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fortunately, either of these possibilities would greatly
reduce the effectiveness of the hard-pion scheme as a
powerful calculation method for treating low-energy
reactions.

Note added in proof. We have been informed by
Dr. A. Brody of a numerical error in the SLAC analysis.*
The corrected experimental value is (gr/gr)*=0.64
+0.25. In terms of the linear hard-pion model of SW,!
this implies —2.32<8<—1.14 and I'4 <41 MeV. In the
nonlinear model that we consider this value of (gr/gr)?
corresponds to I's=90_,57° MeV, to be compared with
T'4=140-30 MeV of Ref. 4. It is amusing that the non-
linear hard-pion model described here is in better agree-
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ment with present experiment than either Schnitzer-
Weinberg! or Gilman-Harari.? Brown and West inform
us that the data on radiative pion decay are also in
better agreement with the nonlinear hard-pion model
than with SW.

We wish to acknowledge valuable discussions with
Professor K. Wilson. After the completion of this work
we have come to know of similar results obtained by S.
Brown and G. West!! within their pole-dominance
framework. We thank them for a conversation.

1S, G. Brown and G. B. West, this issue, Phys. Rev. 180, 1613
(1969).
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Tixed-point theorems are used to prove the existence of a class of solutions to the one-meson Low equation
of the static-baryon model. The main result is that there exist solutions involving an arbitrary choice of
narrow resonances. This is true for any crossing matrix with a finite number of channels, and for any cutoff
function of a large class. For sufficiently small coupling constants, the solutions can be constructed by a
convergent iteration procedure. The stable particles and the arbitrarily chosen resonances are associated
with Castillejo-Dalitz-Dyson poles of an appropriate denominator function. The methods used do not
suffice to show that solutions of the bootstrap type exist. Our earlier work is improved in that resonances
are allowed and a bigger range of coupling constants and a weaker cutoff are permitted. The analysis is
based on a crossing-symmetric N/D formulation of the Low equation.

1. INTRODUCTION

N a recent publication,! one of us showed that the
one-meson Low equation of the static-baryon model
has a solution for arbitrary crossing matrix and cutoff,
provided that the coupling constant is sufficiently small.
The solution corresponds to an “elementary’’ baryon, in
the sense that the baryon does not participate in a
bootstrap. Equivalently, one may say that the baryon
is associated with a Castillejo-Dalitz-Dyson (CDD)
pole. Another property of the solution discussed in
Ref. 1 is that it does not have resonances, and therefore
does not relate to observed meson-baryon scattering.
In the present paper, our method is improved so that
we are able to prove existence of solutions with narrow
resonances, and to weaken the requirements on coupling

* Work partially supported by the National Science Foundation,
and performed in part under the auspices of the U. S. Atomic
Energy Commission.

t National Aeronautical and Space Administration Trainee.

1 Permanent address: Illinois Institute of Technology, Chicago,
IlL., and Argonne National Laboratory, Argonne, Ill.

(11 R.) L. Warnock, Phys. Rev. 170, 1323 (1968); 174, 2169 (E)

968).

constants and cutoffs. The resonant solutions proved to
exist are still not of the bootstrap type. They are
directly connected with CDD poles. Non-CDD reso-
nances, part of a bootstrap or not, are beyond our reach.
The CDD poles can be prescribed at will, provided their
residues are sufficiently small. One can have, therefore,
as many narrow resonances as he likes, at arbitrarily
chosen positions. This persistence of the CDD am-
biguity in models with arbitrary crossing matrix is not
especially surprising, in view of experience with soluble
models? and the work of Lovelace? and Atkinson? on
more general models. The present paper seems to con-
tain the first complete proof for general crossing matrix,
however, since Lovelace does not touch the existence
question, and Atkinson leaves aside some technical
difficulties concerning ghost poles.

It would seem to be of importance to the bootstrap
program to decide whether the Low equation has (in

2 A. W. Martin and W. D. McGlinn, Phys. Rev. 136, B1515
(1964); A. A. Cunningham, J. Math. Phys.8, 716 (1967); J. T.
Cushing (to be published).

3 C. Lovelace, Commun. Math. Phys. 4, 261 (1967).

4 D. Atkinson, J. Math. Phys. 8, 2281 (1967).
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some appropriate precise sense) a bootstrap solution.
As we remarked in Ref. 1, the proposals for approximate
bootstrap solutions found in the literature do not con-
vince one that there is an exact bootstrap solution.
Furthermore, Huang and Mueller® proved that with
particular crossing matrices and a certain class of cut-
offs, there is, in a reasonable technical sense, no boot-
strap solution.

It seems likely that levitation by the bootstrap
procedure will be as hard for theoretical physicists as it
is for ordinary people. At present it is not clear whether
any of the known methods of nonlinear analysis will be
powerful enough to take us into the region of large
coupling constants where the bootstrap solutions are
supposed to lie. The contraction mapping principle and
Schauder’s theorem, used in the present paper, seem to
be inadequate. Possibly the Newton-Kantorovich
method will be more suitable, as Amatuni® has
suggested.

In Sec. 2, we begin by substituting an equivalent
N/D equation for the Low equation. This is just the
usual equation for the N function, but with our full
account of crossing symmetry it is a nonlinear func-
tional equation. It may be regarded as having the form
N= AN, where 4 is a nonlinear operator on an appro-
priate function space. The question of the existence of
solutions of the Low equation is then a matter of the
existence of fixed points of 4 (i.e., members of the func-
tion space left invariant by 4) together with the matter
of ruling out ghost zeros of the D function. In Ref. 1,
the operator 4 was taken to be the integral operator
which occurs in the Low equation itself. By identifying
A as the N/D operator we gain two advantages. First,
the CDD poles are incorporated naturally, and we can
ask about the existence of solutions with prescribed
CDD poles. Second, we can do the proofs for larger
coupling constants than in the direct attack on the
Low equation.

Section 3 contains a statement of two standard fixed-
point theorems, together with a description of what one
must do to apply the theorems in our example.

Section 4 gives the main analysis of the operator 4 in
the case without CDD poles. It is verified that the
iterative fixed-point theorem (contraction mapping
principle) applies when the coupling constant and cutoff
are suitably restricted. Ghost zeros of the D function
are ruled out.

Section 5 repeats the work of Sec. 4, but with account
of CDD terms. It is found that the arguments are
practically unperturbed if the CDD residues are suffi-
ciently small. The required smallness of the residues
implies a corresponding narrowness of our resonances.
The solutions which are proved to exist have certain

5 K. Huang and A. H. Mueller, Phys. Rev. Letters 14, 396
(1965); Phys. & Rev. 140, B365 (1963).
6 A.Ts. Amatuni, Nuovo Cimento 58A 321 (1968).
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known qualitative properties. For instance, the N func-
tion differs from the Born term by less than a prescribed
amount, and has the same sign as the Born term. The
sign of the CDD pole residues is also the same as that
of the Born term. It is proved that with the opposite
sign of residues ghost poles are inevitable. The solutions
satisfy the Levinson relation in the general form
including a CDD term.

In Sec. 6 we find that under conditions weaker than
those of Sec. 5 we can still prove existence of a solution,
irrespective of uniqueness or a means of computation.
Here Schauder’s fixed-point theorem is used, instead of
the iterative method.

Section 7 is devoted to conclusions and the outlook
for further applications of nonlinear analysis in S-matrix
theory.

2. N/D EQUATION SUBSTITUTED FOR
THE LOW EQUATION

The static-baryon Low equation in the one-meson
approximation is written as follows”:

Ae 1 r2dwp(w)| falw+:0)|2
gl [aenl )

Z ™

w—z
+i cwr/ dw p(w) ’f,g(w+10)[2
=1 wJ1 w-+tz

The meson energy is w in a system of units where the
meson mass is 1. The amplitude f, for scattering of
pseudoscalar mesons in p waves is related to the phase
shift at physical w by the formula

fa(w+i0)= Sinaa(w)eiﬂa(w)/p(w) ) (“’2 1
o) =k(®)/12r, k= (uP—1)!12,

(2.1)

(2.2)

The cutoff function v(k) is the Fourier transform of the
baryon source density.” The crossing matrix c=[cas = c*
obeys ¢?=1, but otherwise it is arbitrary. The number
of channels labeled by the index « is arbitrary but finite.
The real parameters A, are sums of direct and crossed-
channel baryon pole residues

Na=—g2+D_ Capgs?®. (2.3)
B

We write the V/D system as an integral equation for
the NV function,®? where because of crossing the kernel
is a functional of IV itself. We take a D function which
obeys an unsubtracted dispersion relation, which is
normalized to 1 at infinity, and which has in general a
finite number of first-order CDD poles at finite,

7E. M. Henley and W. Thirring, Elementary Qmmmm Field
Theory (McGraw-Hill Book Co., Inc., New York, 1
8 J. L. Uretsky, Phys. Rev. 123 1459 (1961).
9 G. Frye and R. L. Warnock, Phys Rev. 130 478 (1963).
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physical energies wqsi> 1. Thus,

a()
— Vo) /
m(@) Coq 1 *
[En)
=1 Wa;—2 TJ1

where the residues c,; are real. Equation (2.4) is not the
most general N/D representation, and hence it does not
lead to the most general integral equations. For example,
we have not allowed for the possibility of a CDD pole
at infinity, or for an infinite number of CDD poles. Our
object here is not to discuss all solutions of the Low
equation, but rather to show that the CDD ambiguity
persists when crossing symmetry is imposed, and to
illustrate techniques which are likely to be useful in
more interesting physical problems. After the change
of variable

f«(z) =

p(w)V a(w)dw> )

w—3

t=1/w,

the integral equation is as follows:

m B@)—B(;
N@)=B({t)—X_ citit 0BG

=1 —1;

— f 1————301 POy ir, 25)
e
Ball) =t b= 3 Cop | —m 2.6
0 u+w§cﬁfo o 2.6)
7O12=1) /
citit Lo(r)N(7)dr T2 \ ,
{[1 Z ti—t 7r,/o T(T—t :|+P (t)N (t)]
@1

The index « is suppressed where unnecessary, and we
write N(f) for N(w(f)), etc. Notice that the direct-
channel baryon pole is regarded as a “left-hand singu-
larity,” i.e., it appears in the NV function. This means
that when the D function has no zero on the physical
sheet (as will be the case in our work of Secs. 4 and 5),
then D has the representation®1°

m 1 —z [ Mw)dw
D) =R(E)DE =11 pI:—; / w(w_z)]. 2.8)

=1z —w;

We have not yet learned how to approach existence
questions for stable baryon poles generated dynamically
as zeros of D.

If NV is a solution of (2.5)—(2.7), then by the usual
argument of the N/D method, Eq. (2.4) furnishes a
solution of the Low equation provided that D has no

10 M. Sugawara and A. Kanazawa, Phys. Rev. 126, 2251 (1962).
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zero on the physical sheet. We shall find that zeros of D
can be forbidden by limiting the values of coupling
constants and CDD residues.

The right-hand side of (2.5) is to be regarded as the
result of a nonlinear operator 4 acting on N. Thus,
(2.5) reads

N=AN, (2.9

and our object is to investigate fixed points of 4 in an
appropriate function space.

Equations (2.1) and (2.5) may be generalized to allow
several kinds of baryons and mesons with unequal
masses. Then unitarity would take a matrix form, and
we would use the matrix N/D method. The general
outlines of the following proofs would be retained, how-
ever, and one can expect that similar existence theorems
would hold. In particular, there is no reason to expect
that the CDD ambiguity would be eliminated or
reduced by inclusion of additional channels.

3. FIXED-POINT THEOREMS AND CHOICE
OF FUNCTION SPACE

We make use of two of the most common tools of
nonlinear analysis,'~!* namely, the contraction map-
ping principle and Schauder’s fixed-point principle.

The contraction mapping principle is concerned with
metric spaces. A space K is called a metric space if to
every pair ¢, ¢ of points there is assigned a real number
(o) >0 called the distance between these points
such that

(a) 8(e)=0,
(b) le)=06W,9),
(© 8(em)+otny)2d(e),

for all ,¢, and 7 in K. Limits in K will be defined with
respect to the distance; i.e., a sequence {¢,} tends to a
limit ¢ if 8(on,¢) tends to zero. We write ¢,— . A
convergent sequence satisfies the Cauchy condition,
as is easily seen:

5(¢ﬂ7¢m)s6(¢n;¢)+5(¢m;¢)<6, n,m>N (31)

However, a sequence meeting the Cauchy condition
(a “Cauchy sequence”) is not necessarily convergent.
A metric”space K is called complete if every Cauchy
sequence has a limit point in K. The contraction mapping
principle (or Banach-Cacciopoli fixed-point theorem) is
as follows: In a complete metric space K let A be an

if and only if o=y

U M. A. Krasnosel’skii, Topological Methods in the Theory of
Non-linear Integral Equatzons (Pergamon Press, Inc., Oxford,
England, 1964).

27, Cronm, Fized Points and Topological Degree in Non-linear
Agrg‘zll)yszs (American Mathematical Society, Providence, R. I.,

13W. Pogorzelski, Integral Equations and Their Applications
(Pergamon Press, Inc Oxford, England, 1966), Vol. 1.

1T, L. Saaty and] Bram, Non-linear Mathematics (McGraw-
Hill Book Co. Inc,, New Yok, 1964).
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operator such that 4(K)CK, and such that
8(d o, A)<po(e), 0<B<1

for all ¢, Y&K and B independent of ¢, ¥. Then the
operator 4 has a unique fixed point ¢ in K: o= A4 ¢. The
sequence ¢n=A¢n1 converges to ¢ for any initial
point ¢ K. The error at the #th iteration is bounded
in terms of that at the first iteration:

3(e,0n) <[B"/(1—B)18(¢1,00).

An operator satisfying (3.2) is often called a contraction
mapping. The proof of the preceding theorem is quite
easy. ! 14

If we are to apply the contraction-mapping idea to
the N/D equation (2.9), how are we to choose the metric
space K? It should be chosen so as to include physically
interesting solutions, be a subset of the domain of 4,
and lend itself to practical proofs of A(K)CK and the
contraction property (3.2). One can think of more than
one possibility, but it seems satisfactory to choose all
real n-component functions ¢()=[e1(t), " ,en(?)]
which meet the following conditions:

(3.2)

(3.3)

[ea(t)| <at, 0<t<1 (3.4)
Iqoa(t)—(pa(tl)lelt—t,‘“, OSt,l,SI,
0<u<1. (3.5)

Here ¢ and b are constants independent of ¢., which
must eventually be determined so that the hypotheses
of the contraction-mapping theorem are verified. The
distance is chosen to be

3(o) =su?I ealt) —¥a(O) | +H[o—y¥], (3.6)

Xo(t) —Xa(t')
[t—2'|

H[X]=sup 3.7

.
it

The inclusion of the minimum Hélder coefficient H
in (3.6) has to do with the necessity of estimating the
principal-value integral in Eq. (2.7). It may immediately
be checked that (3.6) has the properties of a distance.
That K is complete is proved in Appendix A. We learned
to use Eq. (3.6) from Ref. 13, p. 582.

To introduce Schauder’s principle we mention a
classical theorem which has a nice intuitive appeal. It
is Brouwer’s fixed-point theorem,'* which states that a
continuous mapping of a closed sphere in R, into itself
has at least one fixed point. Schauder’s theorem is an
infinite-dimensional generalization: Let K be a convex
closed subset of a linear normed space. Suppose that 4
is a continuous mapping of K into itself such that 4 (K)
is compact. Then 4 has at least one fixed point in K.

The definitions involved in the theorem are sum-
marized in Ref. 1, or in Ref. 12, Chap. 3. Proofs of the
Brouwer and Schauder theorems, not very difficult, may
be found in Ref. 14. For the set K in our application of
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Schauder’s theorem we once again take the set of func-
tions defined in (3.4) and (3.5). For the norm we could
take ||¢o||=08(¢,0) from (3.6), but for our purposes it
will be more economical to use the following norm:

llel] =s¢:1§>l ROIP (3.8)

To apply Schauder’s theorem we do not need such de-
tailed estimates of principal-value integrals, so the A
term in (3.6) can be dropped. According to Ref. 1, the
conditions for Schauder’s theorem are met in our case if

(a) A(K)CK,
(b) A is continuous in its action on K,

ie, [de—dyl<e if [le—yl<s(). (3.9
4. ANALYSIS OF THE NON-LINEAR

N/D OPERATOR

In this section we apply the contraction-mapping
theorem to prove existence (by construction) of a unique
solution to the N/D equation in the set K [Egs. (3.4)
and (3.5)]. We also show that the corresponding D
function is free of ghost zeros, hence that we have a
solution of the Low equation. To avoid obscuring the
argument, we first omit CDD poles; they are reinstated
in Sec. 5.

Let ¢ be any member of the set K defined in (3.4)
and (3.5). We study ¢y =4 ¢, where the operator A
defined in (2.5)-(2.7) can be written out in the following
way:

13 1 T
W () =A () =B() —— / " Doyie, @)
bl p(n) | fa(r) 2
B.(t) =\t + « —_—, 4.2
)=\ ZM—W/O o 4.2)
B.(t) —B.(r
Ga([’7)=__~(2_£
t—1
1 1p(0)| f3(0)| o
=N+ «B— —_— 4.3
Zﬁzcﬁr o (o+8)(o+7) (4.8)

lf(t)l2=«>2(t)/

[[1+5P / 1 MTW(W@} ey

T r(r—1t)

Our first task is to show that & K whenever & K i.e.,
A(K)CK. As a preliminary to that, we get a bound

on | /2. From (3.4),
I

/@)= {at / [l—sup

™

t rtp(r)e(r)dr
,/(; T('r—t)
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Here and in the following “sup” without subscripts
means supremum with respect to whatever variables
are free, either a=1,2,---,n or ¢, 0<¢<1, or both.
The principal-value integral in (4.5) is bounded by
splitting it into two parts and applying (3.4) and (3.5):

_t_Pf p(r) o(7)dr

'r('r-—-l)
Lt (1) —o()dr 1e(t) U o(r)dr
o R ] e e

t v op(r)dr 12 Lp(7)dr
Y e P
r/(, PP /0 (r—1)

=bA14ad,.
The constants 43, 4, exist if we require some reasonable
behavior of the cutoff function, namely,

™

<bsup sup

(4.6)

o) —p(r)|<k|t—=7]", kp>0  (47a)
p(1)=p(0)=0. (4.7b)

Taking (4.7a) and (4.7b) together, we have
[p()| <kt=kw, »>0 (4.8)

which allows a weaker cutoff than was required in
Ref. 1. We choose ¢ and b to be so small that

bA1+ads<1. (4.9)

In that case

2
| f@)]2< (—————) =a%(a,b)?. (4.10)
1—bA1—ad,

The dependence of £ on @ and & will be essentially
irrelevant for our work, provided (4.9) holds. Bounds
on B and G follow directly from (4.2), (4.3), and (4.10):

[BO|<ILIN+X [c]a*E4s],
IG(t7T)[—<— |)‘[+Z ICIGZEA%

A3=1 f p(f)dt. (4.11)

™

We have introduced the notations |\|=supa|Aa|,
> ¢l =supa g |cap|. From (4.1) and (4.11) we have
the inequality

W) | <IN+ |e]a2EdsI[14+ads]. (4.12)

Thus, to meet the first condition (3.4) for 4(K)CK we
can require

LN+ |e|a2e45[1+ed5]<a.

To deal with the second condition (3.5) we evaluate

(4.13)
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the difference quotient

0 _;N ) e
t_ 4

B 1 /;1 [tG(t,r) —t'G(i',T)]@¢(T)dT ‘

T t—t T

(4.14)
From (4.3) the expression in brackets is seen to have
the form
1Ga(t,7) —t'Galt ,7)
=\
t—1

«

1 1 p(o)o] folo) |2do
4+ ¢ .
e “;/o (D) () (ot1)

An upper bound of the integral in (4.15) is obtained by
discarding ¢, #, and 7 in the denominators, and we find
from (4.11), (4.14), and (4.15) that the increment of ¢
obeys the bound

(O —¢ ()|
S=VILINAHZ [ela*e4s][1+ads].  (4.16)

Since |t—1'| <|t—1'|* we guarantee the second condi-
tion (3.5), provided

CINHX [ela®eds][14ad5]1<b.  (4.17)

The last step of the proof is to show that A is a
contraction operator, i.e., to demonstrate (3.2) when
the distance is given by (3.6). We have to demonstrate
that there is a fixed 8<1 such that

sup|y—y|+H[Y—¥]
<B(sup|o—p|+H[o—5]), (4.18)

for all ¢, =K, wherey= A4 ¢, =4 p. We estimate the
two terms on the left side of (4.18) separately. Each
estimate is in the form of a linear combination of the
two terms that occur on the right side. This is the reason
that the H term is included in the distance. Thus, our
upper bound for the left side will take the form
a1sup| o— @|+aH[ ¢— 3], and max(as,as) will be a
satisfactory B provided it can be made less than 1.
From (4.1) we have

(4.15)

supl¢—¢|§sup{lB—Bl

+

t ot i
_/ [G(t,7) o(r) —G(t,7) ¢(T):],i(—)d-r

} . (4.19)

By the definition (4.2) of B, the first term on the right
has the bound
sup|B—B|

1 ! p(r)dr _
<x m;ﬁ e SR ELPCED
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Here we were able to replace {/(7-}+¢), an increasing
function of ¢, by its maximum value 1/(r-1). From
(4.4) one sees that | f|?—| f|* has the form

x X

1 x
e (=), (4.21)
Yy

Yy vy Yy
where

x=¢?,

T (teeWary -
y=[1+;P[) m] +p*(1) 0*(7) ,
x'—z:(ﬁo—*'@)A;

P p(0A@d:
=T /o 1(t—7)

W x[:z+,1_3 /o 1 P(’)[‘P(t>+¢(z)]dz:|

T Ht—1)
+o2(n)Le(r)+2(r) JAR).

In (4.22) we use the notation A=¢—@. When the
principal-value integrals in (4.22) are decomposed in
the manner of (4.6), we get the following majorizations:

(4.22)

72 1 p(t)A(t)dt
Tp [ PV cmraa,
T /0 t—7) | ]
+sup|A|4s, (4.23)
T 1p(t)[<p(t)+¢(t):]dt<2bA 204 (4.24)
T /; Wt—1) B 1 ” .
2 pl 7)dT
A4=supt—f HZS——)F ) (4.25)

By (4.22)~(4.25) and (4.10) we find
[712=1712
<2atr[ak(1+bA1+ads)(AH[ AT+ Assup|Al)
+ (14a%£45) sup|A|], (4.26)

where
As=sup|tp(d)|2. (4.27)
That is,
[1f12= 72| S 7(Risup| A| +RH[AD), (4.28)

where R1 and R; are certain constants. Introducing this
result in (4.20) we get our estimate of the first term
in (4.19):

sup| B—B|<Y |¢|(Rysup|A|+RH[A])As,

1 rlp(t)dt
ant [
w™Jo t+1

To handle the second term in (4.19), we write the

(4.29)
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expression in the square bracket as
Go—Go=GA+ a(G—C). (4.30)

‘The first term on the right of (4.30) is majorized by
means of (4.11). By (4.3) and (4.28) the second term
obeys the inequality

[ fal2—s]?
(o+7)(o+1)
<a} |c|A6(Rysup|A|+RH[AT]). (4.31)

By combining (4.29)-(4.31) we can now limit both of
the terms on the right side of (4.19):

supw/—ll_/l SZ IC] (Rl sup[Al +R2H[A:DA6(1+‘1A7)
—|—A7SUPIA!(I>\1+Z ,Cla2£A3):
1 rlp(d)dt

1 1
o)~ % cas / do p(o)

7=
m™Jo ¢

(4.32)

The right side of this inequality is a linear combination
of the two terms that appear in §(¢,%):

sup|¥—¢| <Mysup|A[+MLH[A].  (4.33)

Next, we must derive an inequality of the same type
for H[Yy—y¢]. Equation (4.14) gives a start:

;W) —y() PO —P@) ’
t—t t—t’

H[Yy—y¢]=sup

att’

_<_SUP IG(t)t/) _G(t7tl) ,
att’

1 rldr IG(t,7)—t'G(t ;7
- [ —p<f>[¢(r>~—)———(3

T T t—1

-+sup

att’

—a(r

1G(t,r) =G ,r
)——_I~ )] . (4.34)

The first term on the right is estimated by (4.31),
modulo a factor @. By means of (4.15) the expression
within the brackets in the second term, call it X, is
handled as follows:

X = oo )+ cap [ —— 2P
e " )y (00) (o4 (041

XLealr)| f5(0) |*— a(7) | Jo(a) | 2]
< |\Jsup| A+ [¢][atéds sup|a|
+ade(Rysup|A|+RH[A])].
The integral in (4.35) was treated by writing
ol fIP=al flP= el fI*= | TID+|]I*(e— ),
with a subsequent application of (4.10) and (4.28). Now

(4.35)
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from (4.34), (4.31), and (4.35) we can assemble the
result
H[Yy—¢1<> |c| 4:(Rysup| A+ R.H[AT)
+Ar{|\|sup|A|+3 |¢|a[atAssup|A|

+Ag(Ryisup|A|+RH[A]]}.  (4.36)

In other words, there are constants M s and M 4 such that

HYy—y]<M;sup|A|+MH[A].  (4.37)

Finally, from (4.33) and (4.37) we obtain the in-

equality which is relevant for the contraction property:

W) <B(¢,0),
B: maX(M1+M3, M2+M4) . (438)
We can now summarize a set of sufficient conditions for

the N/D equation to have a unique solution in the
set K. The conditions are

Eqgs. (4.7a), (4.7b), (4.9), (4.13), (4.17),

B<1in (4.38). (4.39)

In order to show that these requirements can be met
we define a parameter x,

a=ax, b=aw, |\=as. (4.40)

Then the inequalities (4.9), (4.13), and (4.17) which
imply 4(K)C K may be expressed as
O(x)<1,
a0 <ai,
()lg-{-O(JC)SOlz B

(4.41)

where O(x) stands for a function bounded by a constant
times x as x tends to zero with the o’s fixed. By (4.32)
and (4.36) we also have 8=0(x), so it is clear that all
of the conditions (4.39) are met when « is small enough,
provided we choose az<ai, as<as and take a cutoff
satisfying (4.7).

We now know that with appropriate restrictions on
the coupling constant, the cutoff, and the parameters
a and b which define K, there is a unique ¢=N in K
which satisfies the N/D equation (2.5) without CDD
poles. This N function is obtained by iteration,
@ni1=A¢,, beginning with any member ¢o of K. An
error bound for the nth iteration is provided by (3.3).
To show that the scattering amplitude constructed
from this N function by (2.4) without pole terms is a
solution of the Low equation, we must be sure that D
has no zeros on the physical sheet. Zeros on the real
axis will be ruled out by a bound on D(w-70)—1. The
same bound will hold at complex z, because of the
Phragmén-Lindel6f theorem!®: Let f(2) be analytic in
the half-plane >0, continuous in the closed half-plane
y>0, and bounded on the real axis [|f(x)| <M].

15 R. P. Boas, Jr., Entire Functions (Academic Press Inc., New
York, 1954), p. 3.
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Suppose also that f(z)=0(e"f), < 1, uniformly in 4 for
a sequence r=r,— . Then | f(2)| <M for y2>0.

To apply the Phragmén-Lindel6f theorem we return
to the original energy plane. General complex values of
the energy are denoted by 2, and real values by w. Sup-
pose that D(z) is constructed from our iterative solution

N(w),

1 7 p(w)N(w)dw
D(z)=1—- / M (4.42)
TJ1 w—3z
According to (3.4) and (4.8)
p@N(w)=0(w "), »>0, w—w (4.43)

and by (3.5) and (4.7), we know that pV is Holder-con-
tinuous on any finite interval. It follows that D(z)—1 is
analytic and bounded in the open cut plane, and con-
tinuous in the closed cut plane. The continuity follows
from the Plemelj-Privalov theorem on boundary values
of Cauchy integrals.!® We can apply the Phragmén-
Lindelof theorem to f(z)=D(z)—1 in the upper half-
plane. By (4.6) we know that

| D(e+i0)—1]
S[@Ar+ads)2+ 45242, w>1.

For w<1 we have a smaller bound:

1 0 ’ d /
|D(w4-i0)—1]|<a plef)do

)i (@ —=1)+1—w)
1/°°p(w’)dw’
rJ1 o'—1

1 1 p(t)dt
- <
wfo Ht—1) 4

(4.44)

<a

=a SaAds. (4.45)

Thus, |D(z)—1| is bounded as in (4.44) in the entire
cut plane. We choose @ and & so that the right side of
(4.44) isless than 1. This implies an inequality like the
first one of (4.41), which can always be satisfied. Then
D(z) has no zero in the closed half-plane. Also there is
no zero in the other half-plane because of D(z*)= D(z)*.

5. ANALYSIS OF N/D OPERATOR
INCLUDING CDD POLES

For notational simplicity we write the equations in-
cluding just one CDD pole. All of the following argu-
ments go through in the same way, however, if there is
any finite number of poles at distinct energies. If the
CDD term in D(w) is —&/(®é—w), then we must in-
vestigate ¢ = A ¢, where

1//(;)=B(t)~zt‘éG(z,£)-«i / G(l,f)-l')@w(r)dr. (5.1)

iy

18 N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff, Ltd. Groningen, The Netherlands, 1953)? (
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B and G have the same expressions as before in terms

of | f|2 [cf. Egs. (4.2) and (4.3)], while | f|? is changed
to the following:

170 [2=2() /

[[1#% +Lp / i ‘”(T)df]zwo) w(t)} . (52)

t—t (r—t

We assume #<1. If ¢ is small, the term in square
brackets in the denominator of (5.2) may vanish at a
point ¢=# very close to i=%. If ¢ is a solution of the
N/D equation, &' is the energy of a resonance:
ReD(#)=0. At t=14 we do not have our usual small
bound on | f|? as in (4.10). Instead of a bound propor-
tional to @* we have merely the unitarity limit
| f12<1/p% The violation of the a2 bound is only a local
matter, however, and the smaller the residue ¢ the
smaller the region in which it occurs. The idea of the
following discussion is to show that by choosing ¢ suffi-
ciently small, the effects of the pole are so localized as
not to change essentially our previous arguments.

We denote by Q a small interval around ¢={ such that
QC(0,1). & denotes its complement.

1 1
Q=|: s :l, d—e>1, 0
O+e d—e

0=[0,1]—¢.

(5.3)
Now we have the bounds
a*?
1—|é/e] —ads—bA1]?
<o), 1=,

Here we have applied (4.6), and have assumed the
following inequality in place of (4.9):

lé/€l+bA1+aA2< 1

We have also assumed that p has no zero near i=%. We
can majorize B and G by treating separately the inte-
grals over @ and &. For the integral occurring in B we

=fa??, 1€Q

0=
/&) -

(5.4)

(5.5)

have
1 24 2f 1
1/ p() | /(D] TSG_E p(T)dT'}“/
wJo  (r+i) T Jo m Ja 7%(7)
<afAd;+2e/p, (5.6)
where
1 1 1
A3=—/p(7')d'r, —=sup—-. (5.7
TJQ P teap(d)

Here and in the following 4; denotes the quantity 4; of
Sec. 4, but with the region of integration & replacing the
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unit interval. Referring to (4.2) and (4.3), we get
|BO|SILIN+Z el (@2€dst-2¢/7p)], (5.8)
G STINAHE [o] (@*dst2¢/mp) 1. (5.9)

By introducing these results in (5.1), one finds the
inequalities that replace (4.12) and (4.13):

YOI SLINHZ el (@Edst2¢/75)]
X (14adst|¢]d), (5.10)
[N+ Lol (@édst2¢/m) ]
X(1+adst[2[D)<a. (5.11)
By means of (4.14), (4.15), and (5.4) we get a similar
result for the increment of ¢:
v —y()|
<=V IDINHX Je] (a4 st2¢/7)]
X(+ads+|é
[N fe] (a2£As+2¢/mp) ]
X (14ads+|e|5)<b. (5.13)
A(K)CK is guaranteed by (5.5), (5.11), and (5.13).
When we go on to investigate the contraction
property of A there is a bit of trouble, because 1/y in
(4.21) is not necessarily bounded in Q. If we should have
o(ts)=0 simultaneously with ReD(#x)=0, then 1/y(t)
would be infinite. A way out of the difficulty is to add
another condition to our definition of the set K in such

a way that zeros of ¢(f) are forbidden entirely, except at
{=0. Namely, to (3.4) and (3.5) we add the requirement

(5.14)

B, (5.12)

[ ealt) =Nat| <71, y<infa|Xel.

Thus, ¢, is required to be so close to the Born term Af
that it cannot have a zero except at infinite energy:
| @al = ([Na] —7)i- This gives us a new condition to
meet to ensure A(K)CK. From (5.1), (5.8), and (5.9)

we have

[Ya(t) —Nat|
SULT |o] (@*£As+2¢/np)(1+ad s+ €] )
+ N (ads+1¢]D]. (5.15)
Now ¥, satisfies (5.14) if
¥ lel (@645t 2¢/mp) (14ad s | €]D)
+ N[ (adst+|é]f) <infau[N]|. (5.16)

We have assumed, of course, that none of the A\.’s is
zero. Conditions (3.4) and (5.14) are not independent,
since (5.14) implies | pa()| < (v+ [Nal)t.

The 1/y factor is no longer troublesome:

1/y<E, =8

1 &+e
r_et
5

infa|Na] =y (.47)

2
] =fq, 1€Q.
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If we return to the argument following Eq. (4.21), we
see that one new term is added to y—g, viz.,

Lo(t)A(D)dt
Ht—7)

The pole in (5.18) is cancelled by a corresponding
second-order zero in the coefficient 1/y. We define some
notation

286 72

(5.18)

t—r 0

2a 4a

T I

yy f—1r

, fi=sup (5.19)

rEﬁ

ne=sup
€Q

2

t—71

In place of (4.26) there is the inequality

A

=171t <] Jrsuplal
+2[a ¢ Tﬁ](A H[A]+Azsup|A])
ne

+2 ] AHA[A]+A4. A
Lﬂ@ 4 o T A supla)

X (14-b041+ad:)+ads sup|Al],
&0

I:a] {a,
sl g, -eq.

Equation (5.20) may be summarized by stating that

(5.20)
where

(5.21)

- R1T Rz‘r
=1 Jssolal+ Jarag, 62
Rig Rap
where R, is proportional to a, and Rq is not. When we
introduce (5.22) in (4.20) we do the integration in two
parts: S'= S g+ S g. The integral over  is made small
by choosing ¢ small, while the @ integral is made small

by taking Q itself to be a short interval. Referring to
(4.20), we find

sup| B—B| <X [c| (Rusup| A|+RH[ A A
+2 |¢|[Ria sup| A[+ RyeH[A]]2¢ supap/r.
Toward the goal of majorizing sup|¢—v|, we note that
the right-hand side of (4.31) is to be replaced by the
right side of (5.23) multiplied by a. Then from (4.19)
and (5.23), the modification of (4.31), (4.30), and (5.9),
we get the desired bound of sup|¢—y|, which replaces
(4.32):
sup|¢—¥|
<[right-hand side of (5.23)1X[1+ad]
+ALIN X |¢] (a*£As+2¢/xp) ] sup| Al . (5.24)
For estimating H[y—y], we see that (4.35) is to be

(5.23)
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replaced by
X<|N sup|A[+X [¢] {sup|A| (25 A5+ 2¢/7p)
+ad §(Rysup| A|+R.H[AT)
+ (2a¢/7) supgp(Rio sup| A|+ReH[A])}. (5.25)

For the first term on the right of (4.34), one obtains
|G(t,)—Gt,t)]
<% le|[(Risup| A|+RH[ A A
4 (Ria sup| A+ ReoH[A])(2¢/m) supgp]. (5.26)

When (5.25) and (5.26) are introduced in (4.34), one
has the required bound on H[y—¢]:

H[y—¢]<[right-hand side of (5.26)]
+ A4 right-hand side of (5.25)]. (5.27)

Asin Sec. 4, (5.24) and (5.27) yield a sufficient condition
that A be a contraction mapping.

Now let us show that the various parameters can be
chosen so that all our conditions for a unique iterative
solution in the set K are met. The relevant parameters
having to do with the physical model are |\ | = supa|Ne|,
inf,|A«|, and & The parameters having to do with the
mathematical technique are a, b, and e. We write

e=opx®, e=ox, b=asx,

(5.28)

The inequalities (5.5), (5.11), (5.13), and (5.16), which
ensure A(K)CK, can be written as

0[5/0[0‘!‘0(00) <1 y
az+0(x) L anoz,
O(x) L ay, (5.29)

where O(x) stands for an expression which vanishes
as ¥ when the o; are held fixed. In deriving (5.29) we
have used the results of Appendix B, namely, that
£o,m0=0(x"?) and £,4=0(1). The inequalities (5.29) can
certainly be satisfied for small x and small as/ag,
provided we choose as<ai,as, and as>0. Note that
az/ay is fixed by the model, and ag<as< a3 Asin Sec. 4
we have 8=0(x) in (4.39), so the operator 4 is a
contraction mapping when «x is sufficiently small.

To forbid ghosts when CDD poles are present, we
can take advantage of the inequality (5.14). By (5.14)
one is assured that NV(w) has no finite zero, hence that
the imaginary part of the integral appearing in D(32) is
definitely positive (or definitely negative) in either of
the open half-planes Imz20. Then in order to forbid
complex zeros we have only to choose the sign of the
residue &4 to be the same as that of NV ,(w), i.e., the same
as that of A\e. Then ImD(2) is positive (negative)
definite off the real axis. D(z) is a Herglotz function.?
Similarly, ImD(w+10), > 1, is not zero, and the only
remaining question concerns the real axis for w<1. We
have assumed that the first CDD pole is a finite

N =asx, info|he|=aw, |&]=asx?, y=ag.
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distance Aw above threshold. If |¢| is so small that
|é/Aw|4+bA1+ad.< 1, (5.30)

then ReD(w+170) cannot vanish at threshold, w=1.
Since we have already assumed (5.5) with e< Aw, (5.30)
is fulfilled. For w<1 it is sufficient that

|&/Aw|+ad < 1. (5.31)

Thus, sgné.=sgn)\, is the only new assumption needed
to prevent ghosts.

It is interesting to look at the phase-shift behavior
implied by our choice of sgné,, and to ask what happens
with the opposite choice of sign. The integral in D, call
it I(z), isless than one in magnitude on the physical cut
[ I(w+10)| <bA1+ad.<1, 0> 1. Since

tand= —ImD(w+40)/ReD(w+i0) = pN () /ReD(e}10),

it is easy to read off the qualitative phase-shift behavior
using only positivity of 147 and the fact that pNV and
vanish at infinity. Two cases are to be distinguished:
() Xa<0 (“repulsive” Born term); (ii) \o>0 (“attrac-
tive” Born term). In the repulsive case the phase shift
is first negative and small, then changes sign at the
energy of the CDD pole, then goes through the reso-
nance, and finally approaches §(« )= from below. In
the attractive case the phase is initially positive, then
it goes through the resonance, then through = at the
CDD pole, and finally to §(« )= from above. This is
all the same as in the soluble models first discussed by
Castillejo, Dalitz, and Dyson.”

If, on the other hand, we had chosen sgné,= —sgn\q,
the phase for case (i) would be like the negative of the
previous case (ii), and case (ii) would be like the nega-
tive of case (i). Thus, there is a pseudoresonance with
the phase going downward through —3m, and
8(0 )= —. This is a situation usually presumed to vio-
late causality, so it is natural to expect that it involves
ghosts. One can definitely assert that there are ghosts,
because of the following argument, which is partly due
to Sugawara and Kanazawa.l® Our D function can
certainly be represented in the form? !

P(z z * d(w)dw
D(z) =R(z)3)(z)=A(_1 exp[——/ (( l )i‘ , (5.32)

where P(2) is a polynomial. Furthermore, D(w-10)
~d@IT y—o0. Since D(z)— 1, |3| —w, it follows
that P(2) is of second order if §(e )= —=. Since D(z)
has no zeros or poles on the first sheet, D(z) has two
zeros z1,%2. These zeros must be complex, with z;= 2%,
since real zeros have been ruled out through (5.14) and
(5.30). The zeros give ghost poles of f if N does not
vanish at the corresponding points. The following useful
formula [Ref. 9, Eq. (I11.8)7], will show that zeros of N

17 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys, Rev. 101,
453 (1956).
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and D cannot coincide:

1 00
—B
=B /

The coefficient of 1/D in (5.33) is a Herglotz function,
and hence it cannot vanish at z=z1,2. The Herglotz
property comes from the fact that both p/V and B have
definite signs. To check the sign of B, note that as in
(5.8) we have

| Ba()—Nat| <t Y |c| (@2£Ast2¢/p).  (5.34)

In (5.16) we have required that the right-hand side of
(5.34) be less than inf,|\.|, so B as well as NV has the
same sign as the Born term.

For sufficiently small coupling constant and CDD
residue, the argument of Ref. 1, Sec. 4, shows that our
solution of the Low equation obeys Levinson’s relation
in the form

()N (w)B(w)dw

(5.33)

w—3z

8(0)—6(1)=—m(no—mn,), (5.35)

where 7 is the number of stable particles and 7, the
number of poles of the appropriate D function. An
appropriate D function is one which has zeros at the
stable particle energies, and no other zeros, and which
tends to one at infinity. Thus the D function we have
used in this paper is not appropriate for Levinson’s
theorem, except in those channels where there is no
stable particle. In a channel where there is one stable
particle, the D function of Levinson’s theorem contains
one more zero and one more pole than the D function
used in this paper.

In our example of a ghost-ridden amplitude there is
an illegitimate Levinson relation of the form 8(e0)—8(1)
= —x(2—1)=—m. The two ghost zeros count in the
same way as stable states. This can be understood in
that derivation of Levinson’s relation which is based
on examining the change in the phase increment when
zeros and poles of the S matrix leave or enter the
physical sheet as the interaction is turned on.

6. APPLICATION OF SCHAUDER’S THEOREM
FOR EXISTENCE PROOF ONLY

If we ask only for existence of a solution irrespective
of uniqueness or a means of calculation, then we can get
by with weaker conditions than those of Sec. 5. Accord-
ing to (3.9), Schauder’s theorem will guarantee a solu-
tion of the N/D equation if 4(K)CK, and A is con-
tinuous in its action on K. The set K is the same as in
(3.4) and (3.5), and the norm is || ¢|| = supa,:| ¢a(f)|. As
in Sec. 5 we shall make sure that A(K)CK and that
there are no ghosts by satisfying (5.5), (5.11), (5.13),
and (5.16). To prove continuity of 4 we must show
that if ¢ and @ are any two members of K, then
sup| Ao—A 3| <e when sup| ¢— @| <8(e). [Continuity
of A with respect to the distance (3.6) has already been
shown. Our goal now is to prove it with the simpler
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norm || ¢||=sup| ¢|.] Take first the case without CDD
poles. By recalling (4.19)-(4.22), (4.30), and (4.31) it
becomes clear that the main job is to show that
sup|y—%| vanishes with sup|A|=sup|e—a|. We
must, therefore, estimate the following integral in a
way that avoids the H[A] term that we encountered
before:

P rlp(t)A@)dt
T;[O i)
72 rlqg A(l) —A(r
<= / “’U)—@—_ﬁ Al (6.0)

The integral on the right-hand side of (6.1) is handled
by breaking it into two parts, one over the interval
I=[r—|Al, 7+]|A||], and one over the remainder of
the unit interval. To avoid awkwardness at the ends of
the unit interval we first formally extend L=[0,1] to
Le=[—¢,14+¢€], where e>a. Because of (3.4), ICL,
when r&L. On L.—L we define

p(H)=0, IEL—~L
e()=0e1), 1<i<14e (6.2)
=¢(0), —e<i<0.

From (6.2) it follows that |@(f)— ()| <b|i—7]#,
t&Le, < L. This leads to the estimate

72 Ldtp(t) A(r)—A()

T Jo ¢ T—1
72 rdip(f) 1
T ,/; t |t—7|te

72 / dtp(2)
T Jpeat(t—1)
The integral in the second term on the right is bounded
as a function of ||A||, while the first integral is less than
a constant times ||A||# To prove this bound on the first
integral we write §=||A|| and treat separately the two
cases 26<7<1 and 0<7<24. If we apply p({)=0(),

then in the first case the integral is less than a constant
times the following function:

72 LR /7 72 /26"
= —}=0(s%). (6.4
(7—5)1—”,/;_5 |[t—7|t* (7—5)1_”\ o ) @). 64

Here we use the fact that 72(1—6)~! has a positive
derivative for 72> 2§, and hence has a maximum value
of (1—6)*1. For the second case we make the change of
variable /=7 to see that the integral is bounded by a
constant times

w1
Tl+#+v/ —_—_
1asr w7 |u—1]#

<2bsup

+2”A||sgp . (6.3)

(6.5)
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If v+pu <1, this is less than
®  du 1
(28)tHutr / e = O(§15 ) . (6.6)
o ]

For v+pu2> 1, it is more convenient not to change the
variable. For »+u>1 we have, immediately,

LEx I 1
2 f —— ——=0()=0(). (6.7)
—8 ltllv{t_.,rllll

If v+u=1, then 7¢ times the integral in (6.7) is bounded,
and (6.7) as a whole is 0(8%¢). Hence (6.3) is O(]|A]|»),
as was claimed.

When these results are used with (4.19)-(4.22), (4.30),
and (4.31), we find that there is an M >0 such that

=Vl <Ml o—g|~. (6.8)

Hence 4 is continuous.

When there is a CDD pole the approach is the same,
except for the modifications already carried out in
Sec. 5. Again using (6.1) and (6.3) to majorize the
principal-value integrals, we get a linear combination
of ||A|| and ||A||* wherever there was a linear combina-
tion of sup|A| and H[A] in the work of Sec. 5 [for
instance, in (5.20), (5.23), and (5.24)7]. Once more we
have an inequality (6.8). The proof that K is convex
and closed is elementary (cf. Ref. 1).

To summarize, Schauder’s theorem guarantees that
the N/D equation has at least one solution provided we
impose our sufficient conditions for A(K)CK. (Con-
tinuity of A was proved without further assumptions.)
If also sgné,=sgnl., the solution of the N/D equation
gives a ghost-free solution of the Low equation.

7. CONCLUSIONS AND OUTLOOK

Let us summarize our theorems. The crossing matrix
is arbitrary, and the cutoff obeys the conditions (4.7)
which imply p(w)=0(w™), »>0, w—x. Let K be the
set of all real functions on the unit interval satisfying
(3.4), (3.5), and (5.14), where a, b, v, and u are some
fixed numbers. Let the /D equation be written as in
(2.5), with at most one CDD pole at &> 1. Suppose that
the coupling constant, the CDD residue ¢ and the
constants @ and b are chosen to satisfy inequalities (5.5),
(5.11), (5.13), and (5.16). [The essential structure of
these inequalities is given by (5.29). They involve a
parameter ¢, which can be taken arbitrarily small. ] Let
¢. and A\, have the same sign.

Theorem 1. Under the circumstances just described,
there is at least one solution IV of the V/D equation,
lying in the set K. The corresponding f=N/D satisfies
the Low equation. If 0, then f(&)=0.

Theorem 2. Assume the hypotheses of Theorem 1,
and also that the parameters in Egs. (5.24) and (5.27)
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are such that the transformation ¢ = A ¢ is a contraction
mapping; i.e.,

sup|¢—¥|+H[Y—V]
<B(sup|o—a|+H[e—2]), B<1.

Then there is a unique solution N of the N/D equation
in the set K, and it isobtained by aniteration ¢,= 4 ¢yn_1
beginning with an arbitrary element ¢, of K. The error
at the nth iteration is bounded as in (3.3). f=N/D
satisfies the Low equation, and f(&)=0 if ¢5£0.

Theorem 1 is from Sec. 6, Theorem 2 from Secs. 4
and 5. Both may be extended in an obvious way to the
case of any finite number of CDD poles.

The range of coupling constants allowed in Theorem 1
is considerably bigger than that of the corresponding
theorem in Ref. 1. A numerical evaluation of the
allowed range has been carried out; it is reported in
Ref. 22. Our solutions seem to be of a rather dull type.
The N function does not differ greatly from the Born
term, and the latter is required (probably) to be a good
deal smaller than the empirically determined Born term
of pion-nucleon scattering. In view of this situation, the
work of the present paper (and of Refs. 1 and 4), is at
best a preliminary exercise in technique, a warm-up for
more penetrating work on nonlinear S-matrix equations.

What are the prospects for doing better? On the one
hand, some recent work of Atkinson!® has been very
encouraging. By an application of Schauder’s principle,
he shows that there exists a neutral m— scattering
amplitude which satisfies crossing, unitarity, and an un-
subtracted Mandelstam representation. In its essentials
the proof is like that of Ref. 1; i.e., it uses a space of
Holder continuous functions with a supremum norm,
and works directly with the dispersion relations and
estimates of singular integrals. It is gratifying that the
elaborations necessary for the relativistic problem do
not stand in the way of a proof. On the other hand,
Atkinson’s solution is still of the “small” nonresonant
type, not likely to be related to observed scattering.

In order to get into the region of strong coupling,
dynamical resonances, and large nonlinearities, we
think that the essential step will be first to find an
approximate solution of the equations at full coupling
strength. The approximation might, in practice, be very
rough. It could be something like Chew’s N—N*
saturation of the Low equation.!® Once an approxima-
tion is known, then one might be able to apply the
fixed-point theorems more advantageously. If ¢ is a
proposed approximation, then we have a fixed-point
problem ¢1=A(@o+ ¢1)— o for the difference o1 be-
tween an exact solution and the approximation.
Alternatively, there exist iteration procedures like the
Newton-Kantorovich method,®?° which will produce

18 D. Atkinson, Nucl. Phys. B7, 375 (1968) ; B8, 377 (1968).

19 G. F. Chew, Phys. Rev. Letters 9, 233 (1962).

20 The Newton-Kantorovich method is a Banach space generali-
zation of the familiar Newton method of finding a root of f(x)=0;
ie, ®m=%0—f(x0)/f (%), "+, %ns1=%n—f(%n)/f (#n). For a
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exact solutions ¢ from ¢q if ¢o is close enough to ¢.
Amatuni® has outlined a method of finding ¢q and ¢ for
equations of the Shirkov or Low type. By making a
systematic approximation of the left-cut term by poles,
he is able to reduce the problem to solution of nonlinear
algebraic equations. If difficulties concerning ghosts
can be overcome, then Amatuni’s method has the
advantage of facing squarely the strong-coupling
situation.

For the Chew-Low model” there are several proposals
for ¢o to be found in the literature (cf. footnote 5,
Ref. 1), and these proposals are supposed to be the
prototypes of bootstrap dynamics. It is only reasonable
to ask whether such a ¢ lies close to an actual solution
¢. If the Newton-Kantorovich iteration beginning with
¢o does not converge to a solution, then one would be
hard pressed, we think, to attach any physical signifi-
cance to ¢o.2! If the iteration does converge, then we
are interested in knowing whether the exact solution is
of “pure bootstrap” type®, i.e., whether it obeys the
unsubtracted Low equation and Levinson’s relation in
the form §(e)—8(1)= —anp. It is not a pure bootstrap
solution if the Huang-Mueller theorem?® is true for the
cutoff employed. It might involve an elementary nu-

cleon [511(00)—511(1)-_— *W(ﬂb‘—’no)=—’ﬂ'(1_‘1)=0]
with a dynamical N* resonance [833(c0)—d33(1)
=—7m(0—0)=0].

We think that a rigorous mathematical study of
relatively simple cases (.ow or Shirkov equations) in
the strong-coupling domain will be a valuable, even
necessary, complement to efforts directed toward the
full relativistic equations.!®

Finally, we mention that the Low equation written
as a dispersion relation for the inverse amplitude lends
itself to a neat existence proof in the non-CDD case.??
The requirements of crossing symmetry lead to serious
complications in the inverse amplitude formulation if
CDD poles are present.
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APPENDIX A

We shall prove that the metric space K defined in
(3.4)-(3.6) is complete. The vector index a causes no

thorough review of the N-K method and similar things, see Non-
linear Integral Equations, edited by P. M. Anselone (University of
Wisconsin Press, Madison, Wis., 1964). See also L. V. Kantorovich
and G. P. Akilov, Functional Analysis in Normed Spaces (Perga-
mon Press, Inc., Oxford, England, 1964). For a discussion of the
Newton-Kantorovich method as it applies to the Low equation,
see R. L. Warnock in Lectures in Theoretical Physics, edited by
K. T. Mahanthappa et al. (Gordon and Breach, Science Pub-
lishers, Inc., New York, 1969).

1 An alternative opinion could be that ¢ relates to physics,
while exact solutions to the Low equation do not. This view would
point toward modification of the equation.

2 H, McDaniel and R. L. Warnock, Nuovo Cimento (to be
published).
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essential difficulty in the proof, so it will be ignored.
Let {¢4(f)} be any Cauchy sequence in K. That is, for
any >0 there exists an integer N(e) such that

(o om)<e, mnm>N(e). (A1)
Since H[¢]2> 0 for any v,
Sup| on— om| <e, nm>N(e). (A2)
There exists in K a function ¢(f) such that
sup| en— | <e, #n>Ni(e). (A3)

To show that ¢ exists we apply the Bolzano-Weierstrass
theorem: Every bounded sequence on the real line has
a convergent subsequence. Thus, for every ¢ there is a
subsequence { ¢.;} of { ¢,} which has a limit ¢(#). Now

lon()— ()| < | ) = n; (D) |+ | oni()— 0(B)] .

Take 7 so large that | ¢,— ¢4;| <3¢ when n;>n. For
each ¢ take #; so large that | gn;— ¢| <3e; thus, there is

' ‘Pn(t) - Som(t) - ‘Pn(t/) + ‘Pm(tl) I

=]
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an Ny(e) satisfying (A3). Furthermore, & K. To check
(3.4) note that

o] <l o—@nl 4| on] <etat (A5)
for any positive ¢; hence, | ¢| <at. For (3.5) we have
e — )| <o) —eu(®)]

o) = enl®) |+ eud— eu®)|
<2e+b|t—1|*, (A6)

again for any e. Therefore | p(£)— o()| <b|t—1'| -
Next, we show that for the same function ¢(¢) there
is an N2(e) so that

For any fixed ¢, ' we can choose 7 to make | (£)— ¢, (8) |
and | o(')— ¢w(t)| arbitrarily small. Hence, for all
unequal £, ¢’ we have

Hlon—9¢]<e, n>N:(e). (AT
Again the Cauchy property (A1) implies that
(A4)
Hlon—oml<e, nm>N(e). (A8)
That is, we have for all { and ¢ ((21)
[Le() —em)1—Lo() — en) I=Le(O) — en() ]+ L) — ea(t)]]
] <e, n;m>N(e). (A9)
— .
we have
< supla(t)| =~ = (BY)
<—su tx) | =— .
S i ) X e

[Le() —en(®)1—Le(@) = en()]]

1=+

Le, n>N(e). (A10)

That is to say, (AS) holds with Ny=/N. Combining (A3)
and (AS), we see that

3(on, @) <2, (A11)

Our Cauchy sequence {¢,} has a limit ¢ in K, so K is
a complete metric space.

n>max(N1,Nz).

APPENDIX B

In this appendix we will discuss the functions £, 4,
g, and 79 in (5.17) and (5.19) as functions of . Since
¢/e is a constant, it follows that £ and 4 are constants.
In B, £ and ne always occur with coefficient e. It is clear
that efe=0(x). Lastly, let X=¢/(w—a). From (5.4)

It is convenient to break up Q into a region 6 and its
complement, where

0={1]|¢/(w—a)| <3}.

As the reader may easily verify from (4.6) and (5.5),
&E0C Q. So in 6 we have, from (5.14),

la| <3(&+€)/p*(inf[Na| —7)*.

In Q—6, X>3 and it is convenient to write

/ {[I_XJF_I_ITJFP—;?]S%@%), (B4)

(B2)

(B3)

(6]

X

Jaf =

since 14+7<2 by (5.5). So from (B1)-(B4) we have
eng=0(x).



