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We argue that the expression for the energy-momentum tensor as a quadratic function of currents given
in the Sugawara model must be reinterpreted as the limit of the corresponding expression, with the currents
given a small separation minus its vacuum expectation value as the separation goes to zero, if the expression
is to have any chance at all of making sense in a quantum 6eld theory. We calculate this limit for a wide class
of free Dirac theories with the usual currents in both two and four dimensions. ln many (though not all)
cases, we And that the limit yields the usual energy-momentum tensor. ln calculating the limit in four di-
mensions, we have to multiply by the square of the separation to ensure that the limit exists; this is a re-
Rection of the divergence of the Schwinger terms in the equal-time commutators of currents.

I. INTRODUCTION

'HE Sugawara' model is the outstanding real-
ization of the pure current dynamics envisioned

by Dashen and Sharp. 2 It is a theory in which the
energy-momentum tensor is given as a quadratic
function of vector and axial-vector currents; thus, the
equal-time commutation algebra of currents plays the
same role in determining the dynamics of the theory
as does the equal-time commutation algebra of Gelds
in conventional canonical held theory.

In Sec. II, we review the defining equations of the
Sugawara model and the construction, by Bardakci
and Halpern, s of a Lagrangian 6eld theory in which the
currents obey these equations. We demonstrate that in
classical field theory, the Bardakci-Halpern construc-
tion is reversible. In other words, not only can a
Sugawara model be constructed from every Bardakci-
Halpern 6eld theory by appropriately de6ning the
currents as functions of the 6elds, but a Bardakci-
Halpern Geld theory can be constructed from every
Sugawara model by de6ning the fields as certain path
integrals of the currents.

In Sec. III, we argue that the situation may be
considerably more complicated in quantum field theory.
The fundamental reason for the difhculty is that the
formal Sugawara expression for the energy-momentum
tensor is guaranteed to be divergent, since the product
of any local field with itself must have an infinite
vacuum expectation value. This is not a new problem;
it is the same as the one that arises in defining the
currents themselves as quadratic functions of fields in
ordinary quantum electrodynamics. We suggest that
the solution used in quantum electrodynamics should
be used here; the currents should be separated by a
small amount, the vacuum expectation value should be
subtracted, and the separation should then be sent to
zero. In other words, the forrnal Sugawara prescription
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for constructing the energy-momentum tensor should
be reinterpreted as a limit.

Of course, such a reinterpretation means that many
supposed theorems about the Sugawara rnode1, ob-
tained by naive manipulation of equal-time com-
mutators, are endangered. To demonstrate this, we
"prove" four false "theorems" about the Sugawara
model. These theorems would be true if the limiting
procedure were not necessary. One of these theorems
goes so far as to assert that the model cannot be Lorentz-
invariant. Another asserts that fermion 6elds can
never be realized in this model. We believe that this
shows that we are not being fussbudgets in insisting on
the necessity of the limiting procedure.

In Sec. IV, we consider a wide class of theories based
upon free Dirac 6elds, in both two and four dimensions.
We construct the currents in the usual way as normal-

ordered bilinear forms in the fields and calculate
explicitly the Sugawara limit. In many cases (though
not all) we 6nd that the limit is the conventional

energy-momentum tensor for free Dirac fields. In many
of the cases, this is true despite the fact that the space
components of the currents do not commute at equal
time, and naive arguments (of the sort discussed above)
would lead one to believe that it would be impossible
for the Sugawara expression to yield the correct energy-
momentum tensor.

II. SUGAWARA MODEL AND THE BARDAKCI-
HALPERN REALIZATION

A. Sugawara Model

In practical cases, the Sugawara model is of interest
only when the underlying group is either SU (2), SU(3),
chiral SU(2)&&SU(2), or chiral SU(3)XSU(3). How-

ever, it is hardly more diQicult to discuss the model
for a general compact Lie group t", as we shall do here,
than to discuss these particular cases. The fundamental

dynamical variables are a set of currents j„,where u

Here, and in all subsequent equations, Greek indices run from
0 to 3, Latin indices from the middle of the alphabet run from 1
to 3, repeated indices are summed over, and the signature of the
metric tensor is (+———).
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runs from 1 to dimG. These obey the following equal-
time commutation relations4:

infinitesimal transformations are

s.U=iT.U, (2 9)
$jp x),jp' y) =ic "jp' x 8' x—y, 2.1a)

and the corresponding conserved currents are
where c ' are the structure constants of G; j„'=(c/iX) TrT'UB„Ut. (2.10)
Ljo (x) j"(y)3=ic"'i"(x)&'(»—y)

+i cb 'B,*P(x y),—(2.1b) Since these currents are obtained from the infini-

tesimal transformations (2.8), it follows that their
fourth components must be the generators of the
corresponding local transformations

where c is some constant; and

t j' (x),j"(y)1=0. (2.1c)
Ejp (x),U(y)j=T U(x)~'(» —y) (2 11)

The dynamics of the model is determined by the
energy-momentum tensor

&"=( c) '((j j )+ g"i:—i ") ( )

where the sum over repeated indices is implied.
Sugawara showed that these equations define a

(formally) consistent relativistic field theory. The
equations of motion are

(2.3a)8"j„~=0)
(2.12)r„,=2'/8g ".

(2 3b) Now, it follows from Eq. (2.5) that

and

~j:= (c "/2c)(i.'j:)+.

from which the commutators (2.1a) and (2.1b) follow
as immediate consequences. The commutator (2.1c) is

trivially valid, since the space components of the
currents involve only the space derivatives of the p's.

To show that the energy-momentum tensor has the
proper form, we use a formula from general relativity:
If the action integral I for any field theory is written in

generally covariant form, then

UB„U'=—(8„U)Ut

='A—'T' TrT~UB„U'.

I =(1/2c) d'*(v' da""i:i:—
(2.4)

B. Lagrangian Realization

Bardakci and Halpern were able to find a Lagrangian
Geld theory possessing a set of currents that obeyed
the equations of the Sugawara model. This field theory
can be constructed in the following way: I.et T' be a and the covariant form of tbe action integral is
set of Hermitian matrices forming a faithful repre-
sentation of the Lie algebra of G; that is to say,

(2.13)

(2.14)

(2.1.5)

If the structure constants have been defined in a.

standard (Cartan) basis, this implies that

from which Eq. (2.2) follows directly.
(It should be remarked that it is possible to define

another set of currents by using right multiplication

TrT T'=X6 ', (2.5) U~ UV, (2.16)

with X a constant depending on the representation.
Let q be a set of scalar fields. Define

U= expiT y . (2.6)

The Lagrangian for the theory is then, according to
Bardakci and Halpern,

Z = (c/2X) Tra„U'cl&U. (2.7)

U —+VU, (2.8)

where V is the representative of any fixed dement of
G. (Note that this transformation would assume an
extremely complicated nonlinear form if written

, directly as a transformation of the q 's.) Tbe associated

(Although we shall not do so bere, it is straightforward
to show that this function of the p's depends only on
G and not on the particular representation chosen. )

This I.agrangian is obviously invariant under the
transformation

instead of left multiplication in Eq. (2.8). We could
have used these currents as well as our original ones to
obtain a realization of the Sugawara model. However,
we cannot use the full set of currents to obtain a
realization of the Sugawara model for G)&G as one
might think, since the full set of currents has q-number
Schwinger terms in some', .&~ofJlfgthe space-time
commutators. )

C. Uniqueness of the Realization in the Classical Case

All of the arguments of the preceding sections are,
of course, purely formal: They involve the products of
field operators with themselves at the same space-time
point, and we know that in a quantum field theory,
such objects must be divergent. (In particular, they
must have in6nite vacuum expectation values unless
tbe fields themselves vanish. ) However, it is possible
to consider classical Sugawara models in which the
currents are c-number functions of space and time,
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U(P, x) =P exp—
C

T j„'dx", (2.17)

where the I' symbol indicates that the terms in the
exponential are to be ordered such that the matrices
which are later on the path are on the left. If we make
a small variation in I', keeping the end points fixed, it
is easy to see that the corresponding change in U is
proportional to

and the commutators are replaced by Poisson brackets.
In this case, the operations of the preceding sections are
all legitimate; further, it is possible to show that the
3ardakci-Halpern construction described above is
unique in the sense that every classical Sugawara
model can be obtained from such a field theory. In
other words, the set of classical Sugawara models
(defined by equations of motion and Poisson brackets
for vector currents) is the same as the set of classical
Bardakci-Halpern field theories (defined by equations
of motion and Poisson brackets for scalar fields).

The proof is simple: I et x be any point, and let I' be
any smooth path going from the origin to x. Define

for the electromagnetic current. Nevertheless, despite
this handicap, we have no dHBculty in detecting the
existence and determining the properties of Fermi
particles. Obviously, the vector nature of the current
is not of crucial importance in this argument; therefore,
if we had the complete set of Green's functions for the
scalar 6elds that enter into the 3ardakci-Halpern
Lagrangian, we might well find, in calculating the
results of certain thought experiments, that the theory
contained Fermi particles. For the details of just what
properties of the Green's functions are relevant, see
any book on experimental physics.

In more formal language, we would say that there
may exist fermion states in the Hilbert space of solu-
tions to the Sugawara-Bardakci-Halpern theory, with-
out there necessarily being fermion interpolating fields.
One cue decide whether or not fermion states exist,
for example, from a complete knowledge of the spectral
function of the vacuum expectation value of the time
ordered product of two currents. Thus, for example,
the threshold behavior of the spectral function of the
two-point fuaction for a 1 current

(o"'/o)i.—'i: (2.18) p(P')(g""p' p"P")=P—&Olg" IN)(eIj "IO)8(e p), (2.19)

(The last term arises from the path ordering. ) But Eq.
(2.3b) says that this object vanishes. Thus U is in-
dependent of the path chosen and depends only on x.
Once we have U(x), we can define p(x) by Eq. (2.6).
Further, differentiation of Eq. (2.17) leads to Eq.
(2.10).Thus, starting from the currents of the Sugawara
model, one can define a set of scalar fields such that the
currents are expressed as functions of the fields in the
same manner as in the Lagrangian model.

The only question that remains to be settled is
whether the equations of motion and Poisson brackets
of these scalar fields are the same as those given in the
Lagrangian model. However, since the fields are given
by Eq. (2.17) as functions of the Sugawara currents,
their equations of motion and Poisson brackets are
certainly uniquely determined by those of the currents.
Also, we have already shown that the Poisson brackets
and equations of motion of the Lagrangian model are
consistent with those of the Sugawara model. Thus,
the answer to the question must be yes, and we have
shown the desired uniqueness.

We emphasize that even were this result true in the
quantum case (we shall show it is not), this would Not

necessarily mean that the Sugawara theory would be
incapable of accommodating Fermi particles. We will

give a simple argument to demonstrate this: Ultimately
all physics experiments are done, by moving things
with our hands and observing the results with our eyes.
Since both of these processes are electromagnetic in
character, all physics experiments can be reduced to
measuring the response of the electromagnetic current
to prior applications of that current. In other words,
all we measure in practice, are the Green's functions

depends on the spins of the intermediate states. Near
the threshold for production of a particle-antiparticle
pair (of mass yg) p(p2) —(p2 4gg2)1/2 or (p2 4ypP)B/2 if
the particle is a fermion or a boson.

III. SINGULARITIES OF THE SUGAWARA
ENERGY-MOMENTUM TENSOR

A. Products of Currents

We have stated that the products that occur in the
fundamental Sugawara equation (2.2) are necessarily
divergent in a quantum field theory. How, thea, are
they to be interpreted? A clue is offered by ordinary
quantum electrodynamics, where currents are defined
as bilinear forms in underlying fields. There, the answer
to the problem is to separate the two fields bv a smill
amount, subtract the vacuum expectation value, and
allow the separation to go to zero. This suggests that
the same stratagem be used to define products of
currents themselves; that is to say, that an expression
1ike

J.(*)J.(x)

should be interpreted as a limit

»' i.( +-' )i (*--' )-(i.(*+-' )i.(*--' ))o (31)
e~o

However, we know in quantum electrodynamics, that
even this procedure does not suffice to make the electric
current well defined, except for the trivial case when
the electron charge vanishes. It is also necessary to
multiply the expression (3.1) by an e-dependent
constant, which goes to zero as ~ vanishes, at least in
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perturbation theory. Formally, this arises because the
true electromagnetic current is a bilinear function in
the unrenormalized fields, multiplied by a 6nite con-
stant. However, only the separated product of re-
format'ised fields is well de6ned in perturbation theory.
Thus, as we allow the separation to go to zero, we must
simultaneously "undo the renormalization. '" A similar
procedure might also be necessary in the Sugawara
model. If it is, we will refer to the phenomenon as
"renormalization of the Sugawara constant c," in
analogy with the electrodynamic case. As a guess, we
might expect c renormalization to be necessary in
theories in which the Schwinger terms in the current
commutators are divergent.

With these interpretations of products of currents,
we are in a position to determine whether, in any given
field theory the Sugawara model expression gives the
correct energy-momentum tensor. All we have to do
is to calculate the matrix elements of the limit and see
if it reproduces the matrix elements of the energy-
momentum tensor. For a solvable model, this is a direct
calculation. For a nonsolvable but renormalizable
theory, the calculation can be done order-by-order in
perturbation theory; this is an onerous, but well-de6ned
task. For nonrenormalizable theories, the best we can
do is use formal arguments based on the interaction
picture; this is notoriously unreliable, but it may be
suggestive. In this paper, we will restrict ourselves to
solvable models; nevertheless, despite the triviality of
these theories, we will obtain some surprises.

An important question to be answered in any model
is whether the liiniting procedure gives the proper
energy-momentum tensor when only spacelike sepa-
rations are taken, or whether it is also necessary to
average over timelike separations. If the latter is the
case, then many of the consequences of the Sugawara
model, obtained by naive manipulation of the equal
time commutators, are endangered; indeed, the whole
concept of a dynamics determined by current com-
mutation relations disappears.

B. Four False Theorem. s

We emphasize that taking this care with limits is
essential if we are to avoid a hopeless muddle of con-
tradictions. To demonstrate this, we will give four
arguments which would be valid were it not necessary
to dehne the energy-momentum tensor as a limit.
However, we will show in Sec. IV, by constructing
counterexamples, that all four arguments are false. In
each case, the false conclusion is italicized.

(1) It is possible to show, from Lorentz invariance
and positive definiteness of the inner product, that the
equal-time commutator of T" with T" and of T"with
T&~ must contain terms proportional to three derivatives
of a delta function. 6 However, it follows directly from

' The same thing happens in the Thirring model; see K. Johnson,
Nuovo Cimento 20, 773 (1961).' D. Boulware and S. Deser, J. Math Phys. .8, 1468 (1967).

the defining equations of the Sugawara model, Eqs.
(2.1) and (2.2), that no such terms can occur. There

fore, the Sugawara model must violate Lorentz ineariance
or positieity of the metric

(2) Let us suppose we can find a theory of the
Sugawara form involving a spinor field P. Let us con-
sider 3P', the generator of Lorentz transformations in
the ith direction. At time t=O,

&g3P'= x'Tood'x. (3 2)

On the other hand, from the known transformation
properties of spinor 6elds

gpj, a+ (cage)gsj. p p (3.5)

For this to be Lorentz-invariant, c' must equal c, for
every a.

(4) In the same spirit, let us attempt to weaken the
space-space commutators by replacing Eq. (2.1c) by

where
Q. .+b— C ..bc (3.7)

Again, direct calculation shows that Eq. (2.3b) is
replaced by

Bpj, Bj, —(—2c) 'c'"(jp',j )+ i(C;, ',j"——)+, (3.8a)

and

(2c) c'"tj"7'~')+=&f7'p—'C'~")+ (3. b)

We emphasize that this "result" remains true in a theory of
one space and one time dimension. Thus we are in sharp dis-
agreement with C. Callan, R. Dashen, and D. Sharp, Phys. Rev.
165, 1883 (1968),as well as C. Sommer6eld, ibid. 176, 2019 (1968),
who claim that the Thirring model is eguivalent to a Sugawara
theory without any concern about the singular nature of the
products.

This is clearly consistent with the Sugawara form for
the energy-momentum tensor only if the commutators
of the currents and f involve gradients of 5 functions.
Thus, the Sugamara model car owly accommodate Fermi
fields if the currents tkemselees insolate gradients of those
field. In particular, when the currents are Noether
currents arising from an internal symmetry trans-
formation, the Sugawara theory cannot accommodate
fermion fields. '

(3) Let us explore the possibility of relaxing the
connection between the Schwin ger terms and the
coeKcient c appearing in the expression for the energy-
momentum tensor. To be speci6c, let us replace Kq.
(2.1b) by

Ljo'(x) j"(y)3= c'"j"(x)~'(» —y)
+ic'b~'8 P(x—y), (3.4)

(no sum on b) while retaining Eq. (2.2). Then direct
calculation shows that Eq. (2.3a) is replaced by
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The left-hand sides of these equations form the com-
ponents of an antisymmetric tensor; therefore, the
right-hand sides must also. In particular, this implies
that the space sp-ace commutators cannot be of the form
suggested by the quark model (excePt in tloo dimensions).

the relevant contraction is not the Feynman function
but

~"'(x—y) =4 (x)f(y) —:4(x)&(y):=&4 (x)%t (y))o (46)

Applying Wick's theorem, we Gnd

IV. FREE-FERMION MODELS

A. De6nitions: Fundamental Formulas
T„„=lim—LQ„„(x,e)+j„„(x,~)+j„„(x,e)'"' 2c

The models we shall investigate will all be based
upon a set of free Dirac Gelds of identical mass in either
two or four dimensions. We will take the usual definition
of the currents where

+j"(*,—~)+j"(x, —)—g"(j."(*e)

j~'=:4'v~Tv: (4.1)

where the colon indicates normal ordering, and the T's
are a set of Hermitian matrices obeying

=ic'" (4 2)

The equal-time commutators of these currents may
readily be calculated. The time-time commutators are
of the standard form, Eq. (2.1a). The space-time com-
mutators are of the form given in Eq. (3.4), with

C'=lr-' Tr(T )' (4.3)

2'„„=lim—(j„(x+-',e)j„(x—2e)+j„(x+2e)
a~0

xj:(*—2e) —g"j" (x+-:e)je(x—2e)j
—vacuum expectation value . (4.5)

As discussed in Sec. III in two dimensions, we expect
c to be a constant. In four dimensions, we expect it to
depend on ~ and to diverge as ~ goes to zero. To study
the limit, it is convenient to turn (4.5) into a normal-
ordered polynomial using Wick's theorem. Since the
original ordering is ordinary ordering, not time ordering,

One can show that this can happen only when

(1/2c) (Ao~PC~*~'7j, ~'}+ 0, -
where h. ' is de6ned for any operator Q by

ge', 6(0)7='x"L67.

in two dimensions, and with c divergent in four di-
mensions. The space-space commutators are similar to
those of the quark model; we will not need their explicit
form in our work. The symmetric energy-momentum
tensor for this system is given by

o'..=4':(A.~.4+4m. ~A ~.PvA ~.4v 4): (4 4)

We will calculate the Sugawara expression for the
energy-momentum tensor. and see if it agrees with
(4.4). Following the limiting procedure described in
Sec. III, we deGne

and
70=0m

&&=or)

(4.10a)

(4.10b)

and indicating by subscripts the two components of the
Dirac Geld, we Gnd

Q00 ~ UO) + (jl) ~ E(glfl 42lP2)

+(4'—426)'j: (4.11)

Because of the antisymmetry of the normal-ordered
product, any term with two pl's, two $2's, etc., auto-
matically vanishes; thus,

Qoo= 2:L4 4 4 4 +44—0 4 ]: (4.12)

But these two terms diBer from each other by an odd
permutation; thus, Q02 and hence all components of Q
vanishes.

We now turn to the quadratic term. To evaluate
this we need the explicit expression for the contraction
function for a massless two-dimensional Dirac Geld:

S'+'(e) =—(i/22r) (y e/e') . (4..13)

Q"(*~) =:Lj:(x+2')i'(x—2e)+j:(*—2~)

Xi:(x+2')—g"i~ (x—2e)i "(x+2e)j: (4 8)

is a quartic, normal-ordered polynomial, and

j"(x,e) =:0(x+2')V.T ~'+'(e)V.TV(x—2e): (49)
is a quadratic polynomial.

Note that since the quartic term is fully normal
ordered, it can have no singularities as e goes to zero;
therefore, we may replace it in the limit by its value
at zero. Also, it is manifestly a tensor regardless of the
direction of ~.

We will now apply these formulas to a sequence of
special models.

B. Single Massless Fermi Field in Two Dimensions

In this case, there is only one current. We choose T
to be one; the Schwinger constant by Eq. (4.3) is 2r '.
First we will show that the quartic term Eq. (4.8)
vanishes. By the remarks of the preceding paragraph,
it suffices to show that Qoo vanishes. Choosing a basis
for the Dirac y's in which
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Now the expression (4.7) for the quadratic term is a
sum of terms of the form

where the sum now runs from zero to n2 —1. Di6er-
entiating with respect to M and X, we 6nd

Tr[F (e)S&+&(e)+F(—e)S&+&(—e)j, (4.14)

with Ii a spinor function. If we expand P in power series

(T )-p(T.), =b. bp„
or, if we sum only over the traceless matrices

(4.24)

F(e) =F(0)+e"B„F+ (4.15) (T'), (T ) =b,b —(1/ )b b„, . (4.25)

and average ~ over an orthonormal pair of vectors, one
spacelike and one timelike, we find

lim Tr[F(e)S&+&(e)+F(—e)S&+&(—e)7

This does not have the desired symmetry properties.
However, if we redefine T with the unconventional
normalization

T'= [(m+1)/e]'12I, (4.26)

Trv BF. (4.16) then the sum over all I' matrices is given by2'
(T ).p(TN), g=b ebp, +b pb„, (4.27)

C. Many Massless Fermi Fields in Two Dimensions

For a single field, the vanishing of the quartic term
was a consequence of its symmetry in the Dirac indices.
Clearly, for the same to happen for many fields, the
quartic term must also be symmetric in internal indices.
That is to say

(T ) p(T ),g
——(T ) e(T )~p, (4.20)

where the Greek subscripts indicate matrix elements,
and as always the sum over u is implied.

We will now show that this condition is not fulfilled

for SU(e) but is fulfilled for U(e) if the normalization
of the currents is chosen in a certain (unconventional)

way. Let us choose as the generators of SU(n) a set of
e' —1 traceless Hermitian matrices normalized such
that

(4.21)

If we add to this set an extra matrix

T'= (1/Qe) I, (4.22)

the full set of matrices now forms a basis for the space
of all n)&e matrices, with the inner product defined by
the trace; that is to say for any matrices M and E

TrMtT TrT 1V=TrMtN, (4.23)

Applying this to Eqs. (4.7) and (4.9), we find that

( e/8'&rc) [r1&4'Y 'Y Y 0 4"YP' 'Y r&&4'

+~x4''Yv'Y 'Ypg' O'Yv'Y 'Ypr&&$ gp~~&f'Yp'Y 'Y~P

+g"fv.v"v'~4$: (417)

Permuting the p's and using the Dirac equation

(4.18)
we find

T„„=i/47rc:$pY„&,p+p&.V,4 &,4V.f ~—.4'V A'j:
= (1/~c) 0„.. (4.19)

This is precisely the desired result if we choose c to be
x '. Notice that this model is a counterexample to the
first and second false theorems "proved" in Sec. III.

which does have the desired property. These matrices
form a set of generators for U(e), with Schwinger-term
coefficients given by

and
c'= 1/7r, a&0 (4.28a)

T T'= (m+1)I. (4.29)

Thus, we will obtain the desired result if we choose

c= (n+1)/~. (4.30)

Note that these models are counterexamples to the
third false theorem "proved" in Sec. III.

D. Massless Fermi Fields in Four Dimensions

In four dimensions, because the coefficient of the
Schwinger term is divergent, we expect the Sugawara
expression for the energy-momentum tensor to also
diverge unless we renormalize c, that is to say, make c
dependent on e. This guess is verified by the form of
the contraction function

S&+&(e) ~ ey e/e4. (4»)
This would clearly make the quadratic term, Eq. (4.9),
diverge, unless we choose

c(e) ~ 1/e' (4.32)

If we do make such a choice and also average over an
orthonormal quadruplet of vectors, the calculations
are all identical to the previous ones, and we can
obviously make the quadratic term yield the energy-
momentum tensor provided

'f T ~I. (4.33)

This condition can be fulfilled for a wide choice of T's.
Schur's lemma guarantees that it holds whenever the
fields form an irreducible representation of the group

c'= (m+1)/m-. (4.28b)

The quadratic term has precisely the same structure
as in the one-field model, except that between every
pair of fields there occurs the matrix
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of the currents. It also holds in many cases where the
representation is reducible; for example, in the cases
discussed immediately above.

In sharp contrast to the situation in two dimensions,
the quartic terms automatically vanish as e goes to
zero, since they are finite expressions multiplied by e .
Thus, there is no analog to Eq. (4.20); Eq. (4.33) is
both necessary and sufficient for the limit of the
Sugawara expression to reproduce the energy-mo-
mentum tensor.

These models are counterexamples to the fourth false
theorem "proved" in Sec. III.

E. Massive Fermi Fields

We will now investigate how our conclusions are
altered if the Fermi fields have nonzero mass. As
before, we begin with a single Dirac 6eld in two
dimensions. For small e, the contraction function is
given by

S(+i («) =—(i/2m ) (v «/«') (m/—4') (ln-,' «'m' v~)—, (4.34)

where yE is Euler's constant. At first glance, it might
seem that the logarithmic terms in this expression
would spoil the limit. However, it follows from Eqs.
(4.7) and (4.9) that their coeflicient in the expression
for T~" is

:4'v»v4:+ 4v.v»4: g":4'v»v—9:=o (4»)
Of course, the quartic terms vanish just as before. Thus
Eq. (4.17) for the Sugawara energy-momentum tensor
is still valid. The Dirac equation for massless fields Eq.
(4.19) is replaced by

(iv 8 m)$=0, — (4.36)

where m is the common mass of the 6elds. After some
straightforward Dirac algebra, we find that

Then, using the same techniques as before, and averaging
over an orthonormal quadruplet, we find

1
lim pj»„(x,—«)+j»„(x,—«) $

e-&0 2~

=:(-' 4v,v.4+« 4v.v'v. ~ 4-« ~ 4v,v"v4):

=:(&mdiv»v4+ '«4v»~. 4 -'~~»kv4): (4.41)

where we have used the Dirac equation at the last stage.
Thus,

0»"=T» "+mg»" PP (4.42)

This is a precise parallel to the two-dimensional
equation (4.37). If there are many fields and their
masses are different, then, for appropriate choice of
c(«)

0»"=T»"+g»":PMP:. (4.43)

F. Axial-Vector Currents

In the preceding work, we have restricted ourselves
to vector currents; however, in the models we have
considered, it is also possible to de6ne axial-vector
currents:

In four dimensions, the contraction function for
small e is given by

S(+i («) =L1/(2n)'jL(iv «/«4) —(m/2«')

+O(ln«) j. (4.39)

Just as in two dimensions, we will restrict ourselves, for
simplicity, to a single held; it is easy to check that
everything we do is also applicable to the case of many
fields. We choose c(«) to be proportional to « ' and
scaled such that

Si+i(«)/2c(«) = —-', (iv «/«')+-', m+0(«' ln«) . (4.40)

0~»~= T»~+img» (4.37) j»'=:4T v vV: (4 44)

Q»" = T»"+'g»" PMf. -
where M is the mass matrix.

(4.38)

' K. Bardakci, Y. Frishman, and M. HaIpern, Phys. Rev. 170,
1353 (1968).

where, as always, TI'" is the Sugawara expression for
the energy-momentum tensor, and 0'"" is the actual
energy-momentum tensor.

Equation (4.37) is reminiscent of a suggestion of
Bardakci, Frishman, and Halpern, ' that, in the presence
of symmetry breaking, the Sugawara energy-momentum
tensor should be modified by adding a term proportional
to the product of a scalar 6eld and the metric tensor.
Of course, in our case, since the current is vector, giving
the 6eld a mass does not break the symmetry.

It is easy to see that all of these conclusions hold
without alteration for the case of many Dirac fields in
two dimensions. If the masses of the 6elds are not
identical, Eq. (4.37) is replaced by

where p' is normalized such that its square is one. If
we study the expression T„„'defined just as T„„was
in Eq. (4.5), but with axial-vector currents replacing
vector currents, it is easy to see that, in every term that
survives the limiting procedure, the two y"s always
occur with two y„'sbetween them, and may therefore
be neglected. Hence, all of the results we have stated
for T„,are equally true for T„„',or for the average of
these objects, ', (T„„+T„„').—

V. CONCLUDING REMARKS

Since the operator products which occur in the
defining equations of the Sugawara model can be
de6ned only as a limit, in order to specify the theory
completely, it is necessary to specify the nature of this
limit —that is to say, to determine the singularity struc-
ture of the operator products for small separations. In
the models we have investigated, we have been able to



COLEMAN, GROSS, AND JACKIW 180

determine this singularity structure only because the
models are based on a trivial exactly solvable canonical
field theory. Ke have no idea what are reasonable
hypotheses to make about the singularity structure in
less trivial cases. We believe that this important un-
solved problem must be faced if the program of dining
dynamics exclusively iu terms oftI'currents is to be
brought to a successful conclusion.

(Of course, exactly the same remarks could. be made
about conventional Lagrangian field theory; however,
here, at least, perturbation theory can give us important
clues. )

In particular, because we have found it necessary

in all of our models to average over both timelike and
spacelike directions, many results obtained by naive
manipulation of the Sugawara equations are false in
our models. The four false theorems of Sec. III are
examples of this.

We 6nd this extremely disquieting: The Sugawara
model, which upon naive inspection appeared to be a
set of logically connected propositions, each one neces-
sarily following from its predecessors, has dissolved
before our eyes into a collection of disconnected
assertions, any one of which may or may not be true
independently of the validity of the others, in any
given theory.
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It is shown that under certain assumptions the Glauber multiple-scattering series can be summed ex-
plicitly to give a closed expression for the amplitude describing the interaction of a high-energy particle
with a nucleus. The advantages of this description are discussed, and it is shown that available data are well
described'by the theory. Application of the theory to inelastic processes is given, and it is shown how
quantities like O.g&g and O.yiv, total scattering cross sections which are not otherwise measurable, can be
obtained.

I. INTRODUCTION

ECENT high-precision work on proton-nucleus
elastic scattering' has led to renewed interest in

the problem of particle-nucleus interactions, both in
the case of elastic' and inelastic' scattering. In this

paper we wish to carry this work further along by
making two points. First, we shall try to show why
such interactions are potentially of great interest to
particle physicists, and, second, we shall try to show
that it is possible to formulate a theory of such inter-
actions in a conceptually simple way, and that this
theory agrees well with what data are available at the
present time.
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There are strong reasons why one could wish to
understand particle-nuclear interactions. If one has a
good theory for such processes, then one can use nuclear
targets in high-energy experiments to obtain data which
are not easily attainable by direct measurement, and in
some cases data which are not directly attainable at
all. In particular, there are three sects connected with
nuclear targets which are potentially of great interest to
particle physicists.

The first of these is the effect of muclear coherence.
If the cross section for a particular process to go on a
hydrogen target is O.H, then the cross section to go on a
nucleus of atomic number A will be o-~ ——OHA", where
e&0. Thus if we wished to examine rare production
modes, which we frequently would like to do, we could
look at production on a nucleus, and then use our
theory to extract the production from a single nucleon.

The second useful effect is nuclear rescatterimg. One
would frequently like to examine the interactions of
very short-lived particles with nucleons. Unfortunately,
most strongly interacting resonances have decay paths
of the order of tens of Fermis, and thus cannot be made
into beams for scattering experiments. However, if
such a particle is produced inside of a nucleus, then it
will have the chance to strike nucleons on its way out
of the nucleus, and, once again, a good theory of particle-
nucleus interactions would enable us to extract the


