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Three distinct, though related, formalisms, developed by Block, by West, and by Auvil, for dealing with
Coulomb interference corrections to nuclear potential scattering problems are considered. Such formalisms
are particularly relevant to the analysis of recent pion-helium scattering experiments, and their equivalence
is examined. It is shown that to first order in the Coulomb coupling parameter n, the results for the scattering
amplitudes given by West and by Auvil (as generalized in the present work) are equivalent but differ from
those suggested by Block. On the other hand, to first order in n the results for the cross sections are all seen
to be equal.

I. INTRODUCTION

~ 'HE possibility of performing experiments aimed
at discovering the electromagnetic form factor

of the charged pion through x+-He scattering' and the
i.ecent realization of such experiments' have stimulated
interest in finding an accurate description of Coulombic
effects as they appear when in competition with
nuclear forces. It is desirable that a suitable formalism
for such a description, apart from allowing for devia-
tions from pure Coulomb interactions, also avoid the
rather involved Coulomb wave functions and employ
the generally simpler (approximate or phenomenologi-
cal) wave functions used to describe scattering from
nuclear potentials. Such as approach, giving an ex-
pansion of the scattering amplitude in powers of the
Coulomb coupling parameter, was first discussed by
Schiff. ' Unfortunately, the approximation given by
Schiff yields terms that are logarithmically divergent,
even though the cross section can be calculated in a
useful manner to first order in the Coulomb coupling
parameter by this method. 4

In order to remove the divergences associated with
SchiG's formalism, Block' has shown by a rather in-
genious approach that if the scattering amplitude is
multiplied by a suitably chosen, unobservable phase
factor, one can then obtain finite results when the ex-
pansion in powers of the Coulomb parameter is made.
Taking a different point of view, however, West' has
been able to extend the original formalism of Schift's
by introducing integrating factors in such a manner
that an apparently consistent and well-defined expan-
sion of the scattering amplitude is also obtained.
Finally, Auvil" has attempted a more systematic and
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rigorous extension of Block's approach which in essence
consists of an examination of the phase shifts rather
than the scattering amplitudes directly.

West's formalism applies very generally to nuclear
(or, more precisely, iinite-range) plus "Coulomb-like"
potentials, where "Coulomb-like" refers to the behavior
of the potential at infinity, being there the same as for a
pure Coulomb potential. Elsewhere, a Coulomb-like
potential has arbitrary behavior, though, it is generally
taken to be nonsingular. Block's derivation is based on
a nuclear-plus-pure-Coulomb potential, but he gener-
alizes his results to Coulomb-like potentials in an intui-
tive manner. Although Auvil's results are for a nuclear-
plus-pure-Coulomb potential, they may be extended in
a straightforward manner to include Coulomb-like
potentials, as discussed below. Obviously, for the
physical problem under study, namely, m+-He scatter-
ing, the interest is in Coulomb-like rather than in pure
Coulomb potentials.

Although the approaches and mathematical tech-
niques used by the three authors whose work. is being
examined here appear quite distinct from one another,
their results may, of course, be compared. It is the
purpose of the present work to examine the various
results for two possible situations: first, scattering from
a nuclear-plus-pure-Coulomb potential and second, the
physically more interesting case of scattering from a
nuclear-plus-Coulomb-like potential. It is shown that,
although, at least to first order in the Coulomb coupling
parameter, West's and Auvil's results are in agreement,
they differ somewhat from those given by Block for the
scattering amplitude for both cases considered. How-
ever, it turns out that all results for the relevant cross
sections are nevertheless equivalent to 6rst order in the
Coulomb parameter.

In Sec. II, we give a very brief review of the methods
used respectively by the three authors and establish a
common notation for discussing all the formalisms. We
also extend Auvil's results to include the case of Cou-
lomb-like potentials. Section III is devoted to examining
the results obtained by the various approaches for
scattering from a nuclear potential plus both pure
Coulomb and Coulomb-like potentials. Section IV
presents a short discussion of our results.
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II. REVIEW OF FORMALISMS

The brief review which is presented in this section is
given mainly to dehne various physical quantities of
interest; complete details'may be found in the relevant
references. ' '

We are interested in nonrelativistic scattering from a
central potential which consists of the sum of a short-
range (strong) component, denoted here by N(r), and
a long-range, comparatively weak, Coulomb-like part,
denoted by v(r), where r is the distance of the position
of the particle from the scattering center. s The solution
g (r, e) for scattering of a particle of mass rn with relative
wave number k by the potential N(r) alone may be
given by an expansion in Legendre polynomials with
the familiar form':

P(r, e) =g (2l+ 1)i'e'e'Rq(r)E~(cos8),
l=o

where R~(r) is the regular solution to the radial part of
the wave equation, with asymptotic behavior

R~ (1/kr) sin(kr ——s'ln. +b~) .

On the other hand, the asymptotic form of the radial
part of the pure Coulomb wave of angular momentum /

is proportional to the expression'

(1/kr) sin(kr —slsr —I ln2kr+ ri~),

unperturbed solutions on which the Coulomb or
Coulomb-like potential acts as a perturbation. However,
unless due caution is exercised in handling this pro-
cedure, difhculties arise from the fact that the asymp-
totic wave forms of the R& as given by (2) can never
by themselves yield asymptotic expressions of the form
(5) or (6). Hence, as emphasized by West and also by
Antoine, ' in order to obtain a consistent approach, one
must either introduce a cuto6 Coulomb or Coulomb-
like potential from the very beginning, or else the
logarithmically distorted nature of the asymptotic
waves must somehow be built directly into the for-
malism. The former device" is employed by Auvil;
the latter approach is used by West and essentially
also by Block.

We now examine briefly the work under discussion.
We begin with Auvil s' approach, generalizing his re-
sults for pure Coulomb potentials in a very straight-
forward manner to the case of nuclear-plus-Coulomb-
like potentials. We de6ne the potential

vn(r) = v(r), r(R
=0, r&E

and consider scattering from the now 6nite-range
potential, I+vn. Making use of standard techniques
for short-range potential problems, one obtains

e'«~ " '"'s~+a~& sin(st~ —ss ln2kR+nE)

where the Coulomb coupling parameter is n=Ze'rps/k,
Ze being the nuclear charge. The phase shifts for scat-
tering from a pure Coulomb potential are defined to
have the well-known form

r'RgSrrv gdr, (8)

where 5& can be shown to satisfy an integral equation
of the familiar form:

ri( ——argl'(f+ 1+its) (4)

It follows that the radial solution to the problem of
scattering from the sum of the nuclear potential I and
the pure Coulomb potential must have the asymptotic
form

(1/kr) sin(kr —sb.—I ln2kr+rf~+B~+D~). (5)

Finally, we associate phase shifts 0,& with the asymptotic
form of the partial-wave solution, S~(r), to the problem
of scattering from the sum of the potentials I+v, in
the following manner:

S~(r) (1/kr) sin(kr —sbr —I ln2kr+ r) ~+ 5q+rr~) . (6)

The basic approach used by all the aforementioned
authors in deriving a formalism suitable to the problem
of interest is to consider the wave functions E~ as the

8 The potentials referred to throughout are the so-called
reduced potentials, having value 2m times the usual definition of
potential, where m is the reduced mass of the particle moving in
the 6eld of the potential.' See, for example, I . I. Schiif, Qnantnm 3leehans'es (McGraw-
Hill Book Co., Inc. , New York, 1955), 2nd ed. , Secs. 19 and 20.

S~(r) =R~(r)+ G~(r,r')vs(r')Srr(r')dr'. (9)

The function GI(r,r') is the Green's function appro-
priate to this scattering problem with the now Qnite-
range potentials. "

We may now follow Auvil's procedure and expand
the left- and right-hand sides of Eq. (8) in powers of I
and compare the corresponding coefBcients on each
side of the equation for large values of R. The expansion
of the right-hand side of (8) is achieved by substituting
for Sg the results obtained by solving the integral
equation (9) by repeated substitutions; on the left-
hand side of Eq. (8), si& and n& are expanded in a Taylor's

"We note that Antoine's work (Ref. 4) also makes nse of a
cutoff potential; however, Antoine's procedure is based on an
expansion of the scattering amplitude, rather than the phase
shifts, in powers of the Coulomb coupling parameter. This leads
to certain apparent divergences, which can presumably be shown
to vanish for speci6c choices for the potentials involved.

'See, for example, M. L. Goldberger and K. M. Watson,
Collision Theory (John Wiley 8r Sons, Inc. , New York, 1964),
pp. 304-306.
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where f)y is the nuclear scattering amplitude

00

f~ ——P (2l+1)(e""—1)PI(cos8)
2ik )=o

(19)

and q= 2k sin'( —', 8). The second term on the right-hand
side of (18) is the Born Coulomb amplitude and yields,
as is well known, the correct magnitude for the exact
Coulomb scattering amplitude. Thus, if we denote this
integral as fe, ii, Eq. (18) becomes

2i(epiPI —1) lim
g -mao

kr'j I2spdr+n ln2kR
0

—2ie"'& lim
R ~oo

0

ky I)p(RP —yl )dy. (23)

Adding to and subtracting from (23) an expression of
the form

terms on the right-hand side of (21) in powers of n to
obtain their value to first order as:

00
00

fc)il(~)(8) =fN fe, ii —p(—21+1)PI(cos8) I)pr2
L=0 0

2i lim
R ~00

kr'vp j)'dr (24)

—e2i&t

Rlpepibl j(2 & y dy (20)
2k 2(kr)'

yields

—2i lim ky2 p p (RI
2epi 6 I

y I2)dy

Lastly, we outline very briefly Block's' procedure.
Block begins with Schi6's' analysis, but he notes that
only the squared modulus of the scattering amplitude
is observable, so that modifying the amplitude by a
phase factor leads to no physical consequences. Choos-

ing such a phase factor to be exp(2ii}p) and expanding
the phase shifts in powers of n )see the discussion pre-
ceding Eq. (10) abovej, Block obtains, unlike SchiG,
finite results for the amplitude to first order in n. The
derivation is based on scattering from a nuclear-plus-
pure-Coulomb potential, but the results are generalized
in an intuitive manner essentially by replacing vp by v

throughout.

III. COMPARISON OF RESULTS

A. Results for Nuclear-Plus-Pure-Coulomb Potential

We now compare to first order in the Coulomb cou-

pling parameter the results obtained by the three
methods discussed in Sec. II for the case of scattering
from the potential u+I)p. West's result for this situation
is given by Eq. (20) above.

Let us first attempt to put Auvil's result into the
form of (20). Consider the expression

+n(e"" 1) l—n2kR . (25)

But we may write

8
n ln2AR =— ~pdr,

2k 1/2k

(26)

so that (21) becomes to first order in n:

ep'(»+&I+pl) —1 = (e»~l —1)+(e»« —1)—22 kr'vp

( 1) e"'—1
&& RI2e2(PI —gl2+ pl r Idr.——

2k) 2(kr) 2
(27)

The total scattering amplitude is given by

1
fe~(8) = p (21+1)P (cIs8o)$ e'2(~(I~I+I)1]. (28)

2zk ~=p

fe~(~)(8) =f2(+fo g(2l+1)PI(co—s8) r 2)p2
L=O

When (2/) is substituted into (28) one obtains Auvil's

result

e»(&I+pl+pl) —1= (e»&l 1)y(e2(—pl 1)—
ge»~lpe»(«+pl) —1j—(e»pl 1) (21)

1) e'"'—1
X Rl'e""—gl' — p~ r

~

— dr, (29)
2k) 2(kr)'

If we use Auvil's result [Eq. (27) of Ref. 7; see also where the Coulomb amplitude is
Eq. (13) above( that

f — ei[2pp —nIn[sin2(P/2) }}f (30)

ky'p p(RI' —j I') dr
From (20), (29), and (30) we deduce that to first(22)

order in n, Auvil's and West's results are completely
and make use also of (12), we may expand the last two equivalent.
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found that while West's and Auvil's results agree to
order e, the results for the scattering amplitude differ
with those given by Block. This difference, which is not
really unexpected, has no observable physical con-
sequences to order n, and the cross sections to this
order are all equivalent.

One may, in principle, compare the various for-
malisms to higher orders in n. However, only Auvil's
approach yields higher-order terms in a systematic
and straightforward manner, and comparison of these
results with the others is very involved. In this sense,
Auvil's formalism can be considered the most useful
in practice, if it is in fact correct, as we suspect it to be.
In any case, one may attempt to test the various ap-

proaches by considering a particular example, such as
scattering from a charged hard sphere.

In closing, we remark that although the original
interest in this problem arose from the analysis of
pion-helium scattering, numerous further applications
of the above results are evident, and the basic approach
suggested by the formalisms examined here will

doubtless yield useful practical methods for analyzing
the role of Coulomb corrections in future experiments.
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We investigate some features of a Regge model due to Veneziano. First, we state generally which sub-
sidiary trajectories occur when one keeps only the leading-order term; second, by assuming that the A2L,
meson is on a subsidiary trajectory, we derive an inequality concerning the mg and m.p decay modes of A21,
and A2II mesons; third, we study the decay widths for the erst Regge recurrence of the p meson.

A X explicit model formula for the scattering ampli-
tude, which makes use of the Euler I' function,

has been written down by Veneziano. ' The formula has
poles in all channels corresponding to zero-width
particles lying on inhnitely-rising linear Regge tra-
jectories, and also has Regge asymptotic behavior in all
channels when we average over the pole-containing part
at high energy. Consequently the amplitude satisfies the
superconvergence and finite-energy sum rules. The
amplitude is what results when we write a simple
product of poles in two channels multiplied by zeros to
eliminate the double poles, and the fact that such a
simple function is Regge-behaved suggests that the
Regge-type power behavior stems from a sum over
resonances in the direct channel —which is the converse
of Schmid duality. An alternative to the sum of three

- double products of poles of the Veneziano representation
is the single triple-product term of Virasoro. ' The two
representations are equivalent when a certain constraint
is placed on the trajectories. In the present article we
consider only the double-product model, and in this
model we look at (i) the subsidiary trajectories which
occur, (ii) decay of A&z, and A&lr mesons, and (iii) decay
of the g meson (the spin-3 recurrence of the p meson).

(i) Subsidiary truj ectories irb the model. Keeping only
the leading term in the model, the question of which

*Work supported in part by U. S.Atomic Energy Commission.' G. Veneziano, Nuovo Cimento 57A, 190 (1968).' M. Virasoro, Phys. Rev. 177, 2309 (1969).

A (stu) =P/B(1 n~, (s), 1—u—„(t))
+B(1—n, (t), 1—ng, (u))

—B(1—ng, (u), 1—ng, (s))], (2)

where B(x,y) is the Euler B function. We write the
constant sum of the trajectory functions as

ng, (s)+np(t)+up, (u) =2+e, (3)

so that e=0 is the Veneziano constraint. By inspection
of Eq. (2) it is seen that the residues at t-channel poles
are symmetric in s and I, and hence are even in cosa& and
correspond to odd-spin exchange only. For e=0 in Eq.
(3), the poles at even positive ns(t) do not occur; for
e/0 they do. Consequently for e=0, only the even
subsidiaries, spaced X=2, 4, 6, ~ ~ units of angular

subsidiary trajectories are present depends on whether
or not we apply the constraint relation suggested by
Veneziano. ' It also depends on whether an equal-mass
pair occurs in the initial or final state (as in an EZ
equal-to-equal mass process and in a VE unequal-to-
equal mass process) or not (as in a UU unequal-to-
unequal mass process). To investigate further we con-
sider the s-channel process m'(P, )+rt(Pb) —+s'(P.)
+p~(pd), which is UU in the s channel and UE in the
t channel. We write the invariant amplitude in

T(stu) —e~erbP~PgsPbyPgbe A (s)t)u)


