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Exact Consequences of Broken O(4) Symmetry for Regge Trajectories. I. M=0*
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We obtain the complete set of constraints imposed by broken 0(4) symmetry on Regge daughter sequences
having 3f=0. The constraints determine the pth derivative of all the daughters in terms of a finite number
of constants. Similar results are obtained for daughter residues.

I. INTRODUCTION
'
QARTIAI. —WAVE expansions of scattering ampli-

tudes are expansions in representations of the com-
pact little group of the total four-momentum. In the
physical region, and c.m. frame, the total four-momen-
tum has only a time component, and the compact little
group is O(3). However, at zero four-momentum the
compact little group is O(4).' ' The consequences of the
enlarged group at vanishing four-momentum are most
evident after a Sommerfeld-Watson transformation of
the expansion has been performed. Since O(3) is a sub-

group of O(4), each Toiler pole in the O(4) complex
"angular momentum" plane corresponds to an infinite
sequence of Regge poles —a parent and daughters-—
spaced at integer intervals below the parent Regge pole. '

O(4) symmetry can be broken in two ways. First, the
total four-momentum of a process can vanish on the
mass shell only if the initial and final particles have pair-
wise equal masses. However, the breaking of O(4) sym-
metry by unequal mass cannot eliminate the require-
ment that Regge poles occur in integer-spaced daughter
sequences. The general principles of quantum theory
require that if a daughter sequence is present in a pair-
wise equal-mass process, then it will be present in an
unequal-mass process having the same internal quan-
tum numbers. 4 The second type of breaking occurs when
8'=t is nonzero. Away from t=0, the Regge daughters
no longer need have integer spacing and it is this type
of breaking which we principally wish to study in this
paper. For technical reasons we do this by analyzing an
unequal-mass process, so that both types of breaking
are actually present. Accordingly, we emphasize again
that the pattern of deviation from integer spacing we
6nd in an unequal-mass process must be the same as
that found in an equal-mass process.

In the present study we will consider spinless external
particles. This has the consequence, for both equal-
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For special choices of external spin, helicity, and O{4) quan-
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4 This point is elaborated at the end of the Introduction.
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mass' and unequal-mass' ' processes, that the O(4)
quantum number 3I of Regge daughter sequences must
be zero. In the conclusion we comment on the modifi-
cations of our work which arise for other integer M,
and we hope to devote a future paper to the topic.
Deviations from integer spacing for 1&0 are expressed
by "mass formulas, " which specify the derivatives of
daughter trajectories at t =0 in terms of a few constants.
For M =0 sequences, formulas are known for the 6rst2 ~ 8

and second' derivatives. These are equivalent to

n&" (k) =Ap'yA]'k(2np —k/1)
an s' (k) =A p'+A r'k (2np —k+1)+A ssk (k —1)

X (2np —k+1) (2np —k) +22 p'A r'k+2 (A t')'
Xk'(2np —k+1) . (1)

Here the 3's are parameters which contain the dy-
namics, o.o is the t=O intercept of the parent, and
k=0, 1, is an index which labels the parent (k=0)
and daughters (k) 0).The physics behind such formulas
is most clearly displayed in the work of Domokos. ' '
He uses the Bethe-Salpeter equation as the basis for his
discussion. At P„=O there is 0(4) symmetry, so he uses
the O(4) synunetric states as a basis and treats P„as a
perturbation. When he uses perturbation theory and the
Wigner-Eckart theorem for O(4), he obtains the for-
mula for n "l(k). In this formula the 2's are related to
reduced matrix elements, and k(2np —k+1) to O(4)
Clebsch-Gordan coeKcients. The reason the answer is
so simple is that P„ transforms like a low-rank O(4)
irreducible tensor. The formula for n&" (k) is also com-
prehensible from this point of view: In second-order
perturbation theory one expects new matrix elements
as well as products of 6rst-order elements. The task of
generalizing Eq. (1) to all derivatives is therefore equiv-
alent to devising an algorithm which displays the
general term of the perturbation expansion, as it ap-
pears after use of the Wigner-Eckart theorem.

It is this generalization, and the analogous one for the
reduced residues, that we present in this paper. The
reason we do not emphasize the residue formulas is

' J. C. Taylor, Nucl. Phys. B3, 504 {1967).' J. B. Bronzan and C. E. Jones, Phys. Rev. Letters 21, 564
(1968).' P. Di Vecchia and F. Drago, Phys. Letters 27$, 387 (1968).

J. B. Bronzan, C. K. Jones, and P. K. Kuo, Phys. Rev. 175,
2200 (1968).

~ G. Domokos and P. Suranyi, Budapest report {unpublished).
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that they pertain only to a particular case: elastic scat-
t.ering of unequal-mass spinless particles. However, the
trajectory formulas are valid for 3f=0 daughter se-
quences wherever they occur. Since we deal with
elastic scattering of unequal-mass spinless particles, it
is perhaps useful to review how daughters crop up in
unequal-mass processes, and how we are sure they cor-
respond to an M=O Toiler pole in the 0(4) complex
angular momentum plane. Daughters are required in
unequal-mass scattering because when masses are un-
equal the c.m. three-momentum p' =$t —(m+p)']
XLt—(I—p)')/4t is singular at t =0. This has the con-
sequence that the contribution of a single Regge pole
to the full amplitude is not analytic at t =0, in violation
of Mandelstam analyticity. ' However, if a daughter
sequence, integer-spaced at t=0, is added, analyticity
can be restored. Indeed, Eqs. (1) have been derived
both by group theory' and by demanding analyticity
in unequa1. -mass processes. ~' It is by fully reducing aH

the constraints imposed by analyticity at t=0 that we
generalize Eqs. (1). As to how we know that we are
dealing with an M=O Toiler pole, we cite the papers
which demonstrate this by means of factorization. ' '
The argument of these papers is that analyticity re-

quires daughters both in unequal-mass (UU) processes
and in processes with unequal-masses on one side and
equal-masses on the other (UE). Factorization then
requires daughters in equal-mass processes, with de-
finite residue ratio; for spinless processes, the daughters
add up to the contribution of an M =0 Toiler pole.

Before becoming involved in the argument, it is use-
ful to display the generalization we And. It can be writ-
ten most compactly in the form

n(k, t) =n, kP P—
n=o (~+I)!gao" o=i i=o

k!F(2ao —k+2)

(k —i)!I'(2ao —k —i+2)
(2)

where the 3,' are parameters which can be functions of

no, but not of k."'This formula generates equations for
all the derivatives when each side is expanded in power
series in t. To expand the right side, we delne

o k!F(2no —k+2)
k(k, o,q) n=g 2;&

(k —i)!I'(2no —k —i+2)

e j.
h(k, no, g,e) = P" g Lh(k, no, i)] *

m1, ~ ~ -,mn i=1 mi
(n)

"D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596
(1967); M. L. Goldberger and C. E. Jones, ibid. 150, 1269 (1966).

»& The parameters A;& may be taken independent of o.0 without
loss of generality, See Ref. 13a.

where

'Slip ' ' ',5$q
'(m)'

means sum over all sets of g non-negative integers
{m,} subject to the restrictions

q q

p m;=m, p im;=q

Then, when the left side of Eq. (2) is expanded by
Taylor's theorem, and the right side by the multinomial
theorem, we obtain

1 ] Q's—n~»(k) = P li(k, n-o, p, v+1) .
p! n=o g~ ~

(6)

Equation (6) yields results equivalent to Eq. (1) for
p=1 and 2. The analog of Eq. (2) for residues is given
in Eq. (46a).

F(k, t,N) =n'"" Q C(k et)u "
n=o

y(k, t) (4p')" F(n(k, t)+1)
C(k,e, t) =

e! F(a (k, t) + 1 n)—
F(2n(k, t)+1—n)

X —. (7)
F(2n(k, t)+1)

Here p is the t-channel c.m. momentum, and 7(k, t) is
the reduced residue of the kth daughter with a factor
t ~ removed. Singular reduced residues are necessary
to restore analyticity, and once t ~ is removed we can
restore analyticity with p(k, t) analytic at t =0 We next.

II. ANALYTICITY CONDITIONS

A. Step I

We present the derivation of Eq. (2) in three steps.
In the first step we write down all the analyticity con-
ditions and perform a first reduction of them. In steps
II and III further manipulations are made, resulting
in the end in necessary and sufFicient conditions for
analyticity in a compact form like Eq. (2).

The scattering we study is the elastic, unequal-mass,
spinless process m+y —+ m+p in the t channel. The
contribution of a Regge pole at n(t) to the full amplitude
has the form P(t)Q &~& ~(—s~), where various factors
have been absorbed in the residue. At t=0, s~=i, so
this term is not analytic at t =0, and we must introduce
daughters to restore analyticity. ' '" The daughter
trajectories are labelled by an index k=0, 1, ~, and
n(k, t=0) =no —k. When Q is written as a hypergeo-
metric function, the contribution of the kth daughter
to the full amplitude is
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expand u &~') take the form
(lnu)'

u t' ') =u g Ln(k t) —n,+kj'
e=p S!

(8) ~ ~ Rt")(k, no —k) c)~-" M,p(no)ZZZ
s=o,=o ~=o w!(p —w)! t)no" "pF(no —r+1)jo

gq
X {Pn(k,t) —np+k$&+'},=p ——0 (q&r, 0~&s). (14)

Btq~ u~p-"(inu)' r
I'(t,u) =Q Q (4tp ) p R(k,.(k, t))

r=O s=p k=p We next evaluate the t derivative in Eq. (14). Using

the multinomial theorem, we obtain
F(2n(k, t) —«+k+ 1)

XPn(k, t) —no+k$' , (9)
(r —k)!$F(n(k, t) —r+k+1)j' Bq q

Q —n ~"(k)
Btq s=& i!{Pn(k,t) —np+kg&+'} g=p =

8/q f,=P
where the super-reduced residue is

1 -nt')(k)
=q!(p+s)! g" II

telo ' ' otlly &— fÃS ~ Z ~
.! '!

(P+~)

y(k, t)(4tp')-'PF(n(k, t)+1)j'
R(k,n(k, t)) = (10)

F(2n(k, t)+1)

When we sum over daughters, the full amplitude can be
written

Here we have used the fact that if nt') (k,0)WO we can
regard R as a function of k and n(k, t) rather than as a
function of k and t. Equation (1) shows that in general
n t') (k,0)AO

Since F(t,u) must be analytic at t=0 for all u, the
analyticity conditions implied by Kq. (9) are"

Qq

R(k, n(k, t))Ln(k, t) —no+k$'
k=p g$q

F(2n(k, t) —r+ k+ 1)
X =0

(r k)!$F—(n(k, t) —r+ k+ 1)fs

—:f(k np q, p+s) . (15)

f(k» q p+s) =0 (q&p+s) ~

A variant of Leibnitz's formula is

(16)

The symbol P" is explained in the Introduction. We
have written f as a function of np, even though Eq. (15)
states that it is a function of the derivatives n"'(k).
In doing this we anticipate that the result of our study
will be to determine these derivatives in terms of np

and parameters, as in Eq. (2). In view of Eq. (5) we

have the useful result

(q &r, 0 ~& s) . (11)

We reduce these equations by erst expanding the terms

(—1)&«tl
g(n)y —Q pgy (u) $ (n—u)

~=o u!(rt —u)!
(17)

F(2n(k, t) r+0+1)—
R(k,n(k, t))

(r —k)!$F(n(k, t) —r+ k+-', )g'

Pn(k, t) —np+kj& c)~

p.
R(k, n(k, t))

c)n(k, t) &

Rt")(k, np —k) = -R(k,n(k, t)) I «—s)
c)n(k, t)"

M,s(no) = I'(2no —r —k+1)/(r —k)!.

I'(2n (k, t) —r+ k+ 1)
X (12)

(r —k)!$F(n(k, t) —r+k+1)$'

It is convenient to deGne the symbols

3I,s(n, )- (—1)" ~'
ZZ ZZ
s=o n=o ~=»=p p!w!u! t}no" p'(no —r+ 1.)j'

Q
'Q

-$Rt")(k, np k)f(k, np, q,—w+u+p+s) j =(}
8Gp

(q&r, 0~&s). (18)

Note, in view of Eq. (16), that all the sums really ex-

tend over 6nite ranges.
The sum over p is actually redundant in Eq. (18).

To see this, de6ne

When we substitute Eq. (15) into Eq. (14) and use Eq.
(17), the analyticity conditions take the form (after a
rearrangement of indices)

Using Leibnitz s formula for the derivative of a product,
we can evaluate the right side of Eq. (12), and sub-
stitute into Kq. (11). The analyticity conditions now " ' '

&=o =o „-o ! !uwp(np r+ 1))s

"Recall that pst=-,'Lt —(m+p}')Lt —(m —p}'g is analytic and
nonzero at t=0.

j'ls

LRt )(k, ,—k)f(k, o, q, w+p+u+s)j. (19)
80,'p
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Equation (18) can be written

g-(o o, q, q+ p &&, ,—r) =0, (q &r, 0 &» r&~& f
r p p! ~uo"

The analyticity conditions, Eqs. (24), can be inverted
to read,

) . (—1)" (3"
(Ri"'&(k, uo —k)f(k, uo, q, u+tt&+s) J

(20) ~=o ~=o tt&!I! riup~

8
g(up, q, q

—1, r)+ -g(k, up, q, q,r) =0.
BQO

(21)

Since the 6rst equation is an identity in 0.0, the second
equation becomes

g(up, q, q
—1, r) =0. (22)

Continuing in this way, the analyticity conditions are
seen to be

g(up, q,sr) =0, (q&r, 0&~s~&q) (23)

where we have again noted Eq. (16).We can factor the
irrelevant LI'(up —r+1)j ' out of Eq. (19), and put
the analyticity conditions in the form

(—1)" 8"
QM„o(up) Q P
k=0 m=0 u=0 QJ ~Qt

XLR &"&(k, up —k)f(k, up, q, w+u+s) $ =0

where we have taken Eq. (16) into account. The r&,=0
and n=1 equations are

g(up, q, q, r) =0

=q! Q B;t '&M—';( o), (0« q), (26)
i=0

where the 8;«') are functions of 0.0, but not of k. Sy
definition, f(k, up, q, I+tt&+s)/q! is the coefficient of
to in the expansion of t u(k, t) —up+kj "+"+'.Hence, the
analyticity conditions may be written

(—1)" ri"

to=0 tt=0 ~ tQ I O, 'Ou

X {Rt"&(k,up k)P —
(uk, t, pu) up+—k$"+"+'}

=P to Q B «'&M p'(up) (0~&s). (27)
i=0

Here we have displayed explicitly the dependence of
u(k, t) on uo, as discussed above. The summation over w

may be evaluated to yield the analyticity conditions
in the form

- (—1)" ~"
{R(k,u(k, t,up))fu(k, t,up) —

up+kgb
"+'}

Q t BO!0

=Q t' Q B,«'&M 'p (uo) (0~&s). (28)
q=e i 0

B. Stey II

The inverse of 3II„p(up) ls"

0&s&q) (24) The left side of Eq. (28) may be written

ce 00 Q
'g

(—1)" {R(k,u(k, t,up))
m=0 m=0 tC

&&Lu(k, t,uo) —uo+k]"+'}. (29)
(—1)"—'(2up —k+ 1)

Mp; '(up) =
(k —s)!r(2,—k —i+2)

(25) We use an integral representation of 8 „and exchange
summation and integration to obtain"

L,=
2w @—

( 1)ue—isa

2g @=0

(jtc

{Q R(k, u(k, t,up))e' oLu(k, t,up) —up+k$"+'}
QQO m=0

dQ R(k, u(k, t, uo —e 'o))Lu(k, t, up —e 'P) uo+e 'P+—kj'

2x 1 e'P&tu(k, t, uo —e *P) u—o+-e''P—+kJ-
1 ds R(k~ o. (k~ t~ up+s))Eu(k, t, up+s) up s+k—g'—

27rj u(k, t, up+s) —up+k
(30)

where s= —e i&, and the contour integral is counter-
clockwise around

~
s~ =1.We assume that the B,«'& in

Eq. (28) are analytic functions of up. Later, we verify

"J.B. Bronzsn& Phys. Rev. (to be published).

that this assumption is consistent, and in Sec. III we
argue that it is physically reasonable. With this assump-
tion, the numerator of the contour integral in Eq. (30)

"This device was suggested by Professor K. A. Johnson.
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Equations (33) and (35) imply that Eq. (32) is true for
all s if it is true for s=O.

We see that Eq. (34) follows from Eq. (32) for s=0
and s=1, and hence is necessary for analyticity. On
the other hand, Eq. (32) for s=0 and Eq. (34) imply
Eq. (32) for s& 1. Therefore, the analyticity conditions
are equivalent to Eq. (32) for s=0 and Eq. (34)

can be seen to be an analytic function of s. If it were
singular, the left side of Eq. (28) would be singular in
0.0, which is inconsistent with the analyticity we have
assumed for the right side of Eq. (28). At t=0 the
denominator of the contour integral has precisely one
simple zero at s=0. For t in some neighborhood of zero
there will continue to be one zero inside the unit circle,
at sp k t np determined b(, , ) y

R(k, np —k)
n(k, t, no+zo(k, t,no)) =no k, —lim zo(k, t,no) =0 (31)

o~o l9n(k&t&np)/Bnp oooo(o, o, ~o) Q=p

Hence, the analyticity conditions may be written

R(k, np —k)L —zp(k, t,np)7'

&n (kit)no)/&no I ~o+oo(o, o, ~o)

= P to g 8;« ')3E-'o, (no) (0~& s). (32)

q=1 i=p

M 'o (no)
X

M 'op(no)

—z, (k, t,n,))=g to g A;o( —1)* (36)

i=p

We select the s=0 and s = 1 equations from Eq. (32)
and use them to determine the coeKcients of the power-
series expansion of zp(k, t,n—o) in t. This power-series
expansion has no constant term because of Eq. (31).
The expressions for the codFicients are complicated, but
their dependence of k can be displayed because of the
following lemma, which we prove in the Appendix

M-'o, (no) ~ ",~.(«)= Z Co, n(no)~ 'oo(no) o-p ~ 'o, (no)
(33)

where the C, ,„(np) are independent of k and polynomial
in np Then t.he power series for —zp(k, t,np) has a deter-
mined dependence on k:

oo q M 'o;(«)—zp(k, t,np)= P to g A; (—1)', (34)
s=o M )oo(no)

where the A;q are independent of k, but not of np.

Multiplication of Eq, (34) by itself 's times, and re-
peated use of Eq. (33), establishes a similar structure
for t

—z, (k,t,n,),7'.

We remark that at this point we have separated the
constraint on the trajectories from the constraint also
involving the residues. This separation is a significant
check on the consistency of Mandelstam analyticity
with the notions of Regge theory.

Because the C,, „(np) in Eq. (33) are analytic in np,

the 8 &') in Eq. (28) are analytic in no if the A;o and
8 q are. This establishes the consistency mentioned
following Eq. (30). We shall return in Sec. III to the
physical meaning of the assumption of analyticity for
the A;q and 8;q.

C. Step III

To continue our analysis, let us consider the sums

Qo f Q ft

5= Q — —
P zp(k, t,np)7"—

=p nt Bnp
R(k, np —k)

x
Bn(k, t,no)/Bno t o+*o&o,o, o)-

oo

8=g —
P —zp(k, t, np) 7"+'

~=p nI Bnp"
Bzp(k, t,n p)

X 1+— . (3&)
BGp

o M-'o;(np)
L
—zp(k, t,np)7'=g to p A, «')( —1)' . (35) The manipulations of Eqs. (29) and (30) permit us

o= '=o M—
'oo(np) to write 5 and 8 as integrals

d» R(k, np —k+z)S=
2»i (z+zp(k t no+»)pion(k, t,np)/Bno~ ~+ o(o o ~ )

1 dzj —zp(k, t, no+»)jt 1+Bzo(k,t,no)/o)npt o+.78=
2~s z+zp(k, t, np+z)

(38)

Since the right sides of Eqs. (36) are analytic functions from the vanishing of z+zp(k, t, np+z). zp vanishes at
of o,p, the only singularities of these integrands come t=O, so in some neighborhood of t=O there will be only
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one simple pole inside the unit circle at si(k, t,np), de-
termined from

si(k t a'p)+sp(k, t np+s'i(k t up)) =0,
lim si(k, t,up) =0. (39)
t~p

Then the sums become

t rather than n(k, t), and evaluated the ratio M—'o, (no)/
M 'ao(no).

Equations (46) are implied by the analyticity con-
ditions, Eq. (36), but in fact Eqs. (46) also imply the
analyticity conditions, and are equivalent to them. To
see this, we put Eqs. (46) in a more condensed form.
We define

R(k, np —k+si(k, t,np))
5

L1+Bsp(k, t,np)/Bnp] ~., (o ....)]fan(k, t,np)/lupi. ,]
8=si(k, t,np) . (40)

Equation (31) is an identity in np. We evaluate it at
ap ~ np+si, aild flild tlla't

n(k, t, np+si+sp(k, t, np+si)) —np+k=si, (41)

for any si. We now let si be determined by Eq. (39):

si(k, t,np) =n(k, t,up) —np+ k. (42)

Also, if we differentiate Eq. (41) with respect to np,

we find that

oo q

G(k, t,a p) = P t p g B,oM 'o, (ao—),
i=p

oo q M 'o'(no)
e(k, t, no) =P to P A,'(—1)'-

o=i '=p M 'pp(up)

Thus, Eqs. (46) may be written

8
R(k,n(k, t,np)) = P — (k, t,ap) LH(k, t,up)]",

n=p e!a~p"

8
n(k, t,up) np+k=—Q —— — t H(k, t,no)]"+'.

n=p R! f90!0

(47)

(48)

aso(k, t,uo)
Using the method of Eqs. (29) and (30) on the right,
we find that

8(Xp aQ+zg-

Bn(k, t,uo)

~o'0 ao+zg+zo(k, t, ap+zy)

G(k, t, no+ s2(k, t,np))
R(k, n(k, t', np)) =

1—BH(k, tiup)/Bnp i ~ pago(kt, ,up),

a(k, t,ao) —no+ k =so(k, t,no),
43)

(49)

esp(k, t,up) Bu(k, t,up)
'

=1. (44)

We let si be determined by Eq. (39), and. Eq. (43)
becomes sp(k, t,np) =H(k, t, no+so(k, t,no)),

lim sp(k, t, up) =0.
t~p

(50)

BQp ap+z1(k, t, ap) - ~&0 aO

Oo g g Oo

R(k,t)=P — Lg t' P B;"M—'o (np)]
n=p g, !g/pn r 0 j=p

k!I'(2ap —k+ 2)
&( +to+A;o

-o=i '=o (k —i)!r(2up —k —i+2)
ce $ Qn

n(k, t) =np —k+ P-
~=o (bi+1)t Bop~

(46a)

o k!I'(2np —k+2)
&& g to+A;o

(k i)! (21p——nk —i+2)

—n+I

(46b)

In writing these equations we have dropped the explicit
dependence on o.p on the left, written R as a function of

Collecting our results, we have

S=R(k,n(k, t)), 8=n(k, t,np) np+ k —(45).

We can also evaluate S and S from Eq. (36). After
a slight regrouping of terms in the expression for S, we

find that

These formal representations allow us to compute the
left side of Eq. (28), again by the methods of Eqs. (29)
and (30). When the calculation is finished, the right
side of Eq. (28) emerges. Consequently, Eqs. (46) are
equivalent to the analyticity conditions, and express
the exact constraint imposed by broken 0(4) symmetry.

IH. COMMENTS

In commenting on our results, we confine our atten-
tion to the trajectory constraint, Eq. (46b). First, we

point out the physical meaning of the assumption of
analyticity of the A, q and o.p. Suppose one of the A;q

is singular at a point np*. It follows from Eq. (6) that
as np —& np* (from at least some direction), either n&»(k)

diverges for suKciently high p or the n~")(k) increase
more rapidly with p than (p!).In either case, the radius
of convergence of the Taylor's series for n(k, t) shrinks
to zero as np-+ ep*. Of course, to carry out the deriva-
tion of Sec. II, we have to start at an ep such that
~np —

no*~ )1, and continue the result to apo. We see
that n(k, t) has a singularity which moves to t=0 as
np —& o.p*. We know that Regge trajectories can have
singularities at arbitrary points only when two tra-
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jectories intersect there, so the singularity of A, q at
eQ* is to be associated with the intersection of Toiler
poles at 3=0. Except in this special physical case the
A, q are analytic. We stress that by the analytic con-
tinuation mentioned above, our formulas are valid
arbitrarily close to up*, and not just when

~
up —up*( )1.

Second, the possibility that the A;q are functions of
nQ has real consequences for the formula for the deriva-
tives, Eq. (6). For the first and second derivatives,
Eq (2.), it can be shown that the formula is essentially
the same whether A Q' and A ~' depend on nQ or not.
This is demonstrated by redefining the A ~ However,
for u&'&(k)/6! there is a term

kLA o'+A i'(2up —k+ 1)7'BA i'/Bup

which cannot be eliminated by redefining the A; . This
means that u&s&(k) depends upon five new parameters,
A, ' and BAi'/Bup, as well as those present in the for-
mulas for u&'~(k) and u&" (k). This shows the conjecture
made in Ref. 8 to be wrong. There it was postulated
that u&»(k) depends on parameters present in u&&'&(k)

(p'(p) plus only (p+1) new parameters. "'
The calculation of the analog of Eq. (46b) for other

integer M can be accomplished using a generalization
of the techniques developed in Ref. 12. For M & 1 one
must use Reggeized helicity amplitudes, and there will

be conspiring Regge trajectories of both natural and
unnatural parities. The calculation of the zero-helicity
amplitude is what we have presented in this paper.
Factorization in the helicity indices demands that one
of the parity sequences satisfy Eq. (46b), and in fact
both of them will. However, conspiracy will not permit
all the (A )+ and (A,') for the twoparitysequencesto
be independent. ~ "It is only this relation between these
parameters which can depend upon M, and which re-
mains to be calculated. The generalization of our work
to half-integer M is not so simple; one must start from
the beginning.

"'Note added trt proof The statemen. ts made in this paragraph
are incorrect. All dependence of a('& (k) on derivatives of the A' s
with respect to no can be eliminated by redeaning the A .3. In fact,
it can be shown that no generality is lost if the A;q are taken to be
independent of ao in Kq. (2) . Thus the conjecture of Ref. 8 is
correct. The author is indebted to Dr. Paul Fishbane for pointing
out the error.

After this manuscript was written, we received a
report by J. C. Taylor which derives a less explicit
statement of the consequences of broken 0(4) symmetry.

APPENDIX

Using the notation I'(x+n)/I'(x) = (x), we obtain

3E ', , -„( o)/cV ',,(uo)=(-1) (k-p —g+1),
X (2up+ 2—k —

g
—p), . (A1)

Consider the linear combination

I(k) = Q C, ( o)(—1) (k —
g
—p+1),

q=Q

X(2,+2—k —p —g), . (A2)

I is a polynomial of degree 2i in k. The i+1 constants
Cp, &(up) are fixed by C, , &(up)=1 and the i linear in-
homogeneous equations which come from demanding
I(k) =0, k=0, 1, , i 1. These e—quations are

0= Z C no( )u(o1)'(k—
g
—p+1)o

q=Q

X (2uo+2 —k —p —g) o (0 ~& k ~& i—1) . (A3)

We compute

I(2up+1 —k) = P C, , „(up)(—1)'(k—p —g+1),
q=Q

X(2uo+2 —k —p —g)p
——0 (0~&k~&i 1). (A—4)

Hence, I(k) is the unique polynomial which behaves
like k" at in6nity and vanishes at the 2i points k =0,
1, , i—1; 2up+1, 2uo, 2up i+2 Thi—s polyn. omial
is (—1)'(k—i+1),(2up+2 —k —i);. Thus,

M 'p;(up) '— M ', ,p(+p)u—
I(k) = = r. C..(uo) . (AS)~ 'po(uo) p=p ~ 'p, ,(uo)

The left side of this equation is a polynomial in nQ. The
only singularities C, , „. (up) can have are poles cancelled
by the zeroes (2up+2 —k —p —g),. However, these
zeros move with k, and C, , „(up) is independent of k.
Hence Coo(up) is a, polynomial in up.


