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Using eigenphase shifts, it is shown how a resonance can be single-humped in some reactions and double-

humped in others, as appears to happen for the 4,.

HE interplay of several scattering channels can
lead to resonance phenomena too complicated to
describe with Breit-Wigner forms. Eigenphase shifts,
on the other hand, seem a more suitable tool for describ-
ing such intrinsically multichannel phenomena as
resonances. Just a few eigenphase shifts suffice to
explain quite complicated Argand diagrams. The model
is rather like the Ptolemaic theory of planetary motion.
Quite different eigenphase shift behaviors can explain
experimental data, and only by knowing the dynamical
origin of a resonance can one choose between them.

In the following it will be shown how a resonance can
appear to have two peaks in some reactions and only a
single peak in others. This is a possible explanation of
the A4,, which appears as a wide, two-peaked object in
what is essentially the reaction mp— mp, and as a
much narrower single-peaked resonance in the reaction
mp— K°K%.! It will not be necessary to postulate
two separate resonances, as is done by Lassila and
Ruuskanen.? The description of the 4, in mp— mp
given here is somewhat similar to that of Coulter and
Shaw.? The resonance itself is very inelastic, and the
resonance position coincides with a dip in the elasticity.
These authors, however, do not attempt to describe the
A, in the reaction mp — KK . R

Before proceeding, it is appropriate to review briefly
the theory of eigenphase shifts. The S-matrix elements
connecting # two-body channels of the same spin,
parity, and internal quantum numbers constitute, by
unitarity, a unitary matrix. Since it is unitary, its
eigenvalues have unit norm. They are 2%, where the
oy, are the eigenphase shifts. The corresponding eigen-
vectors are e*:

k= (erb, - - en¥), k=1, -+, m.

These eigenvectors are orthogonal and complete
k=n

Z e,-’”e,-’“* = 61‘]'-
k=1

i=n
Z eilb‘,'k* =gk ,

=1

(€))

Introducing the Hermitian matrices E*, E;*=efe*,
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which by (1) satisfy

k=n
EFE'=§MEY 3 EF=]T, 2)
k=1
one has
k=n
S= e[k, 3)
k=1

By (2) this is easily seen to be a unitary matrix. The
scattering matrix is defined by

S—I
2

k=n )
=Y sindy e E*,

k=1

T:

@)

At a resonance, one, and only one, of the eigenphase
shifts rises through 4. If it rises steeply enough, 7" must
have a simple pole near the physical axis in the complex
energy plane. The converse is also true.*

As a specific instance of this formalism, consider a
two-channel problem. S is then a 2X 2 matrix and has
eigenvalues, ¢! and 2?2, Let the corresponding eigen-
vectors be

el= (%)%) ’

Then the matrices E* are

(9/25 12/25
“\12/25 16/25)’

=4, —3).

16/25

—12/25
| ) o
—12/25

9/25

It follows by (3) that the S-matrix elements for the
reactions 1 — 1 and 1 — 2 are

Su= (9/25)e214- (16,/25)e2id2

S1a=(12/25) (%1 g2it2) 6)
The T-matrix elements for these reactions are
Ty3=(9/25)sinéd; e®1+4- (16,/25)sind, ez,
Tio= (12/25) (sind; e?1—sind, e?s2). (7

Now, identifying 1 — 1 with the reaction mp — mp, and
1—2 with the reaction mp— K°K{, it is easy to
contrive an eigenphase-shift behavior which gives the
resonance behavior characteristic of the A4, in these
reactions. This behavior is illustrated in Fig. 1. The
resonant eigenphase shift §; rises through ir at the

4 A resonance may correspond to a zero of the phase shift &

proper, S=7¢%% if the elasticity 7 is less than 4. A zero of an eigen-

hase shift, however, does not correspond to a resonance. In fact,
it has no particular physical significance.
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3 F16. 1. Eigenphase shifts and

2 cross sections for the reac-
tions 1—1 (solid) and 1 — 2
(dashed). For simplicity the
eigenphase shifts have been
chosen to consist of line seg-
ments. The cusps of § are not
essential for the qualitative
behavior (see Ref. 2) of the
cross sections.

resonance energy. The other, §,, passes down through
zero at this energy. There is only one resonance pole
required: that corresponding to the rise of 6; through
A

The trajectories of both T'j; and T, in the complex
plane are illustrated in Fig. 2. To understand these
trajectories qualitatively, it is helpful to rotate this
figure by 90° and consider it as a plot of the trajectories
of S11 and S12. One sees from (6) that at the resonance
energy the two terms in Sy interfere destructively,
producing a dip, but interfere constructively in Si,.
The cross sections for the reactions 1— 1 and 1— 2
are proportional to |Ty|? and | T'12|% The magnitudes
of Ty and Ty can be read off Fig. 2. The result is
plotted on Fig. 1. Experiments indicate that the peak
in mp— K’K® actually lies somewhat above the dip
in mp— wp. There is certainly enough freedom in the
eigenphase-shift model to account also for this; the
eigenphase-shift behavior indicated on Fig. 1 has been
chosen, in part, for its simplicity.

One can easily see by (4) and (5) that there are two
peaks also in the reaction 2 — 2 but only a single peak
in 2 — 1. This means that in a K beam the experimental
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Fi1c. 2. Trajectories of T1; (solid) and T, (dashed)
in the complex plane. The origin is at zero.

results should reverse, at least if K exchange is the
predominant production mechanism of the A4, Two
peaks should be observed in the decay A4;— K{K,°
and a single peak in 4, — mp.

In fact, if there are more than two channels, but only
two important eigenphase shifts which behave as
indicated on Fig. 1, then the resonance should be
double-peaked in all elastic reactions. Let ¢ be the
channel index; by (3) the S-matrix element for the
elastic reaction ¢ — 7 is

Sii= (e:) %P1 (¢,2)%?%2+ (unimportant terms).

Since both (e;')? and (e;?)? are positive, a destructive
interference occurs when one eigenphase shift rises
through 47 and the other falls through zero. For an
inelastic reaction, 1 — j; on the other hand,

Sii=e;le;'e?1-¢,%¢;%* P2+ (unimportant terms),

and since the relative sign of ¢;%;! and e,%,? is unknown,
the interference can be constructive or destructive. In
inelastic reactions the resonance can appear in both
forms, double-humped or single-humped.

It is not clear whether to expect the other members
of the SU(3) multiplet to which the 4, belongs to also
exhibit splitting. This depends on whether the behavior
of the eigenphase shift 8, indicated on Fig. 1 is accidental
or has a fundamental dynamical origin. This question,
and in fact the entire mechanism discussed here, can
only be tested with a dynamical model, for instance, in
a multichannel VD1 calculation.
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