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Three distinct, though related, formalisms, developed by Block, by West, and by Auvil, for dealing with
Coulomb interference corrections to nuclear potential scattering problems are considered. Such formalisms
are particularly relevant to the analysis of recent pion-helium scattering experiments, and their equivalence
is examined. It is shown that to first order in the Coulomb coupling parameter #, the results for the scattering
amplitudes given by West and by Auvil (as generalized in the present work) are equivalent but differ from
those suggested by Block. On the other hand, to first order in # the results for the cross sections are all seen

to be equal.

I. INTRODUCTION

HE possibility of performing experiments aimed
at discovering the electromagnetic form factor
of the charged pion through n*-He scattering! and the
recent realization of such experiments? have stimulated
interest in finding an accurate description of Coulombic
effects as they appear when in competition with
nuclear forces. It is desirable that a suitable formalism
for such a description, apart from allowing for devia-
tions from pure Coulomb interactions, also avoid the
rather involved Coulomb wave functions and employ
the generally simpler (approximate or phenomenologi-
cal) wave functions used to describe scattering from
nuclear potentials. Such as approach, giving an ex-
pansion of the scattering amplitude in powers of the
Coulomb coupling parameter, was first discussed by
Schiff.? Unfortunately, the approximation given by
Schiff yields terms that are logarithmically divergent,
even though the cross section can be calculated in a
useful manner to first order in the Coulomb coupling
parameter by this method.*

In order to remove the divergences associated with
Schiff’s formalism, Block® has shown by a rather in-
genious approach that if the scattering amplitude is
multiplied by a suitably chosen, unobservable phase
factor, one can then obtain finite results when the ex-
pansion in powers of the Coulomb parameter is made.
Taking a different point of view, however, West® has
been able to extend the original formalism of Schiff’s
by introducing integrating factors in such a manner
that an apparently consistent and well-defined expan-
sion of the scattering amplitude is also obtained.
Finally, Auvil” has attempted a more systematic and
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rigorous extension of Block’s approach which in essence
consists of an examination of the phase shifts rather
than the scattering amplitudes directly.

West’s formalism applies very generally to nuclear
(or, more precisely, finite-range) plus “Coulomb-like”
potentials, where ‘“Coulomb-like” refers to the behavior
of the potential at infinity, being there the same as for a
pure Coulomb potential. Elsewhere, a Coulomb-like
potential has arbitrary behavior, though it is generally
taken to be nonsingular. Block’s derivation is based on
a nuclear-plus-pure-Coulomb potential, but he gener-
alizes his results to Coulomb-like potentials in an intui-
tive manner. Although Auvil’s results are for a nuclear-
plus-pure-Coulomb potential, they may be extended in
a straightforward manner to include Coulomb-like
potentials, as discussed below. Obviously, for the
physical problem under study, namely, #*-He scatter-
ing, the interest is in Coulomb-like rather than in pure
Coulomb potentials.

Although the approaches and mathematical tech-
niques used by the three authors whose work is being
examined here appear quite distinct from one another,
their results may, of course, be compared. It is the
purpose of the present work to examine the various
results for two possible situations: first, scattering from
a nuclear-plus-pure-Coulomb potential and second, the
physically more interesting case of scattering from a
nuclear-plus-Coulomb-like potential. It is shown that,
although, at least to first order in the Coulomb coupling
parameter, West’s and Auvil’s results are in agreement,
they differ somewhat from those given by Block for the
scattering amplitude for both cases considered. How-
ever, it turns out that all results for the relevant cross
sections are nevertheless equivalent to first order in the
Coulomb parameter.

In Sec. II, we give a very brief review of the methods
used respectively by the three authors and establish a
common notation for discussing all the formalisms. We
also extend Auvil’s results to include the case of Cou-
lomb-like potentials. Section ITI is devoted to examining
the results obtained by the various approaches for
scattering from a nuclear potential plus both pure
Coulomb and Coulomb-like potentials. Section IV
presents a short discussion of our results.
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II. REVIEW OF FORMALISMS

The brief review which is presented in this section is
given mainly to define various physical quantities of
interest; complete details'may be found in the relevant
references.57

We are interested in nonrelativistic scattering from a
central potential which consists of the sum of a short-
range (strong) component, denoted here by #(r), and
a long-range, comparatively weak, Coulomb-like part,
denoted by v(r), where 7 is the distance of the position
of the particle from the scattering center.® The solution
¥(r,6) for scattering of a particle of mass 7 with relative
wave number k by the potential u(r) alone may be
given by an expansion in Legendre polynomials with
the familiar form?:

Yr0)=3 QI+ R)Pcos), (1)

where R,(r) is the regular solution to the radial part of
the wave equation, with asymptotic behavior

Ry~ (1/kr) sin(kr—3ir—+6;). (2)

On the other hand, the asymptotic form of the radial
part of the pure Coulomb wave of angular momentum /
is proportional to the expression®

(1/kr) sin(kr—3lr—n In2kr+1n;) , 3)

where the Coulomb coupling parameter is n=_Ze?m/k,
Ze being the nuclear charge. The phase shifts for scat-
tering from a pure Coulomb potential are defined to
have the well-known form

m=argl(lI+1+1in). @)

It follows that the radial solution to the problem of
scattering from the sum of the nuclear potential # and
the pure Coulomb potential must have the asymptotic
form

(1/kr) sin(kr —lr—n In2kr+n,+ 864+ A;). 5)

Finally, we associate phase shifts a; with the asymptotic
form of the partial-wave solution, .5;(7), to the problem
of scattering from the sum of the potentials #-+v, in
the following manner:

Si(r)~(1/kr) sin(kr—ix—mn In2kr+9,+6+0a;).  (6)

The basic approach used by all the aforementioned
authors in deriving a formalism suitable to the problem
of interest is to consider the wave functions R; as the

8 The potentials referred to throughout are the so-called
reduced potentials, having value 2m times the usual definition of
potential, where # is the reduced mass of the particle moving in
the field of the potential.

? See, for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Co., Inc., New York, 1955), 2nd ed., Secs. 19 and 20.
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unperturbed solutions on which the Coulomb or
Coulomb-like potential acts as a perturbation. However,
unless due caution is exercised in handling this pro-
cedure, difficulties arise from the fact that the asymp-
totic wave forms of the R; as given by (2) can never
by themselves yield asymptotic expressions of the form
(5) or (6). Hence, as emphasized by West and also by
Antoine,* in order to obtain a consistent approach, one
must either introduce a cutoff Coulomb or Coulomb-
like potential from the very beginning, or else the
logarithmically distorted nature of the asymptotic
waves must somehow be built directly into the for-
malism. The former device!® is employed by Auvil;
the latter approach is used by West and essentially
also by Block.

We now examine briefly the work under discussion.
We begin with Auvil’s’” approach, generalizing his re-
sults for pure Coulomb potentials in a very straight-
forward manner to the case of nuclear-plus-Coulomb-
like potentials. We define the potential

vr(r)=2(r),
=0,

r<R
r>R €))

and consider scattering from the now finite-range
potential, #-+vz. Making use of standard techniques
for short-range potential problems, one obtains

e ti—n In2kE+e) gin (n; —n In2kR+-a,)
= —k/ r’RlSRder, (8)
0

where Sk can be shown to satisfy an integral equation
of the familiar form:

Se(r)=Ri(r)+ f GilrYor(”)Su()dr' . (9)

The function G(r,#’) is the Green’s function appro-
priate to this scattering problem with the now finite-
range potentials.!!

We may now follow Auvil’s procedure and expand
the left- and right-hand sides of Eq. (8) in powers of 7
and compare the corresponding coefficients on each
side of the equation for large values of R. The expansion
of the right-hand side of (8) is achieved by substituting
for Sg the results obtained by solving the integral
equation (9) by repeated substitutions; on the left-
hand side of Eq. (8), 7; and a; are expanded in a Taylor’s

10 We note that Antoine’s work (Ref. 4) also makes use of a
cutoff potential; however, Antoine’s procedure is based on an
expansion of the scattering amplitude, rather than the phase
shifts, in powers of the Coulomb coupling parameter. This leads
to certain apparent divergences, which can presumably be shown
to vanish for specific choices for the potentials involved.

U See, for example, M. L. Goldberger and K. M. Watson,
Collision Theory (John Wiley & Sons, Inc., New York, 1964),
pp. 304-306.
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series about #=0. Thus, one has to first order in #

%[1} z, —ln2kR-I—al':|

R
= —k/ 1’2R127)Rd1‘
0

R R
= —kf 7*(R2vr — Ji°00) ——k/ 27.2vdr,  (10)
0 0

where the prime denotes differentiation with respect
to n, and v, is the pure Coulomb potential,
vo=2mk/7.

But Auvil has shown that!?

(11)

R->®

R

lim (—k/ r2j12v0dr> =n[7,—In2kR]. (12)
0

Thus, we can identify

na/ = —/ kr2(R12v—j12vo)dr, (13)
0

where we may allow R —, since the integral is well-
behaved in this limit.’® One may now proceed to ex-
amine higher orders in #, at each stage presumably ob-
taining finite, physically observable results.

Let us next consider the approach used by West.®
This formalism makes use of basically simple identities
containing Wronskians of solutions of the Schridinger
equation for various potentials. By manipulating such
identities, West is able to obtain a very general integral
equation [Eq. (47) of Ref. 6] involving solutions to
scattering problems with quite arbitrary potentials.
If one applies this equation to the reaction of interest,
and the (assumed) known regular and irregular solu-
tions of the nuclear problem as well as the unknown
solution of the complete problem are inserted into
West’s equation, one obtains an exact integral equation
involving S;. Since the asymptotic behavior of the com-
plete solution is given by (5) or (6) and as the integral
equation may presumably be solved by repeated sub-
stitutions, one is able to obtain ultimately an expres-
sion for the complete scattering amplitude in powers of
the Coulomb coupling parameter #.

There arise in this procedure, however, integrals of
the type

/ o(r)etnn2krdy (14)
0

Such integrals are not convergent if the usual Rieman-
nian definition of an infinite integral is understood for
evaluating (14). Accordingly, a prescription for. ob-
taining finite results for such integrals is introduced by
12 Reference 7, Appendix A.
13 More precisely, we assume that the Coulomb-like potential

v approaches o rapidly enough as 7 — «, so that the integral in
(13) is indeed well defined.
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West that amounts to giving # a small positive imagin-
ary part, which is to be set equal to zero after the (now
well-defined) integration has been performed.!* Thus,
by the use of this prescription, all integrals become well-
defined, and one has a well-behaved and apparently
consistent scheme for expressing the scattering ampli-
tude for the complete reaction as an expansion in powers
of the Coulomb coupling constant.

The result obtained by West for the amplitude for
scattering from a nuclear-plus-Coulomb-like potential
to first order in # is

0

F(0)=—3 (2141)P(cosb)

=0
X / vr2e2 R 2 (2kr)2indy ,  (15)
0

where the integral is of course defined through West’s
prescription. The expression for the scattering ampli-
tude can be put into a more convenient form [Eq. (64)
of Ref. 6. Equation (15) also applies to the case of a
nuclear-plus-pure-Coulomb potential if v is replaced by
vo. For reference, we write down the pure Coulomb
result here, also in more convenient form than Eq. (15).

Consider the integral in (15) with 7, substituted for
v. Adding and subtracting the sum of integrals,

f vr2(2kr)?i 5 2dr
0

0 62'[61_1
—l—/ v r2(2kr)2"”|: ]dr (16)
1/2k ’ 2(737’)2

to the integral under consideration, one obtains

0 1 621’51_1
v Zkr)“"‘R g2t '2—[e<r—-—->:| }dr
/0 o' ! 7 2t/ 1 23y

eZi&z_l

+ / Ji2vor?(kr)¥irdr+- / v9(2kr)%rdy, (17)
1/2k

where e(r—1/2k) is the Heaviside step function. The

last integral may be evaluated by West’s prescription

and yields a factor ¢k. Substituting into (15), one

obtains®

fen™(6) =fN—/ Jolgr)ver? (2kr)2indy

—3 (I4+1)Py(cost)

=0
1\7e?—1
T4-DE M,
2k) 1 2(kr)?
14 The use of integrating factors is a not uncommon mathe-
matical device in physics, and as discussed in Ref. 6, the prescrip-

tion introduced by West is closely related to the definition of the
Dirac § function,

0
7)0?’2 {Rl2621’61_]’l2
0
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where fx is the nuclear scattering amplitude

1 o
fN=7 Z (2l+ 1)(62’.5’—1)P1(C0S0)

2ik 1=0

(19)

and g=2k sin?(36). The second term on the right-hand
side of (18) is the Born Coulomb amplitude and yields,
as is well known, the correct magnitude for the exact
Coulomb scattering amplitude. Thus, if we denote this
integral as f¢,s, Eq. (18) becomes

fCN(W)(0)=fN——fg,B—l§: QI+ 1)Pl(cose)/ o1
=0 0

1\ e2ii—1
X {Rﬁeml— jl2—|:e<r———>:| }dr
2k/ 4 2(kr)?

Lastly, we outline very briefly Block’s® procedure.
Block begins with Schiff’s? analysis, but he notes that
only the squared modulus of the scattering amplitude
is observable, so that modifying the amplitude by a
phase factor leads to no physical consequences. Choos-
ing such a phase factor to be exp(2ino) and expanding
the phase shifts in powers of # [see the discussion pre-
ceding Eq. (10) above], Block obtains, unlike Schiff,
finite results for the amplitude to first order in #. The
derivation is based on scattering from a nuclear-plus-
pure-Coulomb potential, but the results are generalized
in an intuitive manner essentially by replacing v, by v
throughout.

(20)

III. COMPARISON OF RESULTS

A. Results for Nuclear-Plus-Pure-Coulomb Potential

We now compare to first order in the Coulomb cou-
pling parameter the results obtained by the three
methods discussed in Sec. IT for the case of scattering
from the potential #+v,. West’s result for this situation
is given by Eq. (20) above.

Let us first attempt to put Auvil’s result into the
form of (20). Consider the expression

e2i(rtnitA) {1 = (g2i51_ 1)+ (e%n_. 1)

_I_ezisz[ezi(AHnt) — 1]_. (624,'111_ 1) . (21)

If we use Auvil’s result [Eq. (27) of Ref. 7; see also
Eq. (13) above] that

’VLAZ/= —'/ k1’2'l)o(Rl2 ——jl?)dr (22)
0

and make use also of (12), we may expand the last two
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terms on the right-hand side of (21) in powers of # to
obtain their value to first order as:

R
2i(e?#1—1) 11£im [— / krtj2vdr+n ankR:I
>0 0
R
—24¢?01 zlaim f krtog(R2—72)dr.  (23)
= o

Adding to and subtracting from (23) an expression of
the form

R
2 Ileim kr?voj2dr (24)
yields
R
-2 }Eim l: / kr*oo(R2e2®t1— §,2)dr
—>00 0
+n(e??1—1) ankR:l . (25)
But we may write
1 (B
7 In2kR=— vodr (26)
1/2k
so that (21) becomes to first order in #:
e”-“'”*"”"“)—l=(eml——1)+(e”"l—1)—-2i/ kr*vg
0
1 2901 1
PR ALy PR
2k/ 4 2(kr)?
The total scattering amplitude is given by
1 « )
fCN(9)=;,]; 2 (2+1)Py(cos)[exrtmtan—1].  (28)
ik 1=0

When (27) is substituted into (28) one obtains Auvil’s
result

Fen™@(8) = fy+ fc—fo (214-1) Py(cosh) / al)

1=l

1 eziat_l
X {Rlzeziat_jl2_l:e(r——>] } dr, (29)
2k/ 1 2(kr)?

where the Coulomb amplitude is

fC': _ei(2no—nln[sin2(9/2)]}fc’B. (30)
From (20), (29), and (30) we deduce that to first
order in n, Auvil’s and West’s results are completely
equivalent.
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Consider next Block’s results for the scattering ampli-
tude [Egs. (12), (13), and (16) of Ref. 5], which may
be written as

Fen®(0)=fy—fon—3, (2-+1)Py(cost)
1=0
% l:emzf v (R2— ji2)dr
0

=) [ o=t |- D
0

Adding and subtracting a term similar to (24) as well
as an integral involving the product of v, and the
Heaviside step function and then collecting terms, one
obtains

Jen®(6) = fen ™ (6)
2: © \ . )
+—k fN/; vo[ sin?kr —3e(r—1/2k)1dr (32)

to first order in #. Although Block’s result for the total
scattering amplitude is not quite equivalent to that
given by West and by Auvil to first order in #, the fact
that the difference involves a pure imaginary multiple
of the nuclear amplitude and is of order # means that
the corresponding results for the cross section will
nevertheless be the same to first order in 7.

B. Results for Nuclear-Plus-Coulomb-Like Potential

We now examine the results of the three formalisms
for scattering from a potential of the form #-v. West’s
result is given explicitly in his paper [Eq. (64) of Ref. 6].

Auvil’s result as generalized in Sec. IT may now be
manipulated in a manner analogous to the procedure
used in Sec. IIT A above except that now A; is to be
replaced by «;. Thus, beginning with an expression
similar to (21), we have a first-order term correspond-
ing to (23) of the form

R
2i(e?®1—1) Ilaim [— f kr?j Pvodr+n ankR]
—>00 0

R
—24¢%1 gm / k¥ (R — ji2vo)dr.  (33)
->00 0

Adding and subtracting from (33) an expression of the

type
R £2i1—1
2¢ lim l: / kr“’v(jﬂ—i— —-)dr] ,
R [ 2(kr)?

(34)
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one obtains

o0

’ %11
—2 / kr%(e%‘5 IR2—ji2— )dr
0 2(kr)?

—2i / Fr2 2 (v—vo)dr—+2i(e291—1)
0

1 (B
Xlim [n In2kR—— / vdr] . (35
Be 2k Jo

But one may write

R 12k b
/ vdr= f vdr+ (v—2vo)dr+2nk In2kR. (36)
0 0

1/2k

The two integrals on the right-hand side of (36) are
finite and real in the limit R—, so we may denote
their sum in this limit by #ky, where v is a real constant.
Putting these various results together, one obtains
finally to first order in % the generalized result of Auvil’s

eirran 1 = (1—gny) (21— 1)+ (e2m—1)

o e2iﬁl._ 1
._21;'/ kr"’v[em’RlZ—jﬁ—— :ldr
0 2(kr)?

—Zi/ k22 (v—vo)dr. (37)
0

This result is completely well defined and is now easily
seen by use of (28) and (30) to be equivalent to first
order in # to West’s result® for the scattering amplitude.
- Block’s results for the scattering amplitude may also
be put in the standard form in a manner completely
analogous to that used in obtaining Eq. (32). For the
case of a Coulomb-like potential one finds, as might be
expected,

®B)(9) = W) (g 2
F®O) =1 ()+;fo0

0

o(sinkr—%)dr, (38)

where f)(0) refers to West’s result for scattering from
a nuclear-plus-Coulomb-like potential. Thus, the re-
sults for the cross section are again equivalent to order
”.

IV. DISCUSSION

We have examined the results of the three methods
for treating Coulomb interference corrections and have

15 Note that there is apparently a misprint after Eq. (62) of
Ref. 6. The sum of the first two integrals on the right-hand side of
Eq. (62) of that paper is real to first order in #, so that if their sum
is denoted by nky, one obtains a term fp(1—iny) on the right-
hand side of Eq. (63) in Ref. 6, agreeing with the corresponding
term of Eq. (37) in the present work.
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found that while West’s and Auvil’s results agree to
order 7, the results for the scattering amplitude differ
with those given by Block. This difference, which is not
really unexpected, has no observable physical con-
sequences to order #, and the cross sections to this
order are all equivalent.

One may, in principle, compare the various for-
malisms to higher orders in #. However, only Auvil’s
approach yields higher-order terms in a systematic
and straightforward manner, and comparison of these
results with the others is very involved. In this sense,
Auvil’s formalism can be considered the most useful
in practice, if it is in fact correct, as we suspect it to be.
In any case, one may attempt to test the various ap-
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proaches by considering a particular example, such as
scattering from a charged hard sphere.

In closing, we remark that although the original
interest in this problem arose from the analysis of
pion-helium scattering, numerous further applications
of the above results are evident, and the basic approach
suggested by the formalisms examined here will
doubtless yield useful practical methods for analyzing
the role of Coulomb corrections in future experiments.
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We investigate some features of a Regge model due to Veneziano. First, we state generally which sub-
sidiary trajectories occur when one keeps only the leading-order term; second, by assuming that the 4.z,
meson is on a subsidiary trajectory, we derive an inequality concerning the 7 and mp decay modes of 42y,
and 4.z mesons; third, we study the decay widths for the first Regge recurrence of the p meson.

N explicit model formula for the scattering ampli-
tude, which makes use of the Euler I' function,

has been written down by Veneziano.! The formula has
poles in all channels corresponding to zero-width
particles lying on infinitely-rising linear Regge tra-
jectories, and also has Regge asymptotic behavior in all
channels when we average over the pole-containing part
at high energy. Consequently the amplitude satisfies the
superconvergence and finite-energy sum rules. The
amplitude is what results when we write a simple
product of poles in two channels multiplied by zeros to
eliminate the double poles, and the fact that such a
simple function is Regge-behaved suggests that the
Regge-type power behavior stems from a sum over
resonances in the direct channel—which is the converse
of Schmid duality. An alternative to the sum of three
double products of poles of the Veneziano representation
is the single triple-product term of Virasoro.2 The two
representations are equivalent when a certain constraint
is placed on the trajectories. In the present article we
consider only the double-product model, and in this
model we look at (i) the subsidiary trajectories which
occur, (ii) decay of Aoz, and 4.z mesons, and (iii) decay
of the g meson (the spin-3 recurrence of the p meson).
(1) Subsidiary trajectories in the model. Keeping only
the leading term in the model, the question of which
* Work supported in part by U. S. Atomic Energy Commission.

1 G. Veneziano, Nuovo Cimento 57A, 190 (1968).
2 M. Virasoro, Phys. Rev. 177, 2309 (1969).

subsidiary trajectories are present depends on whether
or not we apply the constraint relation suggested by
Veneziano.! It also depends on whether an equal-mass
pair occurs in the initial or final state (as in an EE
equal-to-equal mass process and in a UE unequal-to-
equal mass process) or not (as in a UU unequal-to-
unequal mass process). To investigate further we con-
sider the s-channel process w(pa)-+n(ps) — 7(ps)
—+p%(pa), which is UU in the s channel and UE in the
¢ channel. We write the invariant amplitude in

T (stw) = €apyspad apPoyPese A (s,t,08) 1)
as

A (stu) =B[B(1—a4,(s), 1 —a, (1))
+B(1 0, (t)a 1 Q4 (u))
—B(l —aAz(u>7 1—‘(¥A2(8))], (2>

where B(x,y) is the Euler B function. We write the
constant sum of the trajectory functions as

o, (8) o, () Faa,(u)=2+e, 3)

so that e=0 is the Veneziano constraint. By inspection
of Eq. (2) it is seen that the residues at ¢-channel poles
are symmetric in s and %, and hence are even in cosf; and
correspond to odd-spin exchange only. For e=0 in Eq.
(3), the poles at even positive ao(t) do not occur; for
e#0 they do. Consequently for e=0, only the even
subsidiaries, spaced K=2, 4, 6, --- units of angular



