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Mandelstam Symmetries in the Complex Angular Momentum Plane*
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A symmetry found by Mandelstam in the complex l plane for potential scattering is investigated. One
consequence of the symmetry is given in the form of logarithmic Qnite-energy sum rules. A series of proofs
of the symmetry for potential scattering is given, culminating in ones using methods that are applicable to
o6'-energy-shell and relativistic scattering. In both these latter cases, this symmetry is disproven in contrast
to the more well-known Mandelstam symmetry, which is seen to hold there.

I. ENTRODVCTION

I N order to make his modiication of the Sommerfeld-
& - Watson transformation, Mandelstam' proved a
symmetry of the 8 matrix, which we call half-integer
symmetry. '

S(l,k) =S(—l—1, k), l= '„-'„.-(l.1)

His proof was for potential scattering, as were later
proofs by other workers. ' A11 of these also prove a
second symmetry, integer symmetry

S(l,k) = —S(—l—1, k), l=O, 1, ~ . (1.2)

This latter symmetry has received almost no considera-
tion in the literature. For example, it is straightforward
to show that half-integer symmetry comes directly from
the Froissart-Gribov continuation in both nonrela-
tivistic and relativistic scattering~; integer symmetry
for the latter case has not even been attacked, much less
proven. This paper seeks to fill this gap by giving some
consequences of integer symmetry and showing that
it, in fact, cannot be extended to relativistic scattering.

Section II proceeds on the assumption that integer
syrnrnetry does hold. . From this and the Froissart-
Gribov continuation, certain logarithmic 6nite-energy
sum rules (FESR) are obtained. They are given in
terms of relativistic scattering, even though we know the
symmetry fails there. This is justided in several ways.

First, FESR are very much more familiar for relativ-
istic scattering, and it was thought desirable to present
the new forms in that context. Second, the establish-
ment of the form that the symmetry and then the FKSR
could take to be consistent with any relativistic theory
is in itself an interesting question, though unfortunately
rendered empty by the absence of the syrxunetry. Third,
it seems desirable to express the FESR in a form
suitable for experimental veri6cation, in the admittedly
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faint hope that the symmetry does hold in the real
world. Finally, of course, the restatement of the FKSR
for potential scattering is trivial.

Section III gives several proofs of the Mandelstam
symmetries. The emphasis is on new features, giving
both a new expression to the well-known proof and
entirely new proofs designed to extend the results in

certain ways. The culmination is a perturbative trea, t-
ment based on the E/D method, applicable to both
relativistic and nonrelativistic scattering, giving the
only possible form of the Mandelstam symmetries for
each and disproving one of the symmetries for the
former. The crucial distinction is seen to be the diferent
phase-space expressions.

CONSEQUENCES OF INTEGER SYMMETRY

In this section we take the known symmetry (1.2) of
potential scattering a,nd assume that it can be extended
to relativistic scattering. The procedure is one fre-
quently used, though admittedly it lacks rigor. It will

be useful to rewrite our symmetry as

u(l, k)+tt( —l—1, k)=i/k, l=0, 1, (2.1)

S(l,k) =1+2ika(l,k). , (2.2)

The relativistic analogs of these are

A (l,s)+A (—l—1, s)
= —

scabs/(s

—4trt') J"/in{ p (s—4nt')'ts —s'"j/
P(s—4tns)'ts+s"'J) l =0, 1, ~ ~ (2.3)

S(l,s)
= 1+2ig(s 4nt')/s Jt'A (l,s)—. (2 4)

The justi6cation for (2.3) will be deferred to Sec. III.
For the moment, we will only note that the right-hand
side has a square-root singularity at s=o on the second
sheet and not on the 6rst sheet; this agrees with the
singularities of A (l,s). We also see that (2.3) and (2.4)
together do not yield (1.2), and indeed that the latter
cannot give the correct analytic behavior in the
neighborhood of s=O. Equation (2.3) is the simplest
form of the symmetry that is not in contradiction to
known analytic properties; we will see in Sec. III that
it is also the unique permissible form.

We must now consider the complication that signa-
ture introduces into the problem. For potential scatter-

1457



DAVI D F. FREEMAN 180

ing the problem is trivial: We obtain separate Schro-
dinger equations for each signature, 4 and then (2.1)holds
separately for a+(t,k) and a (t,k). For relativistic
scattering, we will assume that the same situation holds,
with one exception. The Froissart-Gribov contribution

1 " 2Ch
A+(l, s) =-

t A, (s,t) WA„(s,t)]
g, s—4m2

( 2t
xe/j1 — ), (2.5)

s —4m2/'
'

eliminates divergences and claim that we obtain the
same result as by the former method. We assume Regge
behavior for a single pole of definite signature

P(s) 2t
A, (s,t)WA (s,t) (2.10)

' " I'( +1) s—4m'/

If this is a good approximation for t)L, we can use it
to evaluate the high-energy contribution to (2.8) and
(2.9). For N=0 thes'e become

shows, as is well known, that Gribov-Pomeranchuk
(G-P) singularities appear at wrong-signature nonsense
points if the third double-spectral function is nonzero. '
Thus, half of our symmetries would involve points with
singularities on the left-hand side and are patently
false. The remainder can be written

de, (s,t) —A (s,t)]

P(s)L ( 2I q
nisi

(a+1)F (n+1) ks —4m'J
(2.11)

A (l,s)+A ( 1 1, s)——
2r)S/(S —4m2) ]1"—/1n(DS 4m')"' —S'"]/—

$(s—4m')'"+ s'/2]) t =0, 1, (2.6)

o = —(—1)'.

We now put (2.6) into (2.5), using the identity of
Legendre polynomials, 6

e-- ()+e ()=-~-()/(t-~)-~-()1-L-', ( -1)]
+E~(s)+0 (t /V ), (2.—7)

in the neighborhood of /=N, where 8& is a polynomial
of order N. The condition that a G-P singularity is
absent gives the usual superconvergence relations

ds[A, —(—1)~A„]Py(s)=0, X=O, 1, (2.8)

The additional assertion of Mandelstam symmetry gives

s—1
dst Ai —(—1)~A ) E~(s)ln ——R/1 (s)

2

(s—4m2) / —s /

ln
(s 4m2) 1/2+s1/2

/V=0, 1, (2.9)

which are our new logarithmic sum rules.
As is well known, sum rules of the type (2.8) hold

only in the presence of external spin. This is simply
because the integrals in question do not converge. The
same difficulty appears in (2.9). Rigorously, we should
perform a correct analytic continuation of (2.5); instead
we will simply rewrite (2.8) and (2.9) in a way that

4 E. J. Squires, see Ref. 2.
'See, for example, C. E. Jones and V. L. Teplitz, Nuovo

Cimento 31, 1079 (1964).
This follows from H. Bateman, in Higher Transcendenta/ FNnc-

4ions, edited by A. Erdblyi (McGraw-Hill Book Co., New York,
1953), Vol. I, 3.2(14), pp. 124-5; 3.7(2), p. 160.

dt(A, (s,t) —A (s,t)] ln
s—4m'

P(s)L 2L ~i'l — L 1
ln

/ +1)I'(/+1)(s—4m') s —4m' +1

(s—4m') '/' —s'/'
+12r2Ls(s —4m )]'/2 ln . (2.12)

(s 4m2) 1/2+sl/2

Equation (2.11) is just the usual finite-energy sum
rule (FESR); (2.12) is a logarithmic sum rule whose
validity is equivalent to that of integer symmetry.
Subtracting ln(L/s —4m2) times (2.11) from it, we get
the somewhat simpler form

(t)
dt/A 1(s,t) —A (s,t)] 1ni —

i4L)

/(s —4m') '/' —s"'
=-2, ~'Ps(s —4m )]'/' ln]

4(s —4m2)"'+s"'

/2(s)L 2L
(2.13)

(n+1)21'(n+1) s 4m2J—
Such sum rules can be directly tested with experi-

mental data. Conversely, if by some independent means
they are shown to hold, the rules would act as a con-
strain on Q.tting data in much the same as that the usual
FKSR are. The existence of such verification is in-
vestigated in Sec. III.

Inasmuch as Mandelstam symmetry is known to
be valid for potential scattering, the nonrelativistic
form for our logarithmic FKSR are equally true. This
property of the scattering amplitude does not seem to
have been previously known.

III. PROOFS OF INTEGER SYMMETRY

Here we give a sequence of proofs of both Mandelstam
symmetries, starting with the well-known original proof
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(3.5)e++"f (l,k;r): 1.

andproceedingontoentirelynewapproaches. Thegoals We can now 6nd the Mandelstam symmetries by
are twofold: to uncover the differences between integer means of the Jost function. We de6ne the irregular or
and half-integer symmetry and to try to extend the Jost solution to (3.1) by
proofs to relativistic scattering.

A. Proofs Involving the Wave Function

We begin with the radial Schrodinger equation

// d' l(/l+1)
+a')yo a r) v(r)=oar; r),

&dr& r'

rV(r) =P s;r',
0

Since the boundary condition does not depend on l,
Poincare's theorem tells us that f~ are entire in /()+1),
hence

fg(l, k; r)= fg(—i—1, k;r). (3.6)

(3 1) With Jost functions defined by

f+9,k) = IV(f+4) = (df+l«)4 f+(4—I«), (3 &)

lim (l+-,'N+1) fg(l, k) =C(1V)fg (-', N, k) . (3.8)
l ~gN —1

S(l,k)=e' 'f~(l, k)/f (l,k), (3.9)

we find (1.1) and (1.2) immediately. An equivalent
method is simply to use the asymptotic expansion

(3.2)
@(E,k, 1) :C(l k)(e'~'/'e'"' e'r'/'S—(l k)e '~"} (3.10)

and seek to show that its solutions have a symmetry we have from (3.4) and (3.6) that
analogous to (1.1) and (1.2), which we will call func-
tional symmetry. Two facts about (3.1) are used in
the proof below: (1) It is symmetric about l= —s;
(2) r=0 is a regular singular point with indices (+1 Since
and —l.

We start by defining the regular solution by the
boundary condition

for Rel& ——,'and by analytic continuation below that.
Let I=—',N, N=O, 1, . .. Property (1) shows that the
analytic continuation to l= —~E—1 is also a solution,
and (2) shows that they correspond to the solution with
greater and lesser index, respectively.

The indices have integer spacing, and thus by the
theory of ordinary differential equations, ~ the latter
contains the former solution with some coefficient not
6xed by either the differential equation or the boundary
condition. It is, however, given by the analytic con-
tinuation. We thus have

y( &N ] k. r) —r /r/2+C r /r—/2+1+. . .+—C r/t//2

+C~+iy( ', N, k,r)+ . (3.3)-

It is a simple matter to verify that the series solution
to (3.1) gives a pole in Ca+i at i= sN —1, so that we
can write

lim (i+sN+1)y(I,,k; r) =C(N)y(sN, k; r),
l~~X—1

inserted in (3.4).
This method can also be used to 6nd functional

symmetry for the Bethe-Salpeter equations (except
at i= —1 and —2, where poles are lacking). However, it
is not possible to go from this to Mandelstam sym-
metries: There are no Jost functions for the equation,
and (3.10) is no longer the correct analytic continuation
of S in /. The latter is easy to see: If it were the correct
continuation, (1.2) would hold relativistically. However,
we have said that this gives the wrong analytic behavior
at s=o. Thus we must seek other means to Gnd the
relativistic generalization.

Further, the use of functional symmetry does not
distinguish between integer and half-integer symmetry.
To do this we turn to integral methods.

B. Proofs Involving the T Matrix

We have the equation for the off-shell T matrix'
N=O, 1, " . (3.4)

S(l,k) =1+2iT(l,k,k), (3.11)
This is the desired symmetry of the wave function.
We have been able to get rid of the other terms in (3.3)
by cancelling the pole with a zero; without the pole,
no such symmetry would have been possible. We will
need the particular result C(0) =s Vs.

~E. T. Whittaker and G. N. Watson, A Cogrse of Modern
Analysis (Cambridge University Press, London, 1965), 4th ed.,
Sec. I0.3.

'E. J. Squires, Ref. 2, 6nds this result directly from the
recursion relation for the series solution. The present method is
adopted because it brings out explicitly the elements needed in
the proof, and because it is equally suitable for more involved
problems, such as the Bethe-Salpeter equation, where direct
verification from the series is overly cumbersome.

i(Qs-) Pk)'+'
F(l,k) =1+

kl'(i+-,s)
dr( ,' kr)"'-

XH&;&'&(kr) V(r)@(l,k; r). (3.13)

9U. De Alfaro and T. Regge, Potential Scattering (North-
Holland Publishing Co., Amsterdam, 1965).

—i (Qs-) (-'k) '+'
T(l,k,k') = dr( 'sk'r)"'--

kr(ty-;)F(t, k)

XJ&+x(k'r) V(r)p(l, k; r), (3.12)
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(F is a normalized Jost function. ) We will analytically
continue these equations to l= —1. We see from (3.3)
that F has a pole there, with two contributions to the
residue: the divergence at the origin from the r'+' term
and the pole in p itself. The residue is

-', vo(i/k)+-,'vo(e' /'/k)LF(O, k) —1j
=-,'eo(i/k)F(0, k). (3.14)

Similarly, the integral in (3.12) has a residue

perform a. Fredholm expansion' of T, T=X/D. Both
X and D have poles at negative integer l, which cancel
in the quotient. To second order, keeping only the pole
term at l= —1,

1 g gi k" (k—i/4—) '
X(l,k,k') = — —1+—ln

l+1 2k 4k k" (—k+i/4)'

+o(g) + ", (3»)

in, —-'v drP7rk'r)'/'Y&/&(k'r) V(r)P(0,k,r) . (3.15)

We now evaluate T(—1, k, k') by a quotient of residues,
T(0,k,k') directly from (3.12) and find

1 1 gi 1gi k)
D(l, k,k') = ——1+-—ln 1—2i-

~i+12 k 2 k /4J

+0(g') +, (3.20)

T(0,k,k')+T( —1, k,k') = 1+i
F (O,k)

dr (-', ~k'r) '/'
1 g k) 'k"—(k —i/4)'

T(—1, k,k') =i+ ln 1—2—i——
~

4 k //, J k"—(k+i/4)'

XII1/2 &'& (k'r) V (r)P (O,k,r) . (3.16)

We also have

+O(g ). (3.»)

On the energy shell k'= k the bracket in (3.16) is just
(3.13), and we have a rather remarkable cancellation
that gives integer symmetry

T(0,k,k)+T(—1, k, k) =i. (3.17)

Half-integer symmetry comes much more easily, as
we see below.

This method is not applicable to the Bethe-Salpeter
equation. The analogies to (3.12) and (3.13) can be
found, but the appearance of an extra variable, the
relative time, complicates the manipulation and no
simple cancellation has been found.

We now work with the I ippmann-Schwinger equation
for T'

T(l,k,k') =B(l,k, k') dk"E(i k —k' k")T(l k k")

00

B(l,k,k') = —— dr (~~m.k'r) '/~f i+4 (k'r) U (r)
0

&& (~~~kr)'/'Ji+y(kr), (3.18)

2 k
IC(i k k'k") = —— -B(l k'k")

m k"—(k+ie)'

1 g (k+k')'+ p,
'

T(0,k, k') = ———ln — +0(g'), (3.22)
4 k (k —k')'+p, '

and we find that on the energy shell the first-order terms
in g cancel in the sum (3.17), as they must. This method
is not a complete proof, since we would need to know all
higher-order terms in (3.21) and (3.22). However, it
does have two valuable points, both of which concern
the limit g =0. (1) It shows the unique form that integer
symmetry can have. For, in the limit g=0, all higher-
order terms vanish; If the sum of T(l) and T(—l—1)
is to be independent of the potential, it can only be the
lowest-order term from the Fredholm expansion. (2)
One could say from (3.18) that T(l)=0(g) for all l.
This would contradict (3.17).The resolution is that one
must first go to l= —1 and then take the limit g=0
to get the proper result; the Fredholm expansion does
this automatically. The poles in E and D are related to
those in p and f+ ', all are necessary in the various proofs.

This method can be used with the Bethe-Salpeter
Fredholm expansion given by I.ee and Sawyer. " It
yields

A(O,s)+A(—1, s)

(s—4m') "'—s"'
ln

(s —4m') '"+s"')
+o(g) (3 23)

We see immediately from J „(s)= (—1)"J'„(s) that we ( s i 1/2

have half-integer symmetry off the energy shell. (We
neglect the problem of analytic continuation, which
gives no diQiculty here. ) This generalization to off-shell

scattering does not seem to be previously known.
Further, we need not limit the potential to the sort This is one )ustificatlon of our asserted form for re1-
indicated in (3.1); A far larger class is suitable for
hal -inteter symmetry.h lf'

~0 K. T. Whittaker and G. N. Watson, Ref. 7, Sec. 11.2.
%e nOW WOrk With a Yuk.aWa pOtential ge l'"I" and» B.W. Lee and R. I. Sawyer, Phys. Rev. 127, 2266 (1962).
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1
E(l ' s s)

l+.1V g( )Q(s')

V (l,s) —V(l s')
(l ) (3.30)

~g Thus the &erne 3 26) isol nomi~s

80

here p and g are p y

1

It has not been Poossible to

~(,)g(s )—1'(s )QP s

er s, mmetry
s

ativistic integ
h her-order term

P

" 'tl. evaluate the 'g

s—s

expiicit y

1VgD Method

d by the I'"redholm

l
h p o p
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f a third double-spec r~ e absence o a
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Our equations

PS—S

P

h k. l The the
hence,
separable res'residue or

at
1 1 t 1V(l, ).

the kerne
l asimpepo(3.25) gives only a

'
p

Our simplest case is

B(l,s) =g "A(l,s)

= 1V(l,s)lD(l, s), (3.24)

gv(l s)=g, = fD/(l+1)1+V (l,s)). (3.31)

= —1.The pole termsHere, t eh kernel has no pole at /= —.
in 1V and D are

1
1V(l,s) = V(l,s)+— ds'E'(l; s', s)1V(l,s ), (3.25)

1 p( —1, s)LV, (—1, s')

(3.28)

s —s') )p(l,s'), (3.26)IC(l;s', s =;, =(Lv(1,.)-v(l,")gl(s—s . , . 26

d, '""'~(1„).D(l,s) =1— (3.32)—Vi( —1, s)j+o(g') + ",
P

p( —1, s')
s —sl+1s-,.s—D(l,s) =—

1 the left-hand cut ofls) has o iy
(l s, ; p(l, s is two-

ctions are a sen,ble-spectral func i

g

k the left hand
ceo t ein

cut. ince iwill lac
d t eitherhave

singu

ds"
p( —1, s")(—1, ')+-

o s s —s+o

" —Vi( —1, s')gXgvi( —1, s )—

+0 g(') +" (333)tbe to alnit it mus

we6ndt aw h t

larity at in6ni y,
'

s N, 3.29) From this wV l,s = L1i(l+1V)X1'(s)lg(s)js +VN (l,s), (3.

A (—1, s) = —erg' p( —1, s') —W'
S —S0

p( —1, s')
s' —s0

—— ——p( —1, s')
s —s&o

X ds"p( —1, s"
SPP —S SPP SP

—» ~z —)ss —1 s")—Vi( —1, s')—V, (—1, s )—V, (—,s) — s — —1 s'-

Ke also see direc ytl that symmetry

(3.35) A (O,s)+A (—1, sA 0 s) =gV (O,s)+0 (g' .()
inte er1 ossible form for in gKe thus b'av1 ave the only possi e —1 ') i. (3.36)

Aviatrix (W. A. Benjamin,'n Inc. , New'~ G. Chew, e, The Analytic S Matrix
York, 1966), Sec. 9—4.

where the axedhe Born series, w eis by summing t e
'

w e"One can see t is y
'

e
poles a eaach order sum to a m
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We now need to put in the specific phase space for
relativistic (R) and nonrelativistic (NR) scattering.

pNn(l, s) = g (3.37a)

Hence,

p (l,s) = L-'s —4')"L(s—4m')/s j'I'. (3.37b)

ds 27ri
pNp, (—1, s') =

0 s —s

ds'

(3.38a)

pR( —1, s') =4/s(s —4m')$ —"'
o S —$

f (s 4m') "—' s"')—
&&in~ ~, (3.38b)

k(s —4gz2) 1 2+sl 2)

and we 6nd our previous results again.
Now we look at our higher order terms and demand

that they be zero. In particular, we insist on a zero
right-hand cut to order g. A (O,s) has no right-hand cut
in this order. One can show that

ds'—p( —1, s')LVgf —1, s') —Vg( —1, s))
0 s —s

has no right-hand cut, and consequently neither does
the double integral in (3.34). Thus, we need only look
at the square of the integral over phase space. We see
from (3.38) that nonrelativistically the square has no
right-hand cut, and that relativistically it does. We
know already that nonrelativistic scattering has the
symmetry, so we have only shown consistency there.
However, we have also shown that the relativistic
synnnetry caersot hold, for we have nonzero higher-
order terms.

The one possible escape from this is the possibility
of even higher-order terms cancelling the nonzero terms,
which could occur if the amplitude were not analytic
in g at g= 0. As suggested in I, experiment couM decide
this last possibility.

IV. CONCLUSIONS

The positive results of this investigation are within
potential scattering. First, a number of differences
between integer and half-integer symmetry have been
brought forth, particularly that the latter holds
identically in such formulation as the Lippmann-
Schwinger equation and is valid off the energy shell. The
new methods of proof indicate that the symmetry of the
wave functions need not be considered as central to
the symmetry of the amplitude, but that the appearance
of poles in the l plane is a more "basic" requirement.
Indeed, the Bethe-Salpeter equation, which has func-
tional symmetry but not integer symmetry (because of
its relativistic dynamics), shows that the two phenom-
ena need not appear simultaneously. Finally, we have a
new series of sum rules that act as constraints on the
amplitude.

The one negative result is very simple: There is no
relativistic analog of integer Mandelstam symmetry.
This in turn eliminates one possible way of looking at
the left-hand 1 plane and a series of numerically interest-
ing FESR. It is noteworthy that the difference lies
solely in the different phase spaces.
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