satisfies (3.38), than formally so does

ag„'+b~e—„~p,r)pA ~+be„~p~A~BpA7, (3.40)

with a, b, and b constants, for suitable new E . As
shown in I, this way of generating new E; is equivalent
to that of the preceding paragraph. In the present case,
however, we must have b =0 for covariance and also
b= 0 for j„"to be finite since matrix elements of ADA
are divergent, in general t e.g., Fig. 2(e)).ss Thus, the
only possible change which can be made in (3.6) is to
multiply it by a finite constant a.'9

"See I, Sec. V.' Thus, this uniqueness is a consequence of our using the
ordinary separated product A(z)BA (z+P) in (3.6). Had we in-
stead used a generalized Wick product:A (z)SA (g):, then (3.6)
would not have been explicitly unique, but this nonuniqueness
would have been illusory, amounting simply to the nonuniqueness
of:A BA:.

"The reason for only considering 6nite a and h in (3.40) is that,
as discussed in Ref. 3, only then does one have an axial-vector
current j„"which is local with respect to the fields in the sense
that it is the limit of g(z)y„yqf(z+f) and A„(z)8A„(z+g) for
g~ 0, so that an equation of the form (3.38) is valid. It may be
possible to construct a finite j„by using an infinite e which, if it

r„„„s'(0,0) =0. (3.35)

The analogs of (3.20) and (3.21), however, are not
speci6ed and so we define the constants Q and R by

(8/8P )F„,„"(P,O)
~ „=s——Qe„„„(3.36)

and

(8—Es)elk'

1~ Es
+(I—~6r'+—r' —s I' . (3.45)

ai a

Applying cl/BP to (3.44) and putting p=q=0 gives
)using (3.36)j

Q=b, (3.46)

and evaluation of (3.45) on the mass-shell gives /using
(3.37)]

R= a+bY/Es. (3.47)

We immediately have an inconsistency unless b=0,
since Y/Es is divergent, whereas Q, R, a, and b must be
finite.

Let us finally consider Eqs. (3.44) and (3.45) in
second order:

F is)' ~(0)F (2} Lb(&)+b(s) (gi—i) (s)j

I' (2)~ —g(s) p (s)y$ (sl ek/ (si (3.49)

could be written

j „"(z)=lim (a(g)j„'(z)+be„,p„A (z)apA~(z+ri)7,

would be local, but not in the above sense (since two limits are
involved). In this case, a is fixed by (3.47}.Our uniqueness claim
is with respect to local currents in the sense of (3.38). For the case
of an external c-number electromagnetic potential, R. Jackiw and
K. Johnson (to be published) have defined nongauge-invariant
axial-vector currents. If their definitions can be extended to define
currents finite to all orders, then these currents will not be local
in our sense. Put differently, as they remark, their nongauge-
invariant currents can only be defined by Lorentz-covariant limits.

30The 8's below signify four-dimensional momentum-space
delta functions.

The divergence of the integral in (3.49) again gives
bi &=0. Equation (3.48) is then finite, and so it alone
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does not a priori require that b '& =0. Adler' has pointed
out, however, that (3.48) is consistent with the require-
ment that an axial-vector meson cannot decay into two
photons only if b&') =0. We have derived the stronger
result that the theory can be Pnite only if f&= 0."

In summary then, we have obtained the result that a
finite local axial-vector current of dimension three
exists in electrodynamics if and only if it is a (finite)
constant multiple of (3.5), with Ei Es gi—ven by (3.23),
(3.24), and (3.27). The "if"part of this statement was
obtained in part 8 and the "only if" part was estab-
lished above by showing that any other set Ej'—E3' is
consistent with finiteness only if essentially E;=E,',
i = 1, 2, 3. In the remainder of this section we shall in-
vestigate some of the properties of (3.5).

B. Gauge Invariance

We have constructed the unique local axial-vector
current (3.5) essentially using only the requirements of
finiteness and Lorentz covariance. Further conditions
cannot be imposed but can only serve as checks of the
usefulness of (3.5). One such condition is local gauge
invariance; i.e., invariance under (2.12).If the current is
to be an observable quantity, " it must be gauge-
invariant, and so this invariance should be considered
as a consistency check on the above formalism. Ke show
in this subsection that (3.5) is indeed gauge-invariant
and, conversely, that the requirement of gauge invari-
ance is suflicient to determine E~ and E2. In the course
of the analysis we construct explicit expressions for
E,(P) and E,(~).

We make the mild assumption that the transforma-
tions (2.12) can be taken inside of the f —+ 0 limit in

(3.5), at least if this limit is taken in a Lorentz-covariant
way. '4 The covariant transformation (2.12) should com-
mute with the covariant limit. "

Let us now determine the consequences of gauge
invariance. Under the transformation (2.12), the first
term in (3.6) acquires the factor

e"is&*& s&'+&&&= 1—isa BA(x)+O(P). (3.50)

Since no matrix element of &P(x)7„7slf(x+() behaves
worse than P' (within logarithmic factors) for $ —+ 0,
only the first two terms in (3.50) will contribute for

$ ~ 0. The second term in (3.6) is gauge-invariant be-
cause of the antisymmetry of e„s~. Under (2.12), the
third term in (3.6) goes into the sum of itself, and

E,(~)e„.„a.A(z) a,A, (~y g) =E,(~)e„.„a.A(z) a,A, (*)
+OL)Es(()). (3.51)

Since Es($) is at worst logarithmically divergent, only
the first term in (3.51) will contribute for $ —& 0. Thus

we find that, apart from terms which vanish for $~ 0,
the transformation (2.12) induces in j~'(x; $) the change

~J'(~", 3)=4(*)7.7 0(*+5)L i—ek»(z))
+E,(P) e„p,8 A(x) Bpd~(x) . (3.52)

Our task now is to determine the restrictions imposed
on E» and E2 by the requirement that

(3.53)

I„„&'&(&)=( ie)e '—&' -e"& tr7„7,

A+m k —P+m
(3.55)

P —ms (k —P)s —ms

Evaluation of the trace and integration by parts gives

I.."&(k)=( 4&)& ""—.-sPs( i~-)—

haik $ (3.56)
k' —m' (k —P)' —m'

For $ —+0 only the O(g') part of (3.56) will con-
tribute to (3.52). This comes from the leading term in
the integral in (3.56), which is easily'4 found to be

I
(2w)'4i) ' in@. Thus

IP 'i&(&) = I:2e/(2w)')s "",-PPP($-/e), (3 57)

apart from terms which do not contribute to (3.52).
Using (3.57) and

&7,Plus. (*)Io)="( iP.as+iPs—g")s '" *, (3.58)

the requirement that the photon-vacuum matrix ele-

ment of (3.52) vanish for f —& 0 in second order uniquely
determines the second-order E2 to be

Es "&(0)= e'/8s. s. (3.5V)

Thus Es&s& (g) is nonsingular for $ ~ 0 and we essentially
have

The vacuum expectation value of (3.52) vanishes
identically, and so we consider the (7,pl . IO) matrix
element, where (7,P I

is a (covariantly normalized)
one-photon state of momentum P and polarization e„.
We define I„„by

e I"(5)=(7PI4(z)7.7sli(*+5) l0), (3 54)

and, for clarity, we first calculate I($) for $ 0 in

lowest order":

E,t'& (()= e'/8vr'. (3.60)
"According to the Gell-Mann current-algebra philosophy, the

axial-vector current is an observable, measurable via the weak
interactions.

"This is in contrast to the equal-time commutator operation
for which the limit f= (0,$) -+ 0 is clearly appropriate.

"The indicated Fourier transform in (3.55) is strictly meaning-
ful only as a distribution.

4 A quick way to obtain this result is to use the expansion for
the Feynman propagator hz(() for as~0.
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It is not much more dificult to determine I'/2 to all
orders. The definition (3.54) gives, in general,

I„,(&) =( i—e)e '&' e's'& try„ysG(k)I'„

X(k, k —p)G(k —p). (3.61)

for P
—+ 0. The result (3.72), which is valid to all orders

in e, reduces to (3.57) in lowest order. It follows that

Es($) = (e'/8s')Zr ' (3.73)

in each order of perturba, tion theory. More precisely,
we should write

Let us write
G(k) =a(k')ft+ b(k'), (3.62) E.(~)= ("/8- )E(~), (3.74)

I„(k,k —p) = a'(ks, k p)q„+b„'(k,p)k+c„'(k,p)
+d'(k, p) p+&-p'(k, p)~ p (3 63)

Ke then have the relevant high-k behaviors

G(k) ~ a(k')k,
(3.64)I'.(k, k —p) '(k', o)v.=—'(k')v'

Equations (3.62)—(3.64) imply that

try„ysG(k) I'„(k, k p)G(k+—p)~ aa'a try„ps'„P (3.65)

for k —+. They also imply that

try„ysG(k)I'„(k, k)G(k) Ap(k' —m') '
~aa'a try„ps', P. (3.66)

Hence, using the Ward identity (2.15), we have

I„„(g)~ (ie)e '& *—e's'& try„ys8, G(k)AP

X(k' —nP) —' (3.6/)

where E($) has a logarithmic singularity at /=0,
formally given by E(0)=Zi '. Thus,

E(P)= 1—(e'/87r') lnP+O(e') . (3./5)

We have determined Es($) from the requirement that
the photon-vacuum matrix element of (3.52) vanish.
We next determine Ei($) directly from the operator
condition (3.53). We shaH use Eq. (3.6) to rewrite the
first term in (3.52). It follows from the existence of the
limit (3.5) and the fact that Es(f)A(x) BA(x+$) is only
logarithmically divergent for f ~ 0 that

f(x)7.754(x+5)c. E($—)@ate.-p ~pA. (x) (3 76)

for f +0.—Thus, by (3.52),

». (;u- ~-E.(eu. ..„L.-' ~,«.)j
+Ex($)e„p,B„A.(x)}8pA, (x) .

The requirement (3.53) now gives

4 1 se 1 ie E(P)
E(S)=——E.(&)= -= — —, {3.77)

ie P 2n-s PZr 2s.s P

where

and, formally,

G(k) = dz rr{s)Gp{k;s),

Gs(k; s) = (0+s)/(k' —s')

for $~0.
Ke next use the spectral representation

(3.68)

(3.69)

which. exhibits the expected quadratic singularity of
E (P) ss

We have seen that gauge invariance requires that Ej
and Es have the rather explicit values (3.73) and (3.77).
Are these the same values as those given by the finite-
ness requirements of parts 8 and C? It is not dificult
to show that they are indeed equivalent.

We consider first Ei. In position space, Eq. (2.23)
becomes

dlr o(K) =Zi '
~ (3.70)

Insertion of (3.68) in (3.67) and integration by parts
(only the B„ft=y„ term contributes) gives

I„„(()-+ ( ie)e—ds o.(s) s*'s'& try„pshaw. p

X(ks lrs)
—t(ks —yeas)-t (3 71)

The k integral in (3.71) is essentially the same as that
in {3.55) and so, using (3.70), we obtain"

1..(~)-Z.—I.2 /(2-) j -"-...p (~./V), (3.72)

apart from terms which do not contribute to (3.52)

"A quick formal way of obtaining this result is to use
G ~ Zg 'it jk' and F, -+ Zgy, in (3.61).

8
4E (() „.p. ———e e'& & try„y, G(k)1'„

Bpp

X(k, k —P)G(k —P) ~ „,. (3.78)

Now the contraction of the integrand in (3.78) with Pp
gives the leading high-k contribution to the integrand
in (3.61) so that, by (3.72), we have

4Ei(&)"-p =Zi 'L»&/(2x)'j"-p($-/P)

which is completely equivalent to (3.77)."
We can similarly show that Eqs. (3.24) and (3.73)

are equivalent. We omit the details and only remark
that the result follows from use of the forms (3.62)-
(3.64) and the Ward identity (2.16) in {3.24).

ss The derivation above would allow Z~, (p) to have, in addition,
a logarithmically divergent piece. Such a piece would never con-
tribute to anything, however, since E&($) occurs in the current
definition as Bq($)$,
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E. Commutation Relations

Let us write the axial-vector current symbolically as

a' =4'v.v sf++Eto.-ps&-~ pA v

+Eso„p~A BpA~++Esj „', (3.80)

where E, means E,($), a + subscript means evaluation
at x+$, and a limit $ —& 0 is understood. We have seen
above formally that

E,= (sp/2~oP)Z —i E,= (ps/8~s)Z, —i
(3.81)

We shall work with these formal expressions for the re-
mainder of this section. Our first task is to write (3.80)
in a form convenient for discussion of its algebraic
properties.

In order to express the final term in (3.80) as a
multiplicative renormalization, we define the function
Eo——Eo(() by

Thus,

Eo ——Zi—'(1—Eo)—'

(1—Es) '=EoZi. (3.82)

= (1+ZtI') '= 1—I't'&+0(eo), (3.83)

and (3.80) becomes

j „=EoZt(4'Vsvo4'++Etc„p~j c)pA7+Eoe„p~A BpAY+)

(3.84)

=Eo(Zap of~+ (i~/27r'P)e„p7$ t)pA~

+(e'/8s')e„p, A f)pA, ~). (3.85)

"Although, as we have seen above, this statement is logically
correct, the situation cue be described in another way. Namely,
Eq. (3.6} and the known behaviors of the E; give immediately
p(x)v„pop(x+p)$„+Ei(f)e„p~o p„poA~(x)~0 and this equation
determines EI (see Ref. 36). The value of E2 then follows from
gauge invariance, as in either (3.73) or (3.77). From this view-
point, finiteness alone determines L'I and gauge invariance deter-
mines just 82. Clearly, either finiteness or gauge invariance deter-
mines EI, and these determinations are consistent with each other.

E3 could be given a correspondingly simple form, but such a
description does not seem illuminating,

We thus have the result that the unique" finite cur-
rent of part 8 is gauge-invariant. In fact, we have seen
that gauge invariance uniquely determines E& and E2.'"
We have also derived the simple forms (3.73) and (3.77)
for the subtraction functions. '8

We conclude this subsection by remarking that the
vertex function (3.11) can be shown to satisfy the ex-
pected consequence of the established gauge invariance:

p„P„„„'(p,q) =g„P„„'(p,q) =0. (3.79)

These equations imply (3.19) and (3.20), and so we see
that the choice of the conditions (3.19) and (3.20), which
was shown in part C to be the only one consistent with
finiteness, is also the only one consistent with gauge
invariance.

In terms of the unrenormalized quantities

iso= Z,—'"P A o
—=Zst~'A, eo= Z—s '"e (3 86)

we have'~

j,'= Eo[fov,v o4 ~+ (~ps/2~V) s..p, kÃpA o,

+ (eo'/8s') s„p,A o, f)pAo, +]. (3.87)

We dehne equal-time commutators as in III, where
the equal-time and $ —+ 0 limits are interchanged and
the field commutation relations (III 5.1)—(III 5.6) are
employed. Owing mainly to the logarithmically diver-
gent factor Eo in (3.85), we shall find the equal-time
commutators to be generally ill dehned. We find, for
example, "

Lj.'(x),4(x')]= —Eovov.vol(x)~(x —x') (3 88)

In particular,

8"( ),O(")]=- E. vO( )~( —") (3.89)

Thus, these commutators diverge in fourth order. As
discussed in III (Appendix), such expressions can
nevertheless be given a meaning. Similarly, "
Lj.'(*),A.(*')]='E~.-'L( /2 'e) ..o,&.

+(e'/8ir')e„o„A. (x)]b(x—x'). (3.90)

The nonvanishing of this commutator arises from the
presence of the "noncanonical" subtraction terms in
(3.85), i.e., from the finiteness and/or gauge invariance

The commutator of j„with itself behaves similarly.
We note here only the fact that the Ljo', j&s] commuta-
tor contains, in addition to derivative of 8-function
(Schwinger) terms with operator coefficients involving
A and A', pure 5-function terms

Pj"( ),j.'(")]=-'Z.-'E.'( /2 )r(' /2 V)
Xoo;;so to&i ,c)A( x+)$+( /p8 i)reo;; eootAt(x)8;A,

X(x+$)]h(x—x')+derivatives of B. (3.91)

Lee and Zumino4' have shown that gauge invariance
requires that a term of the form A~, 8(x—x') be present
in the commutator [Jo,Jot] involving a charged current
J„.It can be said that the similar terms in (3.91) arise
as a more subtle consequence of gauge invariance.

"In this language, Adler's use of regularized perturbation
theory amounts to the statement that the current he considered
is the coeKcient of Eo in (3.87).

'Strictly speaking, since (3.87) is only valid for a covariant
limit &

—+0, it cannot be directly used to compute equal-time
commutation relations. This will not aBect the above commutators
but might change those given below. We shall nevertheless work
with {3.87), however, and so the following relations should only be
considered formally. S. Adler (private communication) has found,
in fact, that in lowest order the commutators defined by the
Bjorken limit diBer from ours in that (3.90) vanishes and (3.92) is
multiplied by 4. Hopefully, our use of a sequence that converges
to j„'(x) for spacelike P

—+ 0 would resolve this discrepancy."T.D. Lee and B. Zuinino, Phys. Rev. 163, 1667 (1967).
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Finally, using (2.4), we find

Lio(~), js'(*')1~
=(ie/Sw')EsZs —'es pvBpA~B B(x—x'). (3.92)

Here we see an operator Schwinger term which is
finite in lowest order. The charge-current commutators,
however, vanish as expected:

Le,js'(*')j= Ljo(~),Q'(~) 2=o.

We conclude from the above examples, that although
all matrix elements (3.9) involving j„are finite, equal-
time commutators involving j„are divergent. This
state of a6airs analogs the dif5culties generally en-

countered when one tries to work with nonconserved
currents in quantum Geld theory. 4'

F. Divergence of the Cmrent

In this subsection we shall derive and discuss the
divergence B„j„sof the axial-vector current. We shall

find that the terms in (3.80) explicitly involving the
electromagnetic potential imply the presence of a term
of the form e p7&Ii pIi» in B„j„ in addition to theusual
in $7sf term. We will thus understand Adler's diver-

gence condition directly in terms of the local formulation
of electrodynamics and the local expression (3.80)
for j„'.

We consider first the trivial case when A„(x) is a
prescribed external t,"-number field. Then all radiative
connections vanish (m=mp Zi=Zs=Ep=1) and the
Dirac equation L(2.1)) becomes

and the divergence of the third term is (e'/87r')e„„p„
g8„A BpA~. Thus we have

B„j„'=2img7, $+ (e'/4'') e„p~B„A BpA„
= 2imj '+ (n/4x) e„pvF„Fpv, (3.99)

j =Zi4'7s4'=4'o7s4'o. (3.101)

It is normalized as usual so that

(p Ij 'I p'&= se(p)7ste(p')F((p —p')') F(o)= 1 (3 1o2)

We shall derive the values of V and t/V directly from
(3.84) and (3.100) at the end of this subsection. For
now we simply observe that a diagrammatic analysis
similar to that given by Adler' gives the expected results

so that
V=Ep, t/V= EpZj, (3.103)

in agreement with the result of Adler. "
The same method cannot be used to derive B„j„'for

the case of an interacting electromagnetic field because
of ambiguities arising from the two different limits
$q —+ 0 in (2.1) and $-+ 0 in (3.6)) involved. In
particular, an expansion of the form (3.98) is not
effective because of the increasing degree of divergence
of the local products $$B "A. All that can be said is that
the divergence has the form

B„j„s=2imVj'+2WEse„pvB„A BpAv (3.100)

for some constants V and H/'. Here j' is the finite local
pseudoscalar current operator

(i7 B—m)p=eAp, (3 94) B„g„'=EsZi(2imf7sg++2Ese~p&sB~A pB,Ae~) (3.104)

the field product here now, of course, being well de6ned.
The current becomes

i.s=47.74++(ie/2w'P);-p, MpA,
+(e / sSw) „e,pABpAv (3.95.)

Equation (3.94) gives

B„($7„7'~)= 2imp7yp &A(7,7yp-
XLA,(~+&)—A,(*)]. (3.96)

Multiplication of (3.95) by )„gives for $~ 0

p7.7sy+k. ~ (ie/2w'8) —f.k."-pv BpAv

—+ (ie/Sn') —e„„p,BpA„,

=Es(2imj '+ (a/4w) e,p»F, pF»+) (3.105)

=Es(2imgs7@fis+ (rrs/4w) e p&sF p pF p&s~). (3.106)

The divergence condition (3.106) can be used to-
gether with the commutation relation (3.89) to derive
generalized Ward identities. We formally define the
vertex function R(p,p') by

~P'B,j,'( )4(3)lt())=G(p)~(p, p')G(p') (3 10&)

and obtain in the usual way

~.1,'(p, p')

=E(p,p')+EoL~ '(P)7 +7 G '(P') j, (3 1o8)
where

so that, upon writing ~.=P. Ps'. - (3.109)

A„(x+()—A„(x)= $.BA„(x)1O(P), (3.98)

only the 0($) term contributes to (3.96) for $~0.
Thus,

Bs(tp7s7gky) ~ 2$mP7sf+(p /Ss )es ppBpA BpAp.

The divergence of the second term in (3.95) vanishes,

4'For a survey see C. A. Orzalesi, University of Maryland.
Technical Report No. 833, 1968 (unpublished).

Since ~„' and G ' are finite functions, and Ep is diver-

' A derivation of (3.99) from the exponential form
gt

4(x')P7„ys exp ief dg A y(g")

has been given by C. R. Hagen, Phys. Rev. 177, 2622 ()969), and
also by R. Jackiw and K. Johnson, Ref. 29, and J. Schwinger,
Phys. Rev. 82, 664 (1951).This form is only valid, however, for an
external potential, since ln the interacting case increasing powers
of A ln the expansion of the exponential cause increasingly worse
divergences for ( —+ P.
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gent we learn from (3.108) the surprising result that the
ti me orde-red prod55cf

(T'&,j,'(*)4(y)0(&) ) (3.110)

Of renorrriaiised field operators is divergent. That is,
although j„5 and all the Green's functions (3.29), in
particular (3.9), are finite, the product B„j„5(x)p(y)p(s)
is too singular at equal times to be multiplied by the
8 functions necessary to define (3.110). Of course,
since j„' is finite, all matrix elements of B„j„5[e.g. ,

(p~ &7,j„5~p'), the electron-electron element] must be
finite. But such matrix elements cannot be extended
off the mass shell by (3.110). This is consistent with

(3.108) which becomes, on shell, the finite relation

a„ur„5(p,p')u= uR(p, p')N. (3.111)

I.et us observe how the various divergent terms in

(3.115) conspire to produce a finite result. Terms (A)
and (D) are finite and, in view of (3.33), terms (8), (E),
and (F) are divergent. Adler' has shown that the term

(C) satisfies

The divergence of (3.110), of course, is not an in-

consistency and might be expected in view of the
singular commutators encountered in part E and the
fact that B„j„',on dimensional grounds alone, should be
a more singular object than j„'. In particular, the
relation (3.108) is a, meaningful one. 45 To directly check
this in fourth order, we formally define further vertex
functions F' and M by

5:(2'j'( )4(y)4( ))=G(p) P'(p, p')G(p') (3.»2)

and

~(T,.„,F.,(.)F, ( )~(y)~())
=G(pyf (p,p')G(p') (3.113.)

Then, in view of (3.105), (3.108) becomes

g„p„5(p,p') =2mE, r'(P, P') —iE5(~/4~)~(P, P')

+E,[G- (p)y+& G-'(p')] (3.»4)

1n fourth order, using (3.83), this becomes

g p„«&=2~r5&'& —2~V&'&y —i( /4 )~"'
(A) (&) (C)

y (G-iy5+ y5G'-') &'& —V'"(y &75—2ri575) (3 115)
(D) (E) (F)

responding to (3.110) is in general divergent. On shell,
however, as must be the case, (A)+(&)+(C) is fi»«
since (8) cancels the divergent piece of (C) on shell and,
of course, (E) and (F) cancel on shell. Adler has
emphasized that (C) is not multiplicatively renor-
malizable. In the above language, this corresponds to
the fact that the term (E), which cancels its divergent
piece, is not a multiple of a lower-order vertex (3.110)
but rather a multiple of a lower-order commutator
term (G

—'y5+y5G' ').
It is interesting to see how the various terms in

(3.115) arise from the fourth-order diagrams of Fig. 2.
Ke have, symbolically,

~.[(~)+(fx)+(a)]= (A )+(D),
~„[(d)+(~)]= (A,)+(c)

= [(A,)+ (c)+(a)]+(F),

where (Ai 2) denotes the contributions to (A) arising
«om (c), (d)+(e) so that (A)=-(Ai)+(A~), and where
«x) = —X"'y.V» fr= —V&"y,y5. Note that diagrams
(d)+ (e) contribute not only to the vertex (3.110) terms
(A)+(&)+(C), but also to the commutator terms
(D)+(E)+(F)»agrammatic reasoning of this type
can, in fact, be used to derive (3.105)

We conclude this subsection by presenting the
promised derivation of (3.104) directly from (3.100) and
(3.84). We erst sandwich (3.100) between one-electron
states (p~ and ~p'). For 6—=p —p'~0 each term in
(3.100) vanishes, but equating terms of order 6, using
(3.21), (3.102), and (3.26), gives the relation

1=V+WV. (3.117)

where we wrote

&(p) =~ (p')&+~ (p ).
Since Ep is divergent, this immediately gives U~Ep
and evaluation at p'= eP gives equality:

To obtain more information, we use (3.100) and (3.89)
[which follows from (3.84)] in (3.107) and (3.108) to
write

A„P„5=2mVP5 —2iWEgM+Ep(G 'y5+y5G' ')

Putting 6=0 (note that since 5 &i~5F &iF~5 is a total
derivitive, M ~ 6), we get

0= 2m VP5(P,P)+E5[—2my5 —225(P')75],

= —~5(a/~)'(lnA')y dy5+finite. (3.116)
U= Ep. (3.118)

We see that term (E) exactly cancels the divergent
piece of term (C), and that. term (F) exactly cancels the
divergent term (8), so that (3.115) is finite. Note that,

mentioned above, the term (A)+ (8)+(C) cor-

44 In order to convert (3.108) into a strictly meaningful mathe-
matical relation, one should not take the $~0 limits of the
individual terms on the right-hand side but only of their sum.

Substitution of (3.118) into (3.117), using (3.83), gives
W= ZiEp. Tllus (3.103) and hence (3.104) is derived.

A(*)v,(1—v )g.(.)+", (3.119)

G. Vectox Axial-Vector Symmetry

When A„ is simply an external c-number potential,
we can consider the quantity
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where the omitted terms involve the electromagnetic
potential. This term exhibits the V-A symmetry
y„~y„y5 familiar from weak-interaction phenomenol-
ogy. When A„becomes the full quantized electro-
magnetic potential, however, (3.119)becomes divergent.
The corresponding finite quantity is the renormalized
current difference

j.( )—j.'(*)=No(*)7.(1—Eo7 )4o(*)+ (3 12o)

This expression still maintains V-3 universality in the
sense that (2.7) and (3.21) are valid. The physical
principle here is that electromagnetism preserves the
exact V-A symmetry of the (lowest-order) quantity
(3.119).

Put differently, we can say that radiative corrections
to (3.119)are not finite since, by (3.87), Zzl"= Es 'P„',
where I' is the unrenormalized proper axial-vector
vertex function, and Es '= 1+7't4l+0(e') is divergent
in order e4.4s Radiative corrections to (3.120), on the
other hand, are finite. 46

The expression (3.120) exhibits a p„~Epp„ps svlll-

metry for neutral currents rather than the usual
p„+-+p„p5 symmetry. The former symmetry in the
currents implies the latter symmetry for matrix
elements in the sense of (2.7) and (3.38). A more
algebraic aspect of the symmetry is exhibited in the
transformation properties of the currents under the
axial gauge transformations

P(x) ~ expfiysh(x)ff(x), A„(x)~ A„(x). (3.121)

We find roughly

j„(x)~ j„(x) (e'/87r—') e„p,B.A(x) r)pA, .(x), (3.122)

j„s(x)~ j„(x)—E,(e'/8w')

&(-'sx„. ,pc)A.( )xc)pA, (x). (3.123)

Since e„p~ and -',p„p~ are equivalently normalized
(eotss= a&oooo= 1), Eqs. (3.122) and (3.123) show that
j „and Es 'j,' transform similarly under .(3.121).

IV. DISCUSSION

In Sec. III we saw that the essentially unique finite
local axial-vector current operator j„5 of dimension
three in quantum electrodynamics is given by Eq.
(3.85). The terms explicitly involving the& electro-
magnetic potential were required and, indeed, fixed by
the conditions of finiteness or gauge invariance. These
subtractions gave rise to noncanonical terms in equal-

"Of course, according to (3.87), the subtractions involving the
potential must be included in (3.119) in order that even F),' be
finite. We assume these terms are present but do not explicitly
exhibit them.

"We are, of course, making the radiative corrections finite by
the usual method of adding counter terms to the electromagnetic
interaction. Since, in any case, the subtraction terms (Zz and Es)
in (3.80) are needed, the additional subtraction (Ezj„) we are
proposing does not seem unreasonable —especially since a form
of universality can be maintained.

time commutation relations involving j„ t Eqs. (3.90)—
(3.92)$ and also to a noncanonical contribution to the
divergence B„j„s LEq. (3.105)j. The multiplicative re-
normalization constant Es in (3.84) was required for
the 6niteness of j„'and was fixed by the normalization
condition (3.21).Its presence enhanced the singularities
of the equal-time commutators and was responsible for
the divergence of the Green's function (TB„j„'$p) off
the electron mass shells.

Results similar to the above ones hold in any model
in which the axial-vector current involves local products
of spinor fields. We comment on several such models
from the viewpoint developed in Sec. III. We begin
with the special case of the electrodynamic model in
which the spinor particle is massless. Adler' has noted
that due to the presence of the additional term in
(3.99) the axial-vector current is not conserved when
ns = 0, apparently contradicting the formal invariance of
the Lagrangian under the axial gauge transformation
(3.121). The resolution of this diKculty is simply the
fact that massless electrodynamics is not really in-
variant under (3.121). We have not constructed the
Lagrangian to directly check. this, but it is sufficient to
observe that, in view of (3.122), the equation of motion
(2.2) is not invariant under (3.121).Thus j„'cannot be
conserved. 4~

We next consider the cT model. "Arguments similar
to those of Sec. III are expected to show that the usual
PCAC divergence condition" ri„j„s=c@(x) should be
replaced by

r)„js'= crt'(x)+ (ct/47r) e p~sF pPvs (4.1.)
We emphasize that we have not derived (4.1). A
rigorous derivation would be quite involved because of
the large number of fields present in the electrodynamic
cr model. The axial-vector current, in particular, is
certainly not unique in this model as it was in pure
electrodynamics. 's Nevertheless, (4.1) seems theoreti-
cally reasonable and should hoM if the usual PCAC does
in the absence of electromagnetism. "More importantly,
as Adler' has shown, (4.1) gives good agreement with
the experimentally observed m' —+ 2y decay rate in the
soft-pion (6'=0) limit, whereas the usual PCAC does
not. "We feel that this result is important because it
shows that the operator product subtleties responsible
for the additional term can have an empirical sig-

47 We are using here the fact that, for a current defined by limits
to be conserved, it is necessary that it be invariant under /ocal
gauge transformations in addition to simple phase. transformations
(which are sufhcient to insure conservation in the classical case).
See, for example, K. Johnson, Phys. Letters 5, 253 (1963); L. S.
Brown, Nuovo Cimento 29, 617 (1963); and Ref. 6.

'8 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960)."For the remainder of this section, the fields are meant to be
the unrenormalized ones and we work only to order n.

5 For example, arbitrary finite multiples of 8„& can always be
added."Arguments exactly analogous to those used in Sec. III D can
be used to prove this.

ss D. G. Sutherland, Nucl. Phys. 82, 433 (1967); J. S. Bell and
R. Jackiw (to be published).
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nificance. From this viewpoint, the x' ~ 2p decay
serves as a probe of the short-distance structure oI':

local fields and seems to require for its explanation a
behavior not describable by the usual formal canonica, l

approach.
We Anally consider the general class of models in

which

j„s=p g,p,Z„ps/, +meson terms

of electromagnetism, be replaced by

'&+—--(2 aQ')(~!4~)e-t, sf' -s'& ,.', -(4-')

where Q,. e is the charge of the jth fermion. Our only
comment here is that an obvious generalization of the
gauge invariance argument of Sec. III D again shows
that (4.2) is correct if c)„j„'=cPis for e=0.
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It is shown that no unambiguously interpretable experimental evidence is now available for the time-
reversal invariance of the semileptonic vreak Hamiltonian. Several experiments, decisive in this regard
but as yet unperformed, are treated briefly.

'HE discovery of the violation of CI' invariance in
the process Kr, ' —& s.++s. ,

' together with the
continuing belief in the universal validity of CI'T in-

variance, has given a new lease on life to theories which

incorporate violations of T invariance into one or
another piece of the world Hamiltonian. ' In the present
discussion we show that no unambiguously interpretable
experimental evidence is now available for the T in-

variance of the semileptonic weak Hamiltonian and
treat briefly several as yet unperformed experiments
which would go far toward settling the issue. Speci-
fically, we consider the semileptonic strangeness-
conserving weak. Hamiltonian'

G~,as=a — L „t(x0)
v2

&& P Vx(x,0)+2x(x,0)]dx+Herm. conj. ,

6=10 s/m ' (1)
*Research supported in part by the National Science

Foundation.
' J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,

Phys. Rev. Letters 13, 138 (4964).' In addition, R. C. Casella LPhys. Rev. Letters 21, 1128 (1968);
22, 554 (1969)g has shorn directly from an analysis of present
data that T invariance is violated in EI, —+ 7I +~.

'We use the notation L„t=—(Hermitian conjugate of L„)X
(1—28„4) and analogously for V), and Az, and Lsee Eq. (5) et
seq. g 8*=complex conjugate of E.

p g, t.)&»
z=n, a y=r, i

Text*) t»T—'= —g,„(g„t*)(»)t

g = —g =g .= —g -=1nr ar ni

(x)(s)& 'mr&

bnr =bar = &ni = &ai =1
&

(4)

so that Aq ) ('& and 3) ( ' are "erst-class, " and

where Lq, V)„and A), are the lepton weak current and
the polar and axial AS=0 hadron weak currents. The
explicit expression for Lq in terms of the lepton field
operators and the conserved vector current (CVC)-
imposed identification of Vq with the isospin current
imply that L), and V), are "normal, "i.e., odd, under time
reversal, and that Vq is "regular, "i.e., odd, under charge
symmetry. On the other hand, we show below that ex-
periments so far performed do not exclude the possi-
bility that A), is a sum of two terms, the erst "normal"
(n), i.e., odd, and the second "abnormal" (a), i.e., even,
under time reversal. We then have, since A), can also be
decomposed into a sum of two terms, the first "regular"
(r), i.e., odd, and the second "irregular" (i), i.e., even,
under charge- symmetry,


