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fortunately, either of these possibilities would greatly
reduce the effectiveness of the hard-pion scheme as a
powerful calculation method for treating low-energy
reactions.

Note added t'I Prooj W. e have been informed by
Dr. A. Brody of a numerical error in the SLAC analysis.
The corrected experimental value is (gr/gz)'=0. 64
~0.25. In terms of the linear hard-pion model of SW,'
this implies —2.32& 6& —1.14 and F~ & 41 MeV. In the
nonlinear model that we consider this value of (gr/gr, )'
corresponds to FR= 90 ~4+" MeV, to be compared with
I'~=140&30 MeU of Ref. 4. It is amusing that the non-
linear hard-pion model described here is in better agree-

ment with present experiment than either Schnitzer-
Weinberg' or Gilman-Harari. ' Brown and West inform
us that the data on radiative pion decay are also in
better agreement with the nonlinear hard-pion model
than with SW.'

We wish to acknowledge valuable discussions with
Professor K. Wilson. After the completion of this work
we have come to know of similar results obtained by S.
Brown and Q. West" within their pole-dominance
framework. Ke thank them for a conversation.

» S. G. Brown and G. B.West, this issue, Phys. Rev. ISO, 1613
(1969).

PHYSICAL REVIEW VOLUME 180, NUM HER 5 25 APRIL 1969

Resonant Solutions of the Low Equation from Fixed-Point Theorems*

H. McDaNrELt

illinois Institnte of Technology, Chicago, Illinois 60616

R. L. WastNOGKt

Csmr, G~n~~, Sm&~~r~W

(Received 3 July 1968)

Fixed-point theorems are used to prove the existence of a class of solutions to the one-meson Low equation
of the static-baryon model. The main result is that there exist solutions involving an arbitrary choice of
narrow resonances. This is true for any crossing matrix with a 6nite number of channels, and for any cutog
function of a large class. For su%ciently small coupling constants, the solutions can be constructed by a
convergent iteration procedure. The stable particles and the arbitrarily chosen resonances are associated
with Castillejo-Dalitz-Dyson poles of an appropriate denominator function. The methods used do not
suKce to show that solutions of the bootstrap type exist. Our earlier work is improved in that, resonances
are allowed and a bigger range of coupling constants and a weaker cutoff are permitted. The analysis js
based on a crossing-symmetric N/D formulation of the Low equation.

I. INTRODUCTION
" 'N a recent publication, ' one of us showed that the
~ - one-meson Low equation of the static-baryon model
has a solution for arbitrary crossing matrix and cutoff,
provided that the coupling constant is suKciently small.
The solution corresponds to an "elementary" baryon, in
the sense that the baryon does not participate in a
bootstrap. Equivalently, one may say that the baryon
is associated with a Castillejo-Dalitz-Dyson (CDD)
pole. Another property of the solution discussed in
Ref. 1 is that it does not have resonances, and therefore
does not relate to observed meson-baryon scattering.

In the present paper, our method is improved so that
we are able to prove existence of solutions with narrow
resonances, and to weaken the requirements on coupling

*Work partially supported by the National Science Foundation,
and performed in part under the auspices of the U. S. Atomic
Energy Commission.

t National Aeronautical and Space Administration Trainee.
f Permanent address: Illinois Institute of Technology, Chicago,

Ill. , and Argonne National Laboratory, Argonne, Ill.' R. L. Warnock, Phys. Rev. 170, 1323 (1968); 174, 2169(E)
(1968).

constants and cutouts. The resonant solutions proved to
exist are still not of the bootstrap type. They are
directly connected with COD poles. Non-CDD reso-
nances, part of a bootstrap or not, are beyond our reach.
The CDD poles can be prescribed at will, provided their
residues are suSciently small. One can have, therefore,
a,s many narrow resonances as he likes, at arbitrarily
chosen positions. This persistence of the CDD am-
biguity in models with arbitrary crossing matrix is not
especially surprising, in view of experience with soluble
models' and the work of Lovelace' and Atkinson4 on
more general models. The present paper seems to con-
tain the first complete proof for general crossing matrix,
however, since Lovelace does not touch the existence
question, and Atkinson leaves aside some technical
difhculties concerning ghost poles.

It would seem to be of importance to the bootstrap
program to decide whether the Low equation has (in

A. W. Martin and W. D. McGlinn, Phys. Rev. 136, 31515
(1964); A. A. Cunningham, J. Math Phys 8, 71.6 (1967).; J. T.
Cushing (to be published).' C. Lovelace, Commun. Math. Phys. 4, 261 (1967).

4 D. Atkinson, J. Math. Phys 8, 2281 (196.7).
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some appropriate precise sense) a bootstrap solution.
As we remarked in Ref. 1, the proposals for approximate
bootstrap solutions found in the literature do not con-
vince one that there is an exact bootstrap solution.
Furthermore, Huang and Mueller' proved that with
particular crossing matrices and a certain class of cut-
oRs, there is, in a reasonable technical sense, no boot-
strap solution.

It seems likely that levitation by the bootstrap
procedure will be as hard for theoretical physicists as it
is for ordinary people. At present it is not clear whether

any of the known methods of nonlinear analysis +ill be
powerful enough to take us into the region of large
coupling constants where the bootstrap solutions are
supposed to lie. The contraction mapping principle and
Schauder's theorem, used in the present paper, seem to
be inadequate. Possibly the Newton-Kantorovich
method will be more suitable, as Amatuni' has
suggested.

In Sec. 2, we begin by substituting an equivalent
A/D equation for the Low equation. This is just the
usual equation for the E function, but with our full

account of crossing symmetry it is a nonlinear func-
tional equation. It may be regarded as having the form
E=AX, where A is a nonlinear operator on an appro-
priate function space. The question of the existence of
solutions of the I ow equation is then a matter of the
existence of fixed points of A (i.e., members of the func-

tion space left invariant by 2) together with the matter
of ruling out ghost zeros of the D function. In Ref. 1,
the operator A was taken to be the integral operator
which occurs in the I ow equation itself. By identifying
2 as the 1V/D operator we gain two advantages. First,
the CDD poles are incorporated naturally, and we can
ask about the existence of solutions with prescribed
CDD poles. Second, we can do the proofs for larger
coupling constants than in the direct attack on the
I.ow equation.

Section 3 contains a statement of two standard fixed-

point theorems, together with a description of what one

must do to apply the theorems in our example.

Section 4 gives the main analysis of the operator A in

the case without CDD poles. It is verified that the

iterative fixed-point theorem (contraction mapping

principle) applies when. the coupling constant and cutoff

are suitably restricted. Ghost zeros of the D function

are ruled. out.
Section 5 repeats the work of Sec. 4, but with account

of CDD terms. It is found that the arguments are

practically unperturbed if the CDD residues are suffi-

ciently sma11. The required smallness of the residues

implies a corresponding narrowness of our resonances.

The solutions which are proved. to exist have certain

'K. Huang and A. H. Mueller, Phys. Rev. Letters 14, 396
(1965); Phys. Rev. 140, B365 (1965).

' A.Ts. Arnatnni, Nnovo Cinmnto 58A, 321 (1968).

known qualitative properties. For instance, the Ã func-
tion differs from the Born term by less than a prescribed
amount, and has the sa,me sign as the Born term. The
sign of the CDD pole residues is also the same as that
of the Born term. It is proved that with the opposite
sign of residues ghost poles a,re inevitable. The solutions
satisfy the I evinson relation in the general form
including a CDD term.

In Sec. 6 we find that under conditions weaker than
those of Sec. 5 we can still prove existence of a solution,
irrespective of uniqueness or a means of computation.
Here Schauder's fixed-point theorem is used, instead of
the iterative method.

Section 7 is devoted to conclusions and the outlook
for further applications of nonlinear analysis in 5-matrix
theory.

The meson energy is co in a system of units where the
meson mass is 1. The amplitude f for scattering of
pseudoscalar mesons in P waves is related to the phase
shift at physical co by the formula

f (to+iO) = sinb (to)c" &"&/p(to), to& 1

p(to) =k'e'(k)/12', k= (a&' —1)' '. (2.2)

The cutoff function c(k) is the Fourier transform of the
baryon sourcedensity. r Thecrossingmatrixc= fc p$=c*
obeys c'= 1, but otherwise it is arbitrary. The number

of channels labeled by the index n is arbitrary but finite.
The real parameters X are sums of direct and crossed-

channel baryon pole residues

)~a= ga +Q capgp ~ (2 3)

We write the E/D system as an integral equation for
the S function, ' where because of crossing the kernel

is a functional of X itself. %e take a D function which

obeys an unsubtracted dispersion relation, which is
normalized to 1 at infinity, and which has in general a
finite number of first-order CDD poles at finite,

7E. M. Hen1ey and W. Thirring, E/emerstury Qgaetlm Field
Theory (McGraw-Hill Book Co., Inc. , New York, 1962).

s J. L. Uretsky, Phys. Rev. 123, 1459 (1961).' G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).

2. NlD EQUATION SUBSTITUTED FOR
THE LOW EQUATION

The static-baryon I ow equation in the one-meson

approximation is written as follows7:
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physical energies ~;)1. Thus,

1V (s)
f„(z)= -=1V.(s)

D-(z)

"p(co)1V (co)dco)
(2.4)

1 CO
—S

where the residues c; are real. Equation (2.4) is not the
most general 1V/D representation, and hence it does not
lead to the most general integral equations. For example,
we have not allo@ ed for the possibility of a CDD pole
at infinity, or for an infinite number of CDD poles. Our
object here is not to discuss all solutions of the I ow

equation, but rather to show that the CDD ambiguity
persists when crossing symmetry is imposed, and to
illustrate techniques which are likely to be useful in
more interesting physical problems. After the change
of variable

the integral equation is as follows:

zero on the physical sheet. We shall 6nd that zeros of D
can be forbidden by limiting the values of coupling
constants and CDD residues.

The right-hand side of (2.5) is to be regarded as the
result of a nonlinear operator A acting on E. Thus,
(2.5) reads

(2.9)

and our object is to investigate 6xed points of A in an
appropriate function space.

Equations (2.1) and (2.5) may be generalized to allow
several kinds of baryons and mesons with unequal
masses. Then unitarity would take a matrix form, and
we would use the matrix 1V/D method. The general
outlines of the following proofs would be retained, how-
ever, and one can expect that similar existence theorems
would hold. In particular, there is no reason to expect
that the CDD ambiguity would be eliminated or
reduced by inclusion of additional channels.

3. FIXED-POINT THEOREMS AND CHOICE
OF FUNCTION SPACE

B(t)—B(t )
1V(t) =B(t)—P c;l;l

' p(r)If'(r)l'dr

r(r+l)
8 (l) =X t+ Qc p-

m P
(a) 8(q),P) =0, if and only if q)=f

(b) &(qA)=&(kq),

(c) &(q rt)+fib)A') ~ ~(q»4')

lf(l) I'=1V'(t)

We make use of two of the most common tools of
nonlinear analysis, " " namely, the contraction map-

t —t; ping principle and Schauder's fixed-point principle.
1 p(t) —1I(r) p(r) The contraction mapping principle is concerned with

1V(r)dr, (2.5) metric spaces. A space E is called a metric space if to
t —7 every pair qo, P of points there is assigned a real number

8(gpss~&0 called the distance between these points

(2 6) such tllat

c;l;t t 'p(r)1V(r)dr '
1++ + I'—+p'(t)1V'(t)

0 r(r l)—
(2 7)

D(s) =Z(s) X)(s) =Q exp
=& 3—GO'

——s " b(o))do)

7l 1 co(co 8)—
(2.S)

The index 0. is suppressed where unnecessary, and we
write 1V(t) for 1V(&o(t)), etc. Notice that the direct-
channel baryon pole is regarded as a "left-hand singu-

larity, " i.e., it appears in the X function. This means
that when the D function has no zero on the physical
sheet (as will be the case in our work of Secs. 4 and 5),
then D has the representation '

for all qo, iP, and rt in E.Limits in X will be defined with
respect to the distance; i.e., a sequence (qo„) tends to a
limit g if b(ip„, qo) tends to zero. We write y„—r q. A
convergent sequence satis6es the Cauchy condition,
as is easily seen:

&(q, q )&8(q,q)+b(q, q)(e, n, nt)1V. (3.1)

However, a sequence meeting the Cauchy condition
(a "Cauchy sequence") is not necessarily convergent.
A metric~space Z is called complete if every Cauchy
sequence has a limit point in IC. The contraction rrtapping
prirtci p/e (or Banach-Cacciopoli fixed-point theorem) is
as follows: In a complete metric space E let A be an

We have not yet learned how to approach existence
questions for stable baryon poles generated dynamically
as zeros of D.

If 1V is a solution of (2.5)—(2.7), then by the usual
argument of the 1V/D method, Eq. (2.4) furnishes a
solution of the Low equation provided that D has no

"M. Sngawara and A. Kanazawa, Phys. Rev. 126, 2251 (1962}.

"M. A. Krasnosel'slrii, ToPological 3Iethods in the Theory of
ItIon linear Integral E-qnations (Pergamon Press, Inc. , Oxford,
England, I964).

~' J. Cronin, Fixed Points and Topolog~ca/ Degree in 2Von-linear
Analysis (American Mathematical Society, Providence, R. I.,
1964}.

"W. Pogorzelski, Integra/ Eqlations and Their Applications
(Pergamon Press, Inc. , Oxford, England, 1966), Vol. L

r4 T. L. Saaty and J. Bram, IV on linear Mathematic-s (McGraw-
HiH Book Co. Inc., New York, 1964).
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operator such that A(E)QE, and such that

&(A ~,A0) &P~(~ 4) 0&P&1 (3 2)

for all &p, PgE and P independent of y, f. Then the
operator A has a unique fixed point y in E:q = A p. The
sequence p~=Ap„& converges to p for any initial
point q p+E. The error at the nth iteration is bounded
in terms of that at the 6rst iteration:

&{v,~-)& 9"/(1—P))~(p i ~p) (3.3)

I &.(t) I
&at, 0&t&1

I~-(t)—p-(t')I&fit —t'I, 0«,t'&1,
0&@(1.

(3 4)

(3.5)

Here u and b are constants independent of p, which

must eventually be determined so that the hypotheses
of the contraction-mapping theorem are verified. The
distance is chosen to be

An operator satisfying (3.2) is often called a contraction

mapping The .proof of the preceding theorem is quite
easy. " "

If we are to apply the contraction-mapping idea to
the N/D equation (2.9), how are we to choose the metric

space E? It should be chosen so as to include physically
interesting solutions, be a subset of the domain of A,
and lend itself to practical proofs of A(E)QE and the
contraction property (3.2). One can think of more than
one possibility, but it seems satisfactory to choose all

real n-component functions y(t) =
I yi(t), ,p„(t))

which meet the following conditions:

Schauder's theorem we once again tak.e the set of func-
tions defined in (3.4) and (3.5). For the norm we could
take Ilppll=b(pp, 0) from (3.6), but for our purposes it
will be more economical to use the following norm:

II ~II =supl ~-{t)I

a, t
(3.S)

To apply Schauder's theorem we do not need such de-
tailed estimates of principal-value integrals, so the D
term in (3.6) can be dropped. According to Ref. 1, the
conditions for Schauder's theorem are met in our case if

(a) A (E)C.E,
(b) A is continuous in its action on E,

IIA~ —A+II« if Il~—Wll&&(). (3 9)

4. ANALYSIS OF THE NON-LINEAR
N/D OX ERECTOR

In this section we apply the contraction-mapping
theorem to prove existence (by construction) of a unique
solution to the N/D equation in the set E LEqs. (3.4)
and (3.5)). We also show that the corresponding D
function is free of ghost zeros, hence that we have a
solution of the Low equation. To avoid obscuring the
argument, we first omit CDD poles; they are reinstated
in Sec. 5.

Let y be any member of the set Edefined in (3.4)'

and (3.5). We study /=A q, where the operator A

defined in (2.5)—(2.7) can be written out in the following

way:

~(p 8)=supl p -(t) —0 (t) I+&I:p —4), (3.6)
a, t

t (r)
f(t) =A &p(t) =B(t)— G(t, r) (p(r)«, (4.1)

(3.7)
't (r)I fs{.)I'«B.(t) =X.t+P c.,—

p r(r+t)
(4.2)

The inclusion of the minimum Holder coefficient H
in (3.6) has to do with the necessity of estimating the

principal-value integral in Eq. (2.7).It may immediately

be checked that (3.6) has the properties of a distance.

That X is complete is proved in Appendix A. Ke learned

to use Eq. (3.6) from Ref. 13, p. 582.

To introduce Schauder's principle we mention a
classical theorem which has a nice intuitive appeal. It
is Brouwer's fixed-point theorem, "which states that a
continuous mapping of a closed sphere in R„ into itself

has at least one fixed point. Schauder's theorem is an

infinite-dimensional generalization: Let E be a convex

closed subset of a linear normed space. Suppose that A

is a continuous mapping of E into itself such that A (E)
is compact. Then A has at least one fixed point in E.

The definitions involved in the theorem are sum-

marized in Ref. 1, or in Ref. 12, Chap. 3. Proofs of the

Brouwer and Schauder theorems, not very difficult, may
be found in Ref. 14. For the set E in our application of

B.(t) —B.(r)
G.(t,r) =

't {a)I f ( s)al'«
=X.+pc 8—

p (o+t) (o yr)
(4.3)

I f(t) I'=q'(t)

' t (r) V (r)dr '
1+—~ +t'(t)p'(t) (4.4)

r(r —t)

If(t)l'& at
't (r) ~(r)dr

1—sup —E
r{r—t)

(4.5)

Our first task is to show that fgE whenever &p+E; i.e. ,
A(E)CE. As a preliminary to that, we get a bound

on
I
f1'. From (3.4),
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' p(r) ~(r)dr—I"
r(r —t)

~(r) V(t) «— t~(t)
p(r) —+ I'-' p(r)dr

o r(r —t)

Here and in the following "sup" without subscripts
means supremum with respect to whatever variables
are free, either 0.=1, 2, ~, n or t, 0&t(1, or both.
The principal-value integral in (4.5) is bounded by
splitting it into two parts and applying (3.4) and (3.5):

the difference quotient

p(t) —f(t')
— =G(t,t')

1 ' -tG(t, r) —t'G(t', r) p(r)
q (r)d7 . (4.14)

From (4.3) the expression in brackets is seen to have
the form

tG.(t,r) —t'G. (t', r)
' p(r)dr

r(r —t)

=bA g+aA2

p(r) dr
(b sup- +a sup I'—

7r

(4.6)

' p(o)alja(o)l'da
+pc p— (4.15)

p (o+t)(o+t')(o+r)

The constants Ai, A2 exist if we require some reasonable
behavior of the cutoff function, namely,

Ip(t) —p( r) I&A It rl", —k,v)0

p(1) =p(0) =0 ~

Taking (4.7a) and (4.7b) together, we have

Ip(t) I
&kt"=ka)-", r )0

(4.7a)

(4.7b)

(4.8)

which allows a weaker cutoff than was required in
Ref. 1. We choose u and b to be so small that

In that case
bAg+aA2(1. (4.9)

1

A 3
——— p(t)dt.

7i p

(4.11)

We have introduced the notations Ill=sup„lX I,
P fcf =sup Pp Ic sl. From (4.1) and (4.11) we have
the inequality

IW(t) I «Lll I+& lc I
a'SAS]LI+aA3] (4 12)

( at
If(&) I'&

I I
=a'~(a, b)t2. (4.10)

1—bAg —aA p)

The dependence of ( on a and b will be essentially
irrelevant for our work, provided (4.9) holds. Bounds
on 8 and G follow directly from (4.2), (4.3), and (4.10):

I&(t) f&tLIP I++ fcla'(A3],

IG(t ) I& lzl+P lcla'gA„

An upper bound of the integral in (4.15) is obtained by
discarding t, t', and v in the denominators, and we find
from (4.11), (4.14), and (4.15) that the increment of P
obeys the bound

14(t)—4(t')
I

& lt —t'ILIA I+2 l
cia-'V ]L1+aA ] (4 16)

Since
I
t t'

I
(

I
t t—'

I
&, we g—uarantee the second condi-

tion (3.5), provided

I l~l+& lcla'W ]L1+aA ]&b (4»)
The last step of the proof is to show that A is a

contraction operator, i.e., to demonstrate (3.2) when
the distance is given by (3.6). We have to demonstrate
that there is a fixed /& 1 such that

sup I4 —0 I+&L4 —0]
&&(supl v

—~l+&Lv —~]), (4»)
for all q, p&E, where iP =A p, / = A p. We estimate the
two terms on the left side of (4.18) separately. Each
estimate is in the form of a linear combination of the
two terms that occur on the right side. This is the reason
that the II term is included in the distance. Thus, our
upper bound for the left side will take the form
a|supl y —pf+a2H/y p], and max(ai, a2) —will be a
satisfactory P provided it can be made less than 1.

From (4.1) we have

sup
I + It'

I
&sup I

8 8I—
p(r)

I G(t, r) y(r) G(t,r) y(r)] dr —. (4.19)

By the definition (4.2) of 8, the first term on the right
Thus, to meet the first condition (3.4) for A(E)QE we has the b~~~d
can require

sup IB—8I
LIXI+Q lc fa')A3]l 1+aA3]&a. (4.13)

To deal with the second condition (3.5) we evaluate

1 ' p(r)dr
&2 lcl- supl ffl' —Ifl'I (42o)

vr o r(r+1)
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+ t) an increasingabie to iep a
+1). I roin

ere we were a
'

a valuej~gyjmUB~functio
~,

I f I' has the i '"(4 4) ne sees that
I f I

(4.»)
bey

I fpf' —ffsl
p(r)- ~ '&

~ )( +')P

-)+—(g y) ~

gg

(+
(4.31)I

~ (R sup I
g

f +R0&C

„ow ]jmjt b«h429 (431) we can no

i p(t) y(t)dt '

t(t —r)
],—P +p&(r) 0'(r) )

the terms on the r g

I+.R,aL&g)~ (1+' ')(
I
c

I (Ri suP

pl~I(I~I+~ I I

'

&—X=(0+0')
i (t)g(t)dt

y —g=T

(4.32)

' p(t)«
A

0

t(t —r)
i p(t)[&P(t)+ P( )~

&& 2+',
t(t —r)

+p(.)L.()+ ('» 'g r) . (4.22)

hen the(422) we use .
422) are decompo

e the notation =
osed inculpa&-vau

t h fol o »gma

linear combinationthis

inequality

i

supl4'—

ot the same tyPust derive an ineNext, we us
4 14) gives a startEquat, ion

( ) p(t/) p(t) —lp(t )

i p(t)A(t)dt—P
t(t —r)

P —P]= P
+sup I

4.23

I G(t t') —g(t, t )
att'

tG(t ) —']' dT—p(7') 9'(r)
att' 7l 0

(4.24)
' p(t)L0'(')+ "( ~

&2b&1+2 i~'~—P
t(t —r)

tg(t r) —t'G(t )
(r)

p(r)dr
g4 ——sllP

I
tfi w7i 0

(434)

(4.25)

is estimated by 4.31),first germ» t e
g 4.15) the expressio nmodulo a factor g.

cond term, cain t e seconithin the bra, ckets
died as follows

(4 22) (4 25) alld (

I fff0 —Ifl'I
~g+g, supl t'I)L~((1ybAi+c~')(

gf j (4.26)

d~ p(~)~

( +)( +')( +')
1~= ~.&.( )+~"

(4.27)g,„=sup I
tp(") I

'
where

the s uare b et asexpression in

(4.3())(- (» g, =GA+ Ã( ~ =

erj ht, o~ 3p) is nipjorized byfirst term on the g
d (4.28) the second term, (4.11). &y (43) '"d

s the inequality

R,BL&])~0g
I (p I cI (R, sup l

~
I

i p(t)dt
A6= (4.29)

Vr 0 t+
~

(419), we writesecond

That is,

I f f

0
f
(r(R, supl

nd g, are certain o
of the first terresult in (4 2P)

1

) I ~ ( ) I

0 p (r) I fp(~) I'

, , (a, supl&l& I~f. pl~I+~
(4.35)~ (R sup I

g
I +R0&L~D~ '

~ ~

(4 35) was treated by w ' '

I f I
0)+

I f1'(~—~)

i (4 1p) and (4. 28) . Nowubsequent appljc "'
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~Q,e) &p~(~, e),
P = max(Mr+Ms, Ms+M4) . (4.38)

We can now summarize a set of sufficient conditions for
the X/D equation to have a unique solution in the
set E. The conditions are

Eqs. (4.7a}, (4.7b), (4.9), (4.13), (4.17),
p&1 in (4.38). (4.39)

In order to show that these requirements can be met
we deine a parameter x,

a=a,x, f=n,x, (), (=n,x. (4.40)

Then the inequalities (4.9), (4.13), and (4.17) which
imply A(X)t E' may be expressed as

O(x) &1,
crs+O(x) &crt,

ere+0(x) &crs,

(4.41)

where O(x) stands for a function bounded by a constant
times x as x tends to zero with the n's fixed. By (4.32)
and (4.36) we also have P=O(x), so it is clear that all
of the conditions (4.39) are met when x is small enough,
provided we choose n3(n~, n3&e2 and take a cutoff
satisfying (4.7).

We now know that with appropriate restrictions on
the coupling constant, the cutoff, andthe parameters
a and b which define E, there is a unique q =E in E
which satisfies the N/D equation (2.5) without CDD
poles. This E function is obtained by iteration,
y„+~=Ay„, beginning with any member yo of E. An
error bound for the ttth iteration is provided by (3.3).
To show that the scattering amplitude constructed
from this N function by (2.4) without pole terms is a
solution of the Low equation, we must be sure that D
has no zeros on the physical sheet. Zeros on the real
axis will be ruled out by a bound on D(ca+i0) —1. The
same bound will hold at complex s', because of the
Phragmen-Lindelof theorem": Let f(s) be analytic in
the half-plane y) 0, continuous in the closed half-plane
y&~0, and bounded on the real axis [(f(x)(~&M].

from (4.34), (4.31), and (4.35) we can assemble the
result

H[P—P]&P (c(A7(+1 sup(A(+&sH[A])
+A 7f I

&
I sup

I
&

I +2 I
c

I a[a&A»up I
~

I

+As(R sup(A(+ R.a[A]))}. (4.36)

In other words, there are constants 3f3 and M4 such that

H g —y]&M, sup(A(+M, H[A].

Finally, from (4.33) and (4.37) we obtain the in-

equality which is relevant for the contraction property:

Suppose also that f(s) =O(e"~), p& 1, uniformly in tl for
a sequence r=r„~~. Then

( f(s)(&M for y&~0.
To apply the Phragmen-Lindelof theorem we return

to the original energy plane. General complex values of
the energy are denoted by s, and real values by eo. Sup-
pose that D(s) is constructed from our iterative solution
1V(ca),

1 "p(ca)X(ca)dca
D(s) =1— (4.42)

1 " p(ca')dca'
(D(ca+i0) —1( &ct—

1 (ca 1)+(1—ca) l

1 "p(ca')dca'
&a—

1 ' p(t)dt
(=8- &uA2.~, t(t-1)

(4.45)

Thus, (D(s)—1( is bounded as in (4.44) in the entire
cut plane. We choose a and b so that the right side of
(4.44) is less than 1. This implies an inequality like the
first one of (4.41), which can always be satisfied. Then
D(s) has no zero in the closed half-plane. Also there is
no zero in the other half-plane because of D(s*)=D(s)*.

5. ANALYSIS OF NlD OPERATOR
INCLUMNG CDD POLES

For notational simplicity we write the equations in-
cluding just one CDD pole. All of the following argu-
ments go through in the same way, however, if there is
any finite number of poles at distinct energies. If the
CDD term in D(ca) is —c/( ccae), then we must in-
vestigate Q=Acp, where

t ' p(r)
lt (t) =a(t) ticG(t, t) t (t,r) —~(7}dr—. (5.1)

According to (3.4) and (4.8)

p(ca)N(cd)=O(ce ' ") t)0 ca —&~

and by (3.5) and (4.7), we know that pN is Holder-con-
tinuous on any finite interval. It follows that D(s) —1 is
analytic and bounded in the open cut plane, and con-
tinuous in the closed cut plane. The continuity follows
from the Plemelj-Privalov theorem on boundary values
of Cauchy integrals. '6 We can apply the Phragmen-
Lindelof theorem to f(s) =D(s) 1 in th—e upper half-
plane. By (4.6) we know that

(D(ca+ i0) —1(

&[(5A1+ctAs)2+A as ]1/7 ca) 1 (4 44)

For co(1 we have a smaller bound:

"R.P. Boas, Jr., Erttire Fttrtctia7ts (Academic Press Inc., New
York, 1954), p. 3.

ie N. I. 1VInskhelishvili, Sertgttlar INtegrat Ectlatiatts (P, Noord
hoK, Ltd. Groningen, The Netherlands, 1953),
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8 and G have the same expressions as before in terms unit interval. Referring to (4.2) and (4.3), we get
of

I fl' Lcf. Eqs. (4.2) and (4.3)g, while
I fl' is changed

to the following:

I G(t r) I
& Lll I+2 I cl (a'iA~+2e/~P)3 (5 9)

lf(t) I'= ~'(t)

-(3+6 M e

Q=L0,1)-Q.

Now we have the bounds

M 6)1) 6)0

(5.3)

ttc t ' p(r) q (r)dr '
1+. +-& +p'(t) v'(t) (5 2)

r(r-t)

We assume 1&1. If c is small, the term in square
brackets in the denominator of (5.2) may vanish at a
point t=t* very close to t=t. If q is a solution of the
E/D equation, t~ ' is the energy of a resonance:
ReD(t*)=0. At t=t* we do not have our usual small
bound on

I fl' as in (4.10). Instead of a bound propor-
tional to a' we have merely the unitarity limit

I f I
'& 1/p'. The violation of the a' bound is only a local

matter, however, and the smaller the residue c the
smaller the region in which it occurs. The idea of the
following discussion is to show that by choosing c sufB-

ciently small, the sects of the pole are so localized as
not to change essentially our previous arguments.

We denote by 0 a small interval around t= t such that
QQ(0, 1). 0 denotes its complement.

By introducing these results in (5.1), one finds the
inequalities that replace (4.12) and (4.13):

[4(t) I «Lll I+2 lcl(a'&A +2~/~P)l

&& (1+aA3+ I
c

I t), (5.10)

Ll~l+Z I I("~A.+2 /:.)j
&& (1+aA3+ I

c
I t) &a. (5.11)

By means of (4.14), (4.15), and (5.4) we get a similar
result for the increment of P:

I f(t) —4 (t')
I

&
I
t—t'll:[~[+2 I cl (a'P +2e/~P)3

X(1+aA,+ I cl t), (5.12)

I Il I+2 I cl ("iA3+2~/~p)l
x(1+aA3+ I'lt)&f. (5 13)

A(K) QX is guaranteed by (5.5), (5.11), and (5.13).
When we go on to investigate the contraction

property of A there is a bit of trouble, because 1/y in
(4.21) is not necessarily bounded in Q. If we should have
y(t, )= 0 simultaneously with ReD(t~) =0, then 1/y(t~)
would be infinite. A way out of the difhculty is to add
another condition to our definition of the set X in such
a way that zeros of q (t) are forbidden entirely, except at
t =0. Namely, to (3.4) and (3.5) we add the requirement

u't'

I f(t)[2&
I

1—
I
c/e I

—aA 2
—bA ig'

I y-(t) —~-t[ &yt, y&inf. ll -I (5.14)

(5 5) lg (t)—x tl

& tl Z I cl (a'(A3+2&/irp) (1+aA3+ I cl t)

+ I~[( A,+ [clt)j. (5.15)

I c/~l+bAi+aA2&1.

We have also assumed that p has no zero near t= t.
can majorize 8 and G by treating separately the ante

grals over 0 and Q. For the integral occurring in 8 we

have
Now P satisfies (5.14) if

2 I cl (a'V +2~/~p)(1+aA + I cl t)

+ l~l(aA~+ lclt)&inf-l~l (5 16)' p(r)[f(~)l'd~

vr 0 r(r+t)
p(r)dr+

~ «'p(r) We have assumed, of course, that none of the X 's is
zero. Conditions (3.4) and (5.14) are not independent,
since (5.14) implies

I q (t) I
& (y+ I

X [)t.
The 1/y factor is no longer troublesome:

&a'j A 3+2&/~p, (5.6)
where

1
A3=— p(~)dr, —=sup —.

ti P '&n p(t)
(5.7) 1/y~&5,

Thus, q is required to be so close to the Born term A t

& -'(t) that it cannot have a zero except at in6nite energy:

I &p
I

&~ (IX I y)t; This —gives us a new condition to

Here we have applied (4.6), and have assumed the meet to ensure A(E)QZ. From (5.1), (5.8), and (5.9)
following inequality in place of (4.9): we have

Here and in the following A, denotes the quantity A; of

Sec, 4, but with the region of integration 0 replacing the
t+Q. (5.17)
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2k r' ' p(t)h(t)Ct—p
5—r t(t —r)

(5.1S)

The pole in (5.18) is cancelled by a corresponding
second-order zero in the coefficient 1/y. We define some
notation

S tc
gg =sup

~~0 gyt —r
g =sup

'&5 ~—r
(5.19)

In place of (4.26) there is the inequality

If we return to the argument following Eq. (4.21), we
see that one new term is added to y —y, viz. ,

replaced by

&&
I
&

I
sup I

~I+2 I &1(sup I
~

I
(a'SA +2&/~p)

+aA, (R, sup I
s I+R,HI aj)

+ (2ae/n) supap(Rio sup I
A I+R2aHLhj) }. (5.25)

For the first term on the right of (4.34), one obtains

I
G(t, t') —G(t, t') I

&2 I
~

I L(&»up I
A I+AHA 3A7

+ (R» sup
I
A I+R2iiHLAj) (2e/m) supnpj. (5.26)

When (5.25) and (5.26) are introduced in (4.34), one
has the required bound on H$f gj:—

I I f1'—I fl'I & 2 r supl A
I

HPP Pg( Lri—ght-hand side of (5.26)j
+Arl right-hand side of (5.25)j. (5.27)

a'$'rj
(A ul ~)+A, sup

I
A I)

where

a2(2r
+2 P(A~I Sj+A, supla I)

-fa(~+~)/0'

X(1+bA i+aA 2) +aA & sup I
A

I j, (5.20)

n, r+Q

p, r+Q.
(5.21)

Equation (5.20) may be summarized by stating that

As in Sec. 4, (5.24) and (5.27) yield a suKcient condition
that A be a contraction mapping.

Now let us show that the various parameters can be
chosen so that all our conditions for a unique iterative
solution in the set E are met. The relevant parameters
having to do with the physical model are

I
li

I
= sup I

li I,
inf I) I, and c. The parameters having to do with the
mathematical technique are a, 5, and e. We write

6= nox ) 8= nyX) ~= ngX)

l~l =n»', v=«x. (5.28)

The inequalities (5.5), (5.11), (5.13), and (5.16), which
ensure A(E)QE, can be written as

I I f 1'—
I f I

'
I
&

-+10-

R2r
sup I 6 I + Hl 67, (5.22)

E2p

n5/no+0(x) (1,
n3+O(x) & ni, n2,

O(x) & n4, (5.29)
where A, is proportional to a, and E.;g is not. When we
introduce (5.22) in (4.20) we do the integration in two
parts: f=fri+fri. The integral over 0 is made small
by choosing a small, while the 0 integral is made small
by taking 0 itself to be a short interval. Referring to
(4.20), we find

sup
I
~—&

I
&2 I

~
I (R»up I

A I+R2HL~E)A8

+2 I
a I LR» sup I

~ I+R»HLAZ2~ supot /~ (5 23)

Toward the goal of majorizing sup lg —f I, we note that
the right-hand side of (4.31) is to be replaced by the
right side of (5.23) multiplied by a. Then from (4.19)
and (5.23), the modification of (4.31), (4.30), and (5.9),
we get the desired bound of sup lf—f I, which replaces
(4.32):

sup If—41
& Lright-hand side of (5.23))XLI+aAqf

+A ~t: I) I+2 I
~

I (a'SA3+2~/~P)3 sup I A I . (5.24)

For estimating H(f QL we see that (4.35—) is to be

where 0(x) stands for an expression which vanishes
as x when the n; are held fixed. In deriving (5.29) we
have used the results of Appendix 3, namely, that
$a,qa ——O(x ') and $,j=0(1).The inequalities (5.29) can
certainly be satisfied for small x and small n, /n, ,
provided we choose n3&n~, n2, and n4&0. Note that
n~/n4 is fixed by the model, and na(n4~& na. As in Sec. 4
we have P=O(x) in (4.39), so the operator A is a
contraction mapping when x is sufficiently small.

To forbid ghosts when CDD poles are present, we
can take advantage of the inequality (5.14). By (5.14)
one is assured that 1V(cu) has no finite zero, hence that
the imaginary part of the integral appearing in D(s) is
definitely positive (or definitely negative) in either of
the open half-planes Ims&&0. Then in order to forbid
complex zeros we have only to choose the sign of the
residue c to be the same as that of X (co), i.e., the same
as that of ) . Then ImD(s) is positive (negative)
definite off the real axis. D(s) is a Herglotz function. '
Similarly, ImD(~+i0), ~) 1, is not zero, and the only
remaining question concerns the real axis for co& 1. AVe

have assumed that the first CDD pole is a finite;
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distan. ce Aced above threshold. If
I cI is so small that

I c/a~I+&A&yaA&(1, (5.30)

then ReD(~+i0) cannot vanish at threshold, or=1.
Since we have already assumed (5.5) with e& &~, (5.30)
is fulfilled. For ~& 1 it is sufficient that

I
0/AcoI+aAz(1. (5.31)

P(z)
D(z) =R(z) $(z) =- z " b(co)du)-

exp ——,(5.32)
Jt g M Q) —3

where P(z) is a polynomial. Furthermore, &(co+i0)
~~~. Since D(z)~1, I-I ~~, it follows

that 1'(z) is of second order if 8(~)= —~. Since X)(z)
has no zeros or poles on the first sheet, D(z) has two
zeros sy, s2. These zeros must be complex, with s~=s~*,
since real zeros have been ruled out through (5.14) and
(5.30). The zeros give ghost poles of f if E does not.
vanish at the corresponding points. The following useful
formula

I
Ref. 9, Eq. (III.8)j, will show that zeros of X

» L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys, Rpp. 101,
453 (j.956).

Thus, sgni = sgn) is the only new assumption needed
to prevent ghosts.

It is interesting to look at the phase-shift behavior
implied by our choice of sgni, and to ask what happens
with the opposite choice of sign. The integral in D, call
it I(z), is less than one in magnitude on the physical cut
II(co+i0)

I
&bAi+aA. (1,cv)~1. Since

tan8= —ImD(cu+i0)/ReD(a&+i0) =plV(~)/ReD(~+i0),

it is easy to read o6 the qualitative phase-shift behavior
using only positivity of 1+5 and the fact that pE and I
vanish at infinity. Two cases are to be distinguished:
(i) X (0 ("repulsive" Born term); (ii) X )0 ("attrac-
tive" Born term). In the repulsive case the phase shift
is first negative and small, then changes sign at the
energy of the CDD pole, then goes through the reso-
nance, and finally approaches 8(~)= z- from below. In
the attractive case the phase is initially positive, then
it goes through the resonance, then through x at the
CDD pole, and finally to 8(~)= ~ from above. This is
all the same as in the soluble models first discussed by
Castillejo, Dalitz, and Dyson. '~

If, on the other hand, we had chosen sgnc = —sgn),
the phase for case (i) would be like the negative of the
previous case (ii), and case (ii) would be like the nega-
tive of case (i). Thus, there is a pseudoresonance with
the phase going downward through —-,'z, and
5(~)= —z. This is a situation usually presumed to vio-
late causality, so it is natural to expect that it involves
ghosts. One can definitely assert that there are ghosts,
because of the following argument, which is partly due
to Sugawara and Kanazawa. ' Our D function can
certainly be represented in the form' "

and D cannot coincide:

f(z) =&(z)—
z.D(z)

"p((o) lV((o) B((u)d(o
(5.33)

s( )—s(1)= —~(~&—N.), (5.35)

where nb is the number of stable particles and n, the
number of poles of the appropriate D function. An

appropriate D function is one which has zeros at the
stable particle energies, and no other zeros, and which

tends to one at infinity. Thus the D function we have
used in this paper is not appropriate for Levinson's

theorem, except in those channels where there is no

stable particle. In a channel where there is one stable
particle, the D function of Levinson's theorem contains
one more zero and one more pole than the D function
used in this paper.

In our example of a ghost-ridden amplitude there is
an illegitimate Levinson relation of the form 8(~ )—5(1)
= —7r(2 —1)=—m. The two ghost zeros count in the
same way as stable states. This can be understood in

that derivation of Levinson's relation which is based
on examining the change in the phase increment when

zeros and poles of the S matrix leave or enter the

physical sheet as the interaction is turned on.

6. APPLICATION OF 8CHAUDER'S THEOREM
FOR EXISTENCE PROOF ONLY

If we ask only for existence of a solution irrespective
of uniqueness or a means of calculation, then we can get
by with weaker conditions than those of Sec. 5. Accord-

ing to (3.9), Schauder's theorem will guarantee a solu-

tion of the N/D equation if A(E)QE, and A is con-

tinuous in its action on E.The set E is the same as in

(3.4) and (3.5), and the norm is II &pII
= sup, & I

rp (t) I
. As

in Sec. 5 we shall make sure that A(X)QE and that
there are no ghosts by satisfying (5.5), (5.11), (5.13),
and (5.16). To prove continuity of A we must show

that if &p and p are any two members of E, then

sup
I
Ap —Ag I

(e when sup I p —p I (8(e). LContinuity
of A with respect to the distance (3.6) has already been

shown. Our goal now is to prove it with the simpler

The coefficient of 1/D in (5.33) is a Herglotz function,
and hence it cannot vanish at s=s~, s~. The Herglotz
property comes from the fact that both pX and 8 have
definite signs. To check the sign of 8, note that as in

(5.8) we have

I&-(t) —~.tI «& I&I(a'iA +2~/~p) (534)

In (5.16) we have required tha, t the right-hand side of

(5.34) be less than inf
I
li I, so 8 as well as 1V has the

same sign as the Born term.
For suKciently small coupling constant and CDD

residue, the argument of Ref. 1, Sec. 4, shows that our
solution of the Low equation obeys Levinson's relation
in the form
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= su q I.) Take first the case without CDDnoiin
II ~ll = sup

l ~l.
poles. By recalhng (4.19)--(4.
becomes clear that. thhe main job ls to s ow

vanishes with suplhl =sup q
—

trav
.

t the following integral in aust therefore, estimate e o
wa

'
IILhj term that we encounteredway that avoids the erm

before:

If v+@&1, this is less than

(2b) 1+a+v --—0(b'+"+") (6 6)
Inl'-" lu —1I'-

Iorv p~, i& 1 't is more convenient nott to change the
~ ~

variable. or v p. F + )1 we have, immediately,

I' ' p(t)A(t)dt
r2—

0 t(
=0( ') =0(b') (6 7)T2

h
—r)

(6.1)

-~ ftl' " lt —rl' "

= 1 then 7' times the integral in is bounded,
0(b' '). Hence (6.3) is 0(IIQII~),and (6.7) as a whole is

as was claimed.
4.19 —4.22), (4.30),Wh these results are used with

and 4.31), we find that there is an M)
en es

)0 such that

(6.8)

Hence 2 is continuous.
CDD ole the approach is the same,When there is a po e

d out infor the modifications already carried ou
d (63) to 'o.' th. A ain using (6.1 an

~ ~

l we et a linear combinationrinci al-value integrals, we ge a

instance, in (5.20), (5.23), an
6.8). The proof that E is convexhave an inequality . . e

nd closed is elementary (cf. Re .. 1.
d 's theorem guarantees thatTo summarize, Sc au er s

tion has at least one solution provided we

gives a ghost-free solution of the Low equation.

' dt p(t) a(r) —S(t)

dh p(t)
&2b sup

i t lt —r I'-~

dh p(t)
+2ll~llsup-

1r
(6.3) V'. CONCLUSIONS AND OUTLOOK

ri ht-hand side of (6.1) is handled

the unit interval we firs yfirst formally exten
L,=P—e, 1+eJ, where e&~a. Because of
when r&L. On I., Lwe defin—e

p(t) =0, t+L, L—
q t)=(p(1), 1&t&1+e (6.2)

= p(0), —e&t&0.

From (6.2) it follows that Iq(t) q(r)I—(bit r&, —
~1. This leads to the estimate

&I+@,+v (6.5)

The inte ral in the second term on the right is ounded
as a function o II II, while the first integral is less than
a constant times II &[]~.To prove this bound on the first

b= llhll and treat separately the two
s 26(v&1 and 0&7(26. If we app y p

h inte ral is less than a constantthen in the first case tne integra is
times the following function:

I
=0(b ). (6.4)

(r —b)'—", s lt —rl' —& (r —b)'-" hi

f that r'(1—b)v ' has a positiveHere we use the fact t a r
& 2b and hence has a maximum valuederivative for 7 ~28, an en

chan eofof 1—b)" '. For the second case we make the chang
va

' = hat the integral is bounded by avariable t= rN to see t a e
'

constant times

eorems. The crossing matrixLet us summarize our t eorems.
47cutoff obeys the conditions

set of all real functions on t e uni in er
3.4 (3.5, and (5.14), where a, b, y, and hi are some

5~ with atmostone CDD pole atro& . upp
the CDD residue c and thethe coupling constant, the

constants u an are c oscons d b hosen to satisfy inequalities ( . ),
5.13 and (5.16). LThe essential structure of

b (5.29). They involve athese ine ualities is given y'
h be taken arbitrarily small. g Letparameter t., whic can e a

c and X have the same sign.

l. Under the circumstances just esc
'

escribed
X of the X/D equation,there is at least one solution o e

lying in the set . e corX. The corresponding f=E/D satisfies
the Low equation. If c/0, then f(Pv) =0.

e h otheses of Theorem 1,Theorem Z. Assume the yp
and also that the parameters in Eqs. (5.24 an
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are such that the transformation P= A q is a contraction
mapping; i.e.,

sup l4 —0I+&9—0]
&P(supl ~—

i I+III:~—u]), 0&1.
Then there is a unique solution X of the X/D equation
in the set E, and it is obtained by an iteration y„=A y
beginning with an arbitrary element pp of E.The error
at, the nth iteration is bounded as in (3.3). f=N/D
satisfies the Low equation, and f(oo) =0 if c&0.

Theorem 1 is from Sec. 6, Theorem 2 from Secs. 4
and 5. Both may be extended in an obvious way to the
case of any finite number of CDD poles.

The range of coupling constants allowed in Theorem 1
is considerably bigger than that of the corresponding
theorem in Ref. 1. A numerical evaluation of the
allowed range has been carried out; it is reported in
Ref. 22. Our solutions seem to be of a rather dull type.
The E function does not differ greatly from the Born
term, and the latter is required (probably) to be a good
deal smaller than the empirically determined Born term
of pion-nucleon scattering. In view of this situation, the
work of the present paper (and of Refs. 1 and 4), is at
best a preliminary exercise in technique, a warm-up for
more penetrating work on nonlinear 5-matrix equations.

What are the prospects for doing better? On the one
a.and, some recent work of Atkinson" has been very
encouraging. By an application of Schauder s principle,
he shows that there exists a neutral x—x scattering
amplitude which satisfies crossing, unitarity, and an un-
subtracted Mandelstam representation. In its essentials
the proof is like that of Ref. 1; i.e., it uses a space of
Holder continuous functions with a supremum norm,
and works directly with the dispersion relations and
estimates of singular integrals. It is gratifying that the
elaborations necessary for the relativistic problem do
not stand in the way of a proof. On the other hand,
Atkinson's solution is still of the "small" nonresonant

type, not likely to be related to observed scattering.
In order to get into the region of strong coupling,

dynamical resonances, and large nonlinearities, we
think that the essential step will be first to find an
approximate solution of the equations at full coupling
strength. The approximation might, in practice, be very
rough. It could be something like Chew's X—Ã*
saturation of the Low equation. "Once an approxima-
tion is known, then one might be able to apply the
fixed-point theorems more advantageously. If (pp is a
proposed approximation, then we have a fixed-point
problem &pt

——2 (q o+ q t) —it o for the difference yt be-
tween an exact solution and the approximation.
Alternatively, there exist iteration procedures like the
Newton-Kantorovich method, '" which will produce

' D. Atkinson, Nucl. Phys. 87, 375 (1968);SS, 377 (1968)."G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
'0 The Newton-Kantorovich method is a Banach space generali-

zation of the familiar Newton method of 6nding a root of f(x) =0;
i.e., xs=xo —f(xo)/f'(xo), , x~+r =xs f(xo)lf'(x„). For a—

exact solutions y from qp if qp is close enough to q.
Amatuni' has outlined a method of finding yp and y for
equations of the Shirkov or Low type. By making a
systematic approximation of the left-cut term by poles,
he is able to reduce the problem to solution of nonlinear
algebraic equations. If difhculties concerning ghosts
can be overcome, then Amatuni's method has the
advantage of facing squarely the strong-coupling
situation.

For the Chew-Low model7 there are several proposals
for ito to be found in the literature (cf. footnote 5,
Ref. 1), and these proposals are supposed to be the
prototypes of bootstrap dynamics. It is only reasonable
to ask whether such a pp lies close to an actual solution
p. If the Newton-Kantorovich iteration beginning with

yp does not converge to a solution, then one would be
hard pressed, we think, to attach any physical signifi-
cance to yp."If the iteration does converge, then we
are interested in knowing whether the exact solution is
of "pure bootstrap" type', i.e., whether it obeys the
unsubtracted Low equation and Levinson's relation in
the form 8(oo)—5(1)= —orno. It is not a pure bootstrap
solution if the Huang-Mueller theorem' is true for the
cutoff employed. It might involve an elementary nu-
cleon fltt(~) —5tt(1) = —or(no —n, ) = —or(1—1)=0]
with a dynamical 1V* resonance $5»(oo )—4o(1)
= —or(0 —0)=0].

We think that a rigorous mathematical study of
relatively simple cases (Low or Shirkov equations) in
the strong-coupling domain will be a valuable, even
necessary, complement to efforts directed toward the
full relativistic equations. "

Finally, we mention that the Low equation written
as a dispersion relation for the inverse amplitude lends
itself to a neat existence proof in the non-CDD case."
The requirements of crossing sylarnetry lead to serious
complications in the inverse amplitude formulation if
CDD poles are present.
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APPENDIX A

We shall prove that the metric space E defined in
(3.4)—(3.6) is complete. The vector index n causes no

thorough review of the N-K method and similar things, see Non-
linear Integral Equations, edited by P. M. Anselone (University of
Wisconsin Press, Madison, Wis. , 1964).See also L. V. Kantorovich
and G. P. Akilov, Functional Analysis in Eormed SPaces (Perga-
mon Press, Inc. , Oxford, England, 1964). I'or a discussion of the
Newton-Kantorovich method as it applies to the Low equation,
see R. L. Warnock in Lectures in Theoretical Physics, edited by
K. T. Mahanthappa et ut. (Gordon and Breach, Science Pub-
lishers, Inc., New York, 1969).

"An alternative opinion could be that p0 relates to physics,
while exact solutions to the Low equation do not. This view would
point toward modi6cation of the equation.

&H. McDaniel and R. L. Warnock, Nuovo Cimento (to be
published).
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essential difhculty in the proof, so it will be ignored.
Let {y„(t)}be any Cauchy sequence in E. That is, for
any e)0 there exists an integer 1lt'(e) such that

b(Z2„, q ) &e, n, nZ&N(e). (A1)

Since HfP) &~ 0 for any P,

sup[ v - ~-I «n ~&X(e). (A2)

There exists in K a function q(t) such that

sup[ q„—q I (e) n)kg(e). (A3)

To show that q exists we apply the Bolzano-Weierstrass
theorem: Every bounded sequence on the real line has
a convergent subsequence. Thus, for every t there is a
subsequence {&p„,.} of {y„}which has a limit &p(t). Now

I v (t) —v (t) I
&

I ~-(I)—v -,(t) I+ I ~-;(t)—~(t) I (A4)

Take n so large that
I
q„—q„,. l &2e when n;)n. For

each t take n, so large that
I p„,.—y I

(-', e; thus, there is

Hl (p„—p)( e, n& lv2(e) .

Again the Cauchy property (A1) implies that

Hgv q)(e, —n, zn) X(e).

That is, we have for all t and t' (t&t')

(A7)

(A8)

an Ã2(e) satisfying (A3). Furthermore, q QX. To check
(3.4) note that

I ~l &
I ~—

z -I+ I v. l
«+at (A5)

for any positive e; hence,
I p I

(at Fo.r (3.5) we have

I
~(t)- ~(t')

I
&

I ~(t) —~.(t) I

+ I
y(t') —

q „(t')
I + I p (t)—(p„(t')

&2.+bit —t'[~, (A6)

again for any e. Therefore
[ cp(t) —q (t') [ &~ b

I
t t' I—

Next, we show that for the same function y(t) there
is an X2(e) so that

I p (t) —p (t) —
q (t') +q' (t ) I

IL~(t) —~-(t))—L~(t') —
v (t')) —L~(t) —~-(t))+I:v (t') —~-(t'))

I

n, nz&X(e). (A9)

For any fixed t, t' we can choosezn to make
I p(t) —p (t) I

and
I
q(t') —

q (t')
I arbitrarily small. Hence, for all

unequal t, t' we have

I L~(t) —v-(t)) —[:~(t')—~-(t')) I

&~e, n)Ã(e). (A10)

That is to say, (A5) holds with 1V2= Ã. Combining (A3)
and (A5), we see that

we have

1 AX
zta& —Suple2(t, X) I

—=—
p' " p' 9+I(~) X)'+pW—

(B1)

It is convenient to break up 0 into a region 8 and its
complement, where

0= {tj I c/((u —(o) I (3}.
b(p„,q) (2e, n) max(E2, 1V2) .

Our Cauchy sequence {q }has a limit y in E, so E is
a complete metric space. (B3)I

~
I
& 3(~+e)/P2(inf

I ~-I —~)'

In 0—8, X&3 and it is convenient to writeAPPENDIX 3

(A11) As the reader may easily verify from (4.6) and (5.5),
t.&0C Q. So in 8 we have, from (5.14),

In this appendix we will discuss the functions $, zt,

$o, and ga in (5.17) and (5.19) as functions of 2;. Since
c/e is a constant, it follows that P and j are constants.
In P, ta and go always occur with coeKcient e. It is clear
that e)a=0(x). Lastly, let X—=c/(cv —c3). From (5.4)

X

I+I —2 p2y2—1 + &3(a+e), (B4)
X X'

since 1+I(2 by (5.5). So from (B1)—(B4) we have
ezto ——0(x).


