
PH YS ICAL REVIEW VOLUME 18&, NUMBER 5 25 APRIL 1&69

Nonfactorizing Saturation of Current Algebra
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A general method is devised by which nonfactorizing solutions (i.e., those in which the currents are not
proportional to the charges) of the charge-current commutation rules between arbitrary states and the cur-
rent-current commutation rules between states of equal momenta can be constructed, given any set of
factorizing solutions of the current-current rules. A theorem is proved according to which such factorizing
solutions can be obtained from a large class of infinite-component wave equations.

HK considerable success of current algebras in
deriving sum rules has led to an intensive search

for simple algebraic models of currents satisfying the
SU(2) XSU(2) or SU(3) XSU(3) current-current com-
mutation relations, which imply the following sum rules
for form factors of the weak and electromagnetic
currents in the infinite-momentum frame' (i.e., p, ~~ ):
2 I g-"(qi')g. s"(q ) —g-"(q.)g-s"(q.')j

=r't';;ig. b'v(qi'+ «.), (1)

and two similar equations, one for the commutator of
an axial-vector (A) current and a vector (V) current
giving an axial-vector current, and another one in
which the commutator of two axial-vector currents
becomes a vector current in the usual way. '

The g„~'(qr) are the infinite-momentum limits of the
current matrix elements between physical single-particle
states'.

tant limiting cases in which the spacelike solutions of
such equations "decouple" from the timelike ones.

The procedure for constructing such in6nite-compo-
nent wave equations goes as follows: One introduces a
field f, (p") transforming under Lorentz transformations
X=(i1„)as

(3)

where D (A) is some reducible representation of the
Lorentz group O(3,1), selects some vector operator
J' s"(p), and a scalar operator tr s in the representation
space (3) which satisfy

D p(A) Jsvt"(p)D '„s(A) =J s" (hp)A„&,

D.p&(It)~p, D', s(It) = ir s-,

then postulates the field equation

)J.,~(p)p„s&]P&(p)=0, —

X(~ a+p is
I j"I

s a+p; m),h„„(2)
where a is a vector pointing along the direction in which
the momentum becomes infinite, while q& is the mo-
mentum transfer orthogonal to the momentum a.

The problem we pose is to find a set of functions
g„'(q&) which satisfy Eq. (1), but such that those

g '(q&) which vanish at q&= 0 do not vanish identically.
The latter condition means that the solution will be
"nonfactorizing. " For an important subset of the re-
lations in Eq. (1), we 6nd a solution to this problem.
The solution is based upon the use of infinite-component
wave equations and is exact in some physically impor-

' For references on this subject see, for example, F. Coester and
G. Roeppstorf, Phys. Rev. 155, 1583 (1967).

~ The sum in (1) means summation over all internal quantum
numbers and spins.

3 We use the normalization of states:

(p'I p) = (2 )'(&o/3I) s'(p' —p).

and determines the conserved current operator j& by
finding a Lagrangian for (5) and performing a gauge
transformation. 4 ' Our starting point will be a factoriz-
ing solution. Therefore, the SU(3) octet of vector
currents j,& is introduced as the product of j& and the

4 The first such wave equation was discussed by E. Majorana,
Nuovo Cirnento 9, 335 (1932).The approach has been revived to
find form factors of composite particles by Y. Nambu, Phys. Rev.
160, 1171 (1960); A. O. Barut and H. Kleinert, ibid. 156, 1546
(196'7); and C. Fronsdal, sbid 156, 1653 (196'I.). Using such wave
equations, saturation models were given by S. Fubini, in Proceed-
ings of the Fourth Coral Gables Conference on Symmetry Principles
at High Energy, 1N7, edited by A. Perlmutter and B.Kursunoglu
(W. H. Freeman and Co., San Francisco, 1967); and by M. Gell-
Mann, D. Horn, and J.Weyers, in Proceedings of the International
Conference on Particle Physics in Heidelberg, 1967 (unpublished)
and amplified version October 1967; H. Bebie and H. Leutwyler,
Phys. Rev. Letters 19, 618 (1967).

'For fixed spatial momentum p, we define the eigenstates of
I.', Lg with eigenvalues s(s+1) and sg as particles. Possible addi-
tional quantum numbers are omitted. Note that s may, in general,
also take continuous values S= —&~+io corresponding to the little
spin group 0 (2,1) if Eq. (5) has spaceiike solutions at that p, which
is the case for almost all wave equations discussed until now.

1410



180 NONFACTORIZI NG SATURAT ION CURRENT ALGEBRA 14ii

eight generators of SU(3), X,,
P i.e.,

(6)

SL(2,C) representation of the Lorentz group with
M= ——,'io by

The content of the model is to dehne the functions

g '(q~) in terms of the "spinor" quantities related to
the wave equation as

1 (gM' 0
eia M qrt ——g~r+iqrs. (10)

g(M M) i —q,t

But e' ' can be factorized' as

M„M„i' '
g„'(q,) = hm

@ace g g j with

cia M s—ipsrpQeipMp

&&(s a+p„; e
l j,'l x a+p„; nz)„;„., (2')

This equation is the analog of Eq. (2), except that the
states are now the timelike solutions of the wave
equation which are considered in one-to-one corre-
spondence with physical states; the operator j in
Eq. (2') is defined in Eq. (6). Then the quantities
g„'(qr) can be shown to satisfy the sum rules (1) for
an important class of (algebraic as well as nonalgebraic)
current operators. '

First note that the commutation rule (1) implies
that the matrix elements of j' itself,

o

p =ln
JI

/g(Mp/M)
hence, ep '=l

0

0
(12)

g(M/M, )j
and

1 0
Q= (Mp) 0, arbitrary), (13)—

gent/Mp 1

and if one commutes e 'P~' through (j'+j') to the left,
one obtains

M'M'l "'
g(q~) —= lim

I
(p's'sp'I j'I psss&

g ~go p/g j
have to satisfy the product rule

(7)

Q(M M)
g(q ) =— (Os's 'le ' '(j'+ j')Qe' ~'lOss ).

At this point it is convenient to introduce a new set of
states:

P gan(ql )gn (pq)r=ga p( q.'+q )r.
l gssp) —=QQ(M/Mp)e' ~'l Ossp),

l
ssp} —=

l O, ssp}. (14)

In order to discuss this relation, let us rewrite the limit

(7) in the more explicit form (indices being understood)

t
M'M) '~'

g(qj) =liml
l

(Os'ss'le '&' j'e™lOssp&,"""5E'E j

(Os's, '
l (j'+j')e™[Osss&,

M'

g(q ) = {"»'I(j"+j')
I m»)
={—q,s's, 'l (j'+j')

l
sss). (15)

(Po' —Po)(p"»'I jol psss& =o, (16)

Let us now consider the consequences of current
conservation. Since j&q„=0, we find for states at equal
momenta

1/2

(Os's, '
l

e" (j'+j')
l
Oss &,

M
(9) such that suitably normalized states with different mass

and spin are orthogonal:

where i, i' are the rapidities L=tanh '(v/c)j of the
initial and final particle, and e' ™is defined in the

(p"»'I jpl pssp& =~".~.,",~~ ~(pp/M) (17)

' Note that in such a scheme there is a natural way to introduce
nonconserved strangeness changing currents simply by letting a p
in Eq. (5) depend on the strangeness. This dependence also causes
an SU(3) mass splitting which can be Gtted to the observed one
(compare Ref. 18).' It will turn out LEqs. (1?)—(19)j that the states in the solution
space of the wave equation have in general diGerent completeness
properties from those of the physical states. This, however, causes
no difhculties, since we only have to show that the functions de-
fined in (2') in terms of quantities related to a wave equation
satisfy the sum rules (1), and correspond to a relativistically
covariant physical current. There is certainly no additional re-
quirement that the physical metric and the metric in the solution
space of the wave equation must be the same.

This+leads in the infinite-momentum limit to the
orthogonality relation

{os'»'I j'+j'I0 ssp) =&".&.p"a~sr pr.

Because of this property, the completeness of the solu-
tions lpsss) of the wave equation at any fixed mo-
mentum p can be expressed in the infinite-momentum

8 See H. Bebie and H. Leutwyler, Ref. 4.' Note that Q and (jp+ jp) commute.
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( (Ms'+3II'+ q')

2' p

(M tP
—M' —q') )—q, o — I, (20)2' p

the matrix elements of j"+' between {Osssl and
I qsss}

can be written in more detail as

( (Mss+M") (M(P —M")
{os's,'

I
j'+'I, 0, 0,

2Ms

(Mss+M'+q')

2' p

(M,' —M' —q') )
I I v»} (»)2' p

where kI' and 3E are the masses of the particles with

spin s' and s, respectively.
Let us now assume that the current contains besides

an algebraic part I'& only so-called convective currents
of the form" SX(p'+p)" or S&&(p' —p)s, where S is
an algebraic scalar operator. In this case, the matrix
elements (21) are in fact independent of M', M, and q.
But then since

I qsss} can be expanded in states
I
Osss},

and in this space (19) is l~nown to be true, we see that
(19) indeed reproduces

I qsss} for arbitrary q.
From this result the product rule (8) follows

immediately:

& {—q""s'I j'+'I ~"»"}{"'»"
I
j'+'I q,»s}

S// SIII

={ q'ss,
I
j~slqss, } (22)

but this is the same as (8). Hence, we have proved
Theorem 1:

' If the space of solutions contains spacelike momenta, then all
steps still hold true if one replaces the particle mass m by
p=g( —ps)=iM and interprets the state ~oss3) as state with
momentum P = (0,0,0,p).

"Any current derivable from a conventional second-order
I.agrangian through a gauge transformation is at most linear in
the external momenta P„and P„' and hence of this form. For this
reason, our theorem covers all cases discussed in the literature
so fal.

limit as"

P (js+js) I O,sss}{O,sss
I

SS3

=+IOsss}{Osssl (g'+ps) =1. (19)
SS3

Note that this relation'holds up to now only in the space
spanned by the states IO,sss}. The crucial point of the
proof is that for a large class of currents j&, this relation
can be extended to hold in the much larger Hilbert
space I qsss}. To see this, let us assume q to point in a
direction and apply the expression (19) to the state

I qsss}. We observe that the most general current follow-

ing from the wave equation (5) may consist of so-called
algebraic vectors F& which have no explicit momentum
dependence and nonalgebraic ones j&(p'; p) which
explicitly use the momenta p'" and p" of the external
states to couple to a vector. Since the momentum of the
states

I qsss} is

k,'=),js+8,T~"q (23)

where q"=p'& —P& is the momentum transfer. Since
T&" is antisymmetric, this current is always conserved.
In the infinite-momentum limit defined by (2), this
current becomes

g, (tli) =);{s'ss'I (j'+j')g
I
ss,}

+B,{s'ss'I (T'"+T'")q„gl ss,}. (24)

From (20) and a similar expression for p'&, we deduce
that

q'+q'=0. (25)

' I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20, 69S
(&968)."E.g., the model of H. Behie and H. Leutwyler (see Ref. 4) has
spacelike solutions.

'4 Note that for zero momentum transfer, spacelike and timelike
solutions of the wave equation cannot couple in the exact SV(3)
limit, such that in this limit, case (a) is even free from the diQi-
culty (i)."In a forthcoming paper, the eGects of SU(3) breaking will be
included; compare Ref. 18.

Every conserved current combined of algebraic and
convective terms saturates the factorized current
commutation rules at in6nite momentum. "

This type of approach to the saturation problem has
as yet produced only solutions with unphysical features:

(i) Either the mass spectrum contains an infinitely
degenerate mass, or the wave equation has spacelike
solutions.

(ii) The currents are proportional to the charges
(such that the neutron has vanishing electric and
magnetic form factors).

In fact, it has been proved that (i) holds as a theorem if
the vector L"(p) is purely algebraic and does not depend
on P." But there are also examples with unphysical
solutions when J& has a convective part. "

It is the purpose of this paper to give a solution to the
second problem for two important subalgebras of (1):

(a) q'=0. In. this case Eq. (1) forms the so-called
charge-current commutation rules.

(b) q'= —
q, ss' ——ss, which is the subalgebra of (1)

taken between states of equal momenta and spin
orientation. '4

Furthermore, in this paper we shall restrict our atten-
tion to saturating only the vector-vector commutation
rule (1)."

Let j~ be a conserved current which satisfies the
product sum rule (18) with a complete set of solutions
of Eq. (5).Let furthermore T&" be an arbitrary algebraic
antisymmetric tensor operator in the Hilbert space
dined by the solution of the corresponding wave
equations. Such a tensor operator always exists. An

example is the set of Lorentz group generators LI"" of
D.s(h.) in (3).

Then consider the current dered by
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Therefore

so that
( '"+ '")q=( '"+T")q, ( =, )

g, (q ) =l;{s'ss'I (je+js)QI» }+&;{s's'I (T'"+Ts')Ql» }q,. (26)

In fact, noting that T'"+T'", Q, and Q' all corrunute with each other, we see that the commutator of g;(qi)
and g;(qi) becomes

[g'(qi') gt(qi)) =9*,l t){s'»'I (j'+j')Q'Q
I sss}+([~',l~')q. '+[l ' ~t)q ){s'»'I (T'"+T'")Q'Q

I sss}

+q„'q.(B,B; Q {s'ss'I (T'"+T'")Q'Is"ss"}{s"ss"
I
(T"+T")Qlsss}

o'~' —Z {" 'l(T"+T")QI '" "}{""l(T'"+T")O'I }). (2&)

[l~;,X;)=if;;t,Xt, , P„,b;) =if,sb6g, . (28)

Note that [8;,8,) is completely arbitrary. "
(b) q'= —

q and ss' ——ss, and equal SU(3) quantum
numbers in initial and final state. Here we have to
impose, in addition to (28), the condition"

[b,,a;)=0. (29)

If X; are the generators of SU(3), both algebras (28)
and (29) allow for a nonvanishing tE/f ratio in 8,.

Thus, neutral particles can have nonvanishing form
factors. Notice that the generators 'A; have matrix
elements only within the same SU(3) multiplet.
Different SU(3) multiplets are connected by the 8;
currents. In case (a), the matrix elements of b; can be

"In particular, we may choose b; to close back in the form
Pb', b') ~if;, tb", in which case X' and b* form the so-called non-
invariance groups of T. G. Kuriyan and E. C. G. Sudarshan, Phys.
Letters 21, 106 (1966).The compact form of this commutation rule
is clearly preferable since only a 6nite number of isospins has been
observed until now.

'7These commutation rules are the same as those used by
T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
(1965) in their strong-coupling theory. They have the dis-
advantage of containing only multiplets with infinitely many
isospins.

This equation shows that we can indeed fu1611 two sub-
algebras of (1):

(a) q' or q=0, which is called the charge-current
algebra. In this case X; and 5; have to satisfy the
commutation rules

fixed by postulating a commutation rule for [8;,ti;) and
specifying a representation in agreement with the
observed spectrum of internal quantum numbers. I.et
us summarize our result in Theorem Z.

Given any conserved current );j& satisfying the
factorized current commutation rules and then using
an arbitrary antisymmetric algebraic tensor operator
TI"", one can construct a new current

j o=Xj s+btTo"q, (30)

' A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Letters
20, 167 (1968); Phys. Rev. 167, 1527 (1968); D. Corrigan,
B.Hamprecht, and H. Kleinert„Nucl. Phys. B (to be published).
For the current of the H atom and further references, see
H. Kleinert, Phys. Rev. 168, 1827 (1968).

'9 D. Corrigan and B. Hamprecht, Lectures in TheoreticaL
Physics (Gordon and Breach, Science Publishers, Inc. , New York,
1969), Vol. XIB. H. Kleinert, EarLsruhe Lectures 196h', Springer
Tracts in ltd' odern Physics (Springer'-verlag, Berlin, f968).

whose infinite momentum limit satis6. es two important
subalgebras of the current-current commutation rules
without factorizing. The matrices 8; have to be a vector
operator with respect to X; and are otherwise arbitrary
for the charge-current subalgebra while they have to
commute for the q'= —

q subalgebra.
Currents of such a type have led to good agreement

with experimental results in dynamical group calcula-
tions. ' The possibility of using them to describe
transitions between different SU(3) multiplets will be
exploited in a forthcoming paper. "
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reading the manuscript.


