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A model is presented in which an octet of pseudoscalar mesons interacts strongly with an octet of static
spin-# baryons. In addition to this, the baryons carry a central potential in which a hypothetical spinless
meson X is bound. The resulting Hamiltonian is symmetric under O(3)QSU (2)QSU (3) transformations.
The lowest positive-parity multiplets then turn out to be {8}/2* and {10}3/2*; the lowest negative-parity
multiplets are {1}12~ and {1}3/2~, followed by {8}*/%~ and {8}1/*~. A short discussion of symmetry breaking

is given.

I. INTRODUCTION

T is the purpose of this article to give a short discus-
sion of a hybrid strong-coupling® model which is
able to reproduce the main characteristics of the baryon
spectrum as it is known today.? These characteristics
include the SU(3) assignments, spins, and parities and
also the approximate values of the baryon masses, inso-
far as they concern the average masses of SU(3)
multiplets.

It is not necessary to go into the details of the calcu-
lations, since these can be carried out in a straight-
forward way described by Goebel® and Dullemond and
Von der Linden.* For that reason only the results are
given.

A pure strong-coupling theory has the disadvantage
that, at least in Hamiltonian models, the generation of
nontrivial mixed-parity spectra is difficult and requires
assumptions that look somewhat artificial. For example,
the assumption of the existence of bare baryons of
positive and negative parity cannot be avoided.

Now, the experimental spectrum unmistakably shows
the characteristics of a broken O(3)QSU(2)RSU(3)
symmetry. As will become clear later, when unbroken
SUQ)RSU(3) symmetry is used in a proper strong-
coupling Hamiltonian model, the lowest levels fit either
into a broken {56} representation or into a broken {70}
representation of SU(6),® with only one exception. This
exception deals with isobars which either have not yet
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been found or have not yet been given a definite SU(3)
assignment.

By assuming that the bare baryons are not only
strongly coupled to a set of mesons, but carry in ad-
dition an ordinary central potential, in which a spinless
meson X [an SU(3) singlet with positive parity, not to
be identified with any of the known mesons | is bound,
one obtains isobars that form representations of O(3)
RSU(2)RSU(3). Moreover, we shall assume that the
terms in the interaction Hamiltonian which describe
the strong coupling between the mesons and the baryons
contain a factor that depends on the wave function of
the X meson. These terms therefore describe interactions
in which the meson and baryon multiplets and the X
meson interact simultaneously. The X-dependent factor
must be a scalar under O(3) transformations. In order
to obtain the desired isobar spectrum, it is sufficient to
assume that it depends only on the parity of the orbital
state of the X meson, which is just the parity of the
isobar. This is the simplest nontrivial assumption that
can be made. We shall refer to these X-dependent factors
as the meson-baryon coupling constants, since they are
indeed constants as long as one considers isobars with
the same parity.

Now, X can be in the ground state or in one of a large
number of excited states, labeled by a radial quantum
number % and orbital quantum numbers / and . For
each choice of the numbers & and / there exists a baryon
spectrum consisting of an infinite number of baryons.
These are the excitations of the strongly coupled
meson—bare-baryon system. Such a subspectrum is
characterized by a unique parity (—) and since there
are no L- S terms in the potential, there is a high degree
of degeneracy. It follows from our assumptions that
there must be a similarity between all the positive-
parity subspectra. This is indeed what is observed. A
similar phenomenon occurs in the quark model, where
the positive-parity baryons all seem to fit into {56}
representations of SU(6). Furthermore there must be
a similarity between all the negative-parity subspectra.

When two subspectra differ only in % value, but not
in I value, the spectra are identical except for a constant
shift in the mass which corresponds to the energy dif-
ference of the two states of X. Thus, the Roper resonance
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and the nucleons could belong to two subspectra
identical except for an additive constant mass value.
Also, the /=2 and /=0 subspectra are sufficiently similar
to speak of a shift in the masses of the two spectra.
This mass shift can again be interpreted as an energy
difference between two states of X, etc.

In Sec. III, a short discussion will be given of some
mechanisms which break SU(3) symmetry, and also
the influence of a simple spin-orbit term in the potential
of meson X will be considered. This discussion is by no
means exhaustive and rather serves as an illustration of
how some of the results can be modified.

Also, the introduction of the meson X is heuristic;
other models incorporating the strong-coupling Hamil-
tonians used here may equally well lead to O(3)QSU(2)
®SU(3) symmetry with exactly the same theoretical
predictions.

II. STRONG-COUPLING MODEL

The system of strongly interacting particles will be
supposed to consist of an octet of bare, static baryons,
with spin § and positive parity, and an octet of pseudo-
scalar mesons, which are coupled to the baryons_ by
means of derivative Yukawa coupling. Although such
a Hamiltonian model has been worked out only for the
extended-source approximation,® there are good reasons

to believe that the same spectrum will be found in the

small-source models, a belief strengthened by the results
of Pauli and Dancoff,” which show that this is the case
for an SU(2)RSU(2) model.

The octet-octet interaction involves two coupling
constants g; and gg which represent f-type and d-type
coupling,® and one would expect a continuous variation
of the form of the spectrum when gy and gq are varied.
The results of Ref. 4 shows a much more rigid structure
of the isobar spectrum. When g;/(gs+gq)=c lies
between 0 and 0.725, the spectrum contains an octet
as the ground state and a decuplet as the first excited
state, with spins ¥ and £, respectively.

In order to describe the details of the spectrum, let
us introduce the integers p and ¢>0 such that (p,q)
represents the SU(3) representation. For example,
(0,0) would mean a singlet, (1,1) an octet, (3,0) a de-
cuplet, etc. The SU(2)Q)SU (3) multiplets to which the
isobars belong can be labeled by a quantum number 7,
(the “internal isospin quantum number”), which is
equal to the isospin of one of the ¥'=1 isomultiplets.
Apparently, only those SU(3) representations having
¥V =1 isomultiplets occur,?® so a singlet is excluded and
so are representations without an occupied center (the
{3}, {3*}, {6}, {6*}, etc.). For each allowed set of
quantum numbers p, ¢, and g, there exists one and only
one isobar multiplet. The isobars have a spin s equal to

6 G. Wentzel, Phys. Rev. 125, 771 (1962).

7?W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942).

8 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

9See M. Gell-Mann and Y. Ne’eman, The Eighifold Way
(W. A. Benjamin, Inc., New York, 1964).
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7o and satisfy a mass formula, first found by Goebel?:

M =M +c[F2—3s(s+1)], (2.1)
where

F=3(p*+p9+4°)+p+g

and where M, and ¢>0. are constants to be adjusted.
We shall call this spectrum I, which has an octet with
spin 3 as the ground state and a decuplet with spin £ as
the first excited state. These states fit into a {56}
representation of SU(6), but this is an accident. The
higher levels cannot be fitted into SU(6) representations,
but there is also no convincing experimental evidence
for their existence.

When <0 or «>1.613, the spectrum is the same as
before, except that every representation is replaced by
its R conjugate. In the above description, ¥ =1 should
be replaced by ¥ =—1. An octet with spin % occupies
the ground state, followed by an antidecuplet with
spin 3. We shall call this spectrum II, but there are no
indications that it occurs in nature.

Finally, when 0.725<a<1.613 we find a completely
different situation. The SU(2)QSU(3) representations
can again be labeled by an “internal isospin quantum
number” 4o, which is equal to the isospin of one of the
Y =0 isomultiplets. Thus a singlet can now occur. The
spins s of the isobars are equal to {o=1. For each allowed
set of quantum numbers p, ¢, 70, and s, there exists one
and only one isobar multiplet. The mass formula is?

M =Mo+c[F—#{aiolio+1) +1—a)s(s+1)}].  (2.2)

Equation (2.2)_transforms into Eq. (2.1) when ip=s.
The parameter a, occurring when 797%s cannot be de-
termined by an algebraic method, but without knowl-
edge of @ the mass formula is not very useful. Fortu-
nately, ¢ turns out to be a function of & which can be
determined with the method of Dullemond and von
der Linden.* For « to lie in the correct interval, we find
the following interval for a:

1.774<a<18, (2.3)

where a=1 (pure f-type coupling) corresponds to
a=1.8 (see Appendix). The interval is very narrow and
allows only small variations of M. We shall therefore
substitute a=1.8, and we shall call the result spectrum
III. We find an SU(3) singlet with spin 1 as the ground
state, followed by an octet with spin 1. Then follow an
octet with spin § and a {27} representation with spin 2.

Note that the singlet and the two octets fit into a {70}
representation of SU(6) if a decuplet with spin & and
sufficiently low mass can be found. However, spectrum
IIT is self-conjugate under R transformations, while the
{70} representation is not. Therefore, the missing de-
cuplet must be degenerate with its R-conjugate counter-
part. Such a decuplet indeed occurs, but its mass is
rather high, and there exists a {27} representation with
lower mass. Here, the predictions of the SU(6) model
and the strong-coupling model apparently differ.
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[ -We shall not consider the exceptional cases a=0,
a=0.725, and a=1.613.

III. INFLUENCE OF THE BOUND X MESON

So far, no SU(3) singlet baryon resonances with
positive parity are known, while the negative-parity
baryon resonances with lowest mass are singlets (the
1405- and 1520-MeV A resonances). We shall therefore
assume that the meson-baryon coupling constants g
and gg are such that spectrum I occurs when the meson
X is in a positive-parity state and spectrum III occurs
when X is in a negative-parity state. Therefore, essen-
tially four coupling constants play a part, namely,
g27/(+), ga(+), g7(—) and ga(—). Now let us call J=L+-S
the spin of the isobar, where S is the spin of the meson-
baryon system without X and L is the angular momen-
tum of meson X. Because of the absence of spin-orbit
forces, the isobar mass will not depend on 7, only on /
and s. For /=0 the spectrum is unchanged. For /=1 we
obtain the following modification: The singlet with spin
1 generates two singlets with the same mass and with
spins 3 and $.

In the same way, the octet with spin § generates two
octets, one with spin %, the other with spin 4. The octet
with spin  generates octets with spins 3, §, and 3, etc.
The forms of the resulting subspectra are displayed for
1=0, 1, and 2 in Fig. 1. The mass units are the same for
1=0 and /=2, but different for /=0 and /=1. When the
binding energy of X is taken into account, the subspectra
are shifted with respect to each other. Let us now makea
comparison with experiment. The crucial test is to see
whether the negative-parity baryon resonances fit into
the picture. In Fig. 2, a plot is made of the masses of
the known negative-parity baryon resonances together
with their most likely SU(3) assignments. A comparison
with Fig. 1 shows that they all fit into an /=1 subspec-
trum. Not only the singlets are in agreement with this,
but also the octets.

One notices also that the average experimental singlet
and octet masses roughly follow the pattern of the
theoretical spectrum. There are indications for the
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presence of another {8}/ almost coinciding with the
{8}%/2~, but then still an {8}3/2 is missing which must
be in the neighborhood of the {8}%/2~. This is not
alarming, since the identification of spin-§ resonances in
that mass region is very difficult.

Apparently refinements must be made which include
spin-orbit interactions, SU(3)-breaking interactions,
and a scaling down of the large coupling constants g
and gq. The spin-orbit interactions then lift the de-
generacy of the {1}!/2~ and {1}3/>~, etc.

Note that the A resonance at 1670 MeV, which pre-
sumably has spin § and negative parity, can be placed
in a {27}1/%,

IV. NOTE ABOUT SYMMETRY-BREAKING
FORCES AND SPIN-ORBIT COUPLING

The simplest way to lift the degeneracy of the {1}'/2~
and {1}3/?~ is by assuming a linear spin-orbit interaction
between the bare baryons and the meson X. If this is
treated only in first-order perturbation theory, we need
the matrix elements of the bare-baryon spins, i.e., the
operators B%;Bf,7 in the notation of Ref. 4 (see
Appendix). For the positive-parity states, these matrix
elements turn out to be identically zero in the strong-
coupling limit, but this is not the case for the negative-
parity states. Now let us look at experiment. There are
probably three A states with positive parity and spins
%, %, and % very close together at about 1930 MeV.1® We
may assume that a A with spin £ is really there at about
the same mass, but this has not yet been found. In the
scheme presented here, they have /=2 and there should
be a complete mass degeneracy also when a simple spin-
orbit interaction is taken into account. Experimentally,
the mass differences are indeed very small.

For the negative-parity baryons, the degeneracy
between the singlets and between the octets is lifted.
The mass difference between the lowest-lying {8}3/2~
and {8}1/%~ turns out to be just —% times the mass dif-

10 C. Lovelace, in Proceedings of the Heidelberg International
Conference on Elementary Particles (North-Holland Publishing
Co., Amsterdam, 1968).
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ference between the {1}3/2~ and {1}/2~. Except for the
A states, this is in agreement with experiment. Only the
A states of the octets have the wrong order, which might
be the result of representation mixing. For higher rep-
resentations the agreement is not as good.

One could think of three ways in which the SU(3)
symmetry can be broken. The first place, the breaking
of the baryon mass degeneracy can be caused by the
fact that the meson mass degeneracy is broken. Second,
it could be that the bare baryon masses are not all
equal, and in the third place, the coupling between the
mesons and the bare baryons may show deviations from
exact SU(3) symmetry, or other kinds of interactions
may be present. If only the first mechanism is present,
then the masses of the positive-parity baryon octets
satisfy®

Mz—Ms:Ms—My:My—My=1:2:2. (4.1)

This is satisfied in nature only as far as the sequence of
the baryons is concerned. The distance between the
2 and A masses is too large.

For the negative-parity baryon octets we always find
Mz=M y, because the breaking pattern of the mesons is
R-symmetric, but so is the negative-parity baryon sub-
spectrum in our model. (The renormalized meson-
baryon coupling is then pure f-type and thus R-invari-
ant.?) This condition is not at all satisfied experi-
mentally, and thus we must conclude that other mecha-
nisms are active in breaking the baryon masses.

Now, a breaking of the bare mass degeneracy can be
introduced in a way which satisfies the Gell-Mann-
Okubo (GMO) formula. We then find that for the
positive-parity octets, the formula (4.1) still holds.
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Fi1G. 2. Plot of the lowest-lying negative-parity baryon resonances.
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For the negative-parity octets, there is much more
flexibility, and one could obtain a A mass between that
of the Z and the =, which is experimentally the case.
However, one finds that if the mass of the & is larger
than that of the IV for the lowest-lying negative-parity
octets (spin % and %), then the mass of the ' must be
smaller than that of the IV for the negative-parity octets
which follow (spin %, £, and ). This of course, is not
satisfied in nature, so that the breaking of the bare
baryon and meson masses is not sufficient to explain the
breaking pattern of the physical octets.

The third possibility, namely, the breaking of the
SU(3)-invariant meson-baryon coupling, may be the
answer to the above problems, We shall not discuss this
here.

V. DISCUSSION

A simplified model describing meson-baryon inter-
actions has been presented here. Some of the interactions
are Yukawa-like and very strong; others occur via
ordinary central potentials. In this way, a mixed-parity
baryon spectrum has been generated whose lowest
members can be identified with baryons and baryon
resonances found in nature. The higher members of the
theoretical spectrum are still a mystery, because they
require the existence of isobars with positive strangeness,
including the so-called Z particles. None of these
particles is definitely established. So far, no low-lying
baryon states are found which have no natural place in
the theoretical spectrum. There are, however, numerous
open spaces, not only of SU(3) multiplets which are not
completely filled, but also of low-lying SU(3) multiplets
of which no member has been found yet. They all occur
in a region which is very crowded and where identi-
fication of resonances is difficult.

The theoretical mass spectrum is roughly equivalent
with the experimental one. More cannot be expected,
owing to the oversimplification of the model. Never-
theless, there are several roads open to make adjust-
ments, and an intermediate-coupling model based on the
model presented here may have several surprises in
store.
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APPENDIX

We shall consider a Hamiltonian, describing the
interaction of an octet of pseudoscalar mesons with an
octet of bare baryons in the strong-coupling limit.
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We follow the notation of Ref. 4 and introduce greek
indices running from 1 to 3 to indicate the tensor
character under SU(3) transformations and roman
indices running from 1 to 2 to indicate the tensor charac-
ter under rotations in space. The bound meson field is a
P-wave octet with 24 components, and is represented by
a traceless tensor ¢%?; which could be considered as a
point in a 24-dimensional meson space. The corre-
sponding momenta are p%g%;, satisfying the condition

[pstsqa¥i]=(1/4) (89875 —58%6873)
X (8%9%;—38%0%) . (A1)
The bare baryons belong to an octet with spin .
These can be created out of a “bare baryon vacuum”
| Y by traceless operators B4, or they can be a.nnihilated
by the corresponding traceless operators B satisfying
the condition

BsiBeg;| )= (8756%—%67:8%)8%| ).
The sequence of the operators B and B is essential

here. The form of the Hamiltonian in the case of a large
source size becomes*

H=3p 302+ 87510 By i+ geBig?s'sBey
where p2=p2¢ipPals, @2 =q%iqPa";, and p? is the mass
squared of the mesons. The meson masses are taken to
be equal for all mesons of the octet. The Einstein sum-
mation convention is adopted, both for the SU(3) and
the SU(2) indices. The coefficients g1 and g» are large
real coupling constants. We shall introduce the parame-
ters g and v as follows:

(A2)

(A3)

ga=g1+g2=gV3 cosy, (¢>0)

gr=g1—g2=gV3 siny.

It turns out that a “potential minimum” in ¢ space
occurs when ¢%?; has a high symmetry, namely, such
that for every rotation in ordinary space there exists an
SU(3) transformation such that all the components of
q%’; stay unchanged. This is valid for all v. Here, the
potential minimum is defined as the lowest eigenvalue
which an eigenvector of H—3%p* can possibly have for
given g1 and gs. Although the position of the potential
minimum is only trivially dependent on 7, the eigen-
vector which has the lowest eigenvalue is not always
the same. ‘ )

One possible choice for the value of ¢%*; at which the
potential reaches its minimum is

(A4)

3
& S (tm)%(om)’ when a and 8#3, (AS)
/12 m=1

0 when a or 3=3.

Here = and o are Pauli spin matrices, & and 7 row indices,
and B and j column indices. The proper value of go
depends on g and v. We shall call this specific choice a
“standard form.” All other points where the potential
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reaches a minimum can be obtained from this standard
form by applying rotations and SU(3) transformations.
In that way, an “orbit” in ¢ space is described.

It is convenient to define a unit vector in the g%?;
direction which we call §%;, and which has the property

4%*9Pas=1.
Moreover, let us introduce a traceless tensor C%
defined by
Co=(/6)4""0"s"i— (31/6)5%. (A6)
‘Then, when §2,% points in the direction of the potential
minimum and has the standard form, C% is diagonal
and Cy=C2%=4/% so that C*C8,=1.
Finally, let us introduce the parameter « such that!!

tany g5
14tany

(A7)

a

gf+gd.

Then, for 0<a<0.725 we obtain a spectrum which
gives the best description of the positive-parity baryons.
This case is extensively discussed in Ref. 4. The eigen-
state of H—3? with the lowest eigenvalue is

S=¢(q)d*s'BPail ), (A8)

where {(g) is a function of the invariants of ¢%¢; which
is zero everywhere except when 4/ (¢2)=gqq, i.e., in the
vicinity of the potential minimum. Furthermore, when
¢ has the standard form we have

dty?=—(d2%= (1/\/‘7)61‘e ,

all other components being zero. The phase € is arbitrary
and will change when transformations are carried out
which leave ¢%?; at the potential minimum unchanged.
The eigenstates of H (where p? must now be interpreted
as minus the Laplacian in 24-dimensional ¢ space) must
stay invariant under such transformations. Then a
singlet cannot be constructed, but an octet with spin
3 can be found:

dtg;S (A9)

and also a decuplet with spin § can be constructed, etc.
For 0.725<«<1.613, another eigenvector takes over,
namely,

S=t O A+sim) 1o B
+3(1—siny)'2C%BA,;}| ). (A10)

This state has no arbitrary phase and is an eigenstate

of H. It is to be interpreted as a physical SU(3) singlet

baryon with spin . Two octets with spin % can be con-
structed as eigenstates of . One of them is

C7sS; (A11)

with mass

ML({8}/5) =M ({1}'/%)+-6/q¢?, (A11)
where M ({1}'/?) is the mass of the singlet. The second
" 17,7, de Swart, Rev. Mod. Phys. 35, 916 (1963).
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spin-% octet has the form

§7s*iSx (A12)
with mass
Mo({8}/) =M ({1}1/%)+(5—2 siny)/2¢¢*. (A12')
The only octet with spin £ is
48" aSmenyk (A13)

where symmetrization takes place over the indices
between parentheses and where e,z is the Levi-Civita
tensor e1p= —ea1 =1, €11=e€22=0. The mass becomes

M({8}2%) =M ({1}"/%)+(8+sinv)/2¢s*. (A13)

The mass values found in this way all satisfy formula
(2.2) when for a the following value is substituted:

a=17/5+2% siny. (A14)

This leads to the allowed interval, Eq. (2.3), for a.

In order to compute spin-orbit splittings due to the
interaction of meson X with the bare nucleon, one must
know the matrix elements of the baryon spin operators
Share Which are defined as follows:

Share 1= %(BaﬁlBﬁaz'l'BaﬁQBﬁal) )
Spare 2 =31(B%1Bf2—B*BA.') ,
Svare 3=35(B%s1BP1 —B5%B5,?).

(A15)

The results must be proportional to the matrix elements
of the physical isobar spins.

For a between 0 and 0.725, we obtain for the matrix
elements of spare between different spin states of the
physical octet the expression

N/dq STdﬂvksbaredfvulS, (A16)
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where N is a normalization constant.!? The result turns
out to be zero in this case, and this is true also for the
other members of the spectrum. Therefore, no spin-
orbit splitting can occur for any of the positive-parity
states.

When « lies between 0.725 and 1.613 the results are
different. For the singlet, one must compute

N / dq STspareS: (A17)
and for the lowest-lying octet with spin %,
N/dq Sfié“vk'isbareqvnjlsj- (Alg)

The results are nonzero. The octet matrix elements are
—3% times the corresponding singlet matrix elements,
independent of v. It follows then that the mass differ-
ence between the negative parity {8}!/2 and {8}%/2 is
—1% times the mass difference between the {1}!/? and
the {1}32if spin-orbit terms in the potential are treated
in first-order perturbation theory.

If the bare masses are broken according to the GMO
formula, the matrix elements of the following operators
must be computed in the same way as described above,

namely,
BaaiBmsi and BasiBsai. (Alg)

A suitable linear combination of these operators must
be taken. The computations are again straightforward.

12See F. J. M. von der Linden and C. Dullemond, Nuovo
Cimento 43, 615 (1966).



