
PH YSICAL REVIEW VOLUM E 180, NUM B ER 5 25 A P,R IL 1969

Eigenphase Shifts and Double-Humped Resonances
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Using eigenphase shifts, it is shown how a resonance can be single-humped in some reactions and double-
humped in others, as appears to happen for the A2.

~ 'HK interplay of several scattering channels can
lead to resonance phenomena too complicated to

describe with Breit-Wigner forms. Eigenphase shifts,
on the other hand, seem a more suitable tool for describ-
ing such intrinsically multichannel phenomena as
resonances. Just a few eigenphase shifts sufFice to
explain quite complicated Argand diagrams. The model
is rather like the Ptolemaic theory of planetary motion.
Quite di8erent eigenphase shift behaviors can explain
experimental data, and only by knowing the dynamical
origin of a resonance can one choose between them.

In the following it will be shown how a resonance can
appear to have two peaks in some reactions and only a
single peak in others. This is a possible explanation of
the A2, which appears as a wide, two-peaked object in
what is essentially the reaction xp —+~p, and as a
much narrower single-peaked resonance in the reaction
xp ~E1E1 . It will not be necessary to postulate
two separate resonances, as is done by Lassila and
Ruuskanen. ' The description of the A2 in xp —+xp
given here is somewhat similar to that of Coulter and
Shaw. ' The resonance itself is very inelastic, and the
resonance position coincides with a dip in the elasticity.
These authors, however, do not attempt to describe the
A2 in the reaction mp~ K1'E1.

Before proceeding, it is appropriate to review brieQy
the theory of eigenphase shifts. The S-matrix elements
connecting e two-body channels of the same spin,
parity, and internal quantum numbers constitute, by
unitarity, a unitary matrix. Since it is unitary, its
eigenvalues have unit norm. They are e"'I', where the
BI, are the eigenphase shifts. The corresponding eigen-

vectors are e~:

ek(sk. . . sk)P —1.. ~ g

These eigenvectors are orthogonal and complete

i=n
e.ie,ks —5lk Q e,ke.ks —8

i=1 k~1

Introducing the Hermitian matrices E~, E;;~=e;~e,~',

' G. Chikovani et al , Phys. Letters 25B., 44 (1967);D. Crennell,
U. Karshon, K. W. Lai, J. M. Scarr, and I. O. Skillicorn, Phys.
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which by (1) satisfy

EkEi,'gklEl

one has

k=n

Q E'=I,
k=1

(2)

ss~skEk
k=1

(3)

At a resonance, one, and only one, of the eigenphase
shifts rises through ~~. If it rises steeply enough, T must
have a simple pole near the physical axis in the complex
energy plane. The converse is also true. '

As a specific instance of this formalism, consider a
two-channel problem. S is then a 2)(2 matrix and has
eigenvalues, e"~ and e2i". I et the corresponding eigen-
vectors be

575 7 57 5

Then the matrices E~ are

El
9/25 12/25 ( 16/25 —12/25

, E'=~ . (5)
12/25 16/25 E—12/25 9/25

It follows by (3) that the S-matrix elements for the
reactions 1 —+ 1 and 1 —+ 2 are

Sii——(9/25) e"'~+ (16/25) e'i»

Sts —(12/25) (es'si —e»ss)

The T-matrix elements for these reactions are

(6)

T» ——(9/25) sinai e"&+ (16/25) sin8, e'"
Tts ——(12/25) (sinai e'"—sink, e'") . (7)

Now, identifying 1 —+ 1 with the reaction xp~ xp, and1~2 with the reaction m-p~E1'E1', it is easy to
contrive an eigenphase-shift behavior which gives the
resonance behavior characteristic of the A2 in these
reactions. This behavior is illustrated in Fig. 1. The
resonant eigenphase shift 51 rises through 2m. at the

4 A resonance may correspond to a zero of the phase shift 5
proper, S=pe"~, if the elasticity g is less than —,'. A zero of an eigen-
phase shift, however, does not correspond to a resonance. In fact
it has no particular physical significance.

By (2) this is easily seen to be a unitary matrix. The
scattering matrix is defined by

S—I
T= — = P sin8k e'skEk.

2z

180 1403



HANS ROSDOLSK Y

TQ

/
\

FIG. 1. Eigenphase shifts and
cross sections for the reac-
tions 1-+1 (solid) and 1 2
~d( ashed). For simplicity the
eigenphase shif ts have been
chosen to consist of line
men ts. The cusps of 8 are not
essential for the qualitative
behavior (see Ref. 2) of the
cross sections.

0
Fro. 2. Trajectories oi T» (solid) and T

inthe o l l . The origin is at zero.
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