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Equivalence Principle for Massive Bodies Including Rotational Energy
and Radiation Pressure
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(Received 1'I October 1968; revised manuscript received 11 December 1968)

The Einstein gravitational theory and the Brans-Dicke gravitational theory are investigated for the
gravitational-to-inertial mass ratio (m, /m;) they yield for massive systems. We examine models for stars
in equilibrium but undergoing rotation or containing electromagnetic radiation. General conditions on
the space-time metric of many mass sources are obtained which lead to er, /ns;= 1 for the massive systems.
It is found that m, /m;H1 for a nonrotating star in the Brans-Dicke theory. The violation is of order 10
for the Sun. In the Brans-Dicke theory there are also contributions to ta, /ra;Wl due to the radiation content
of a star. This violation is of order (radiation energy)/(stellar mass), yielding a correction of about 10
for the Sun.

I. INTRODUCTION
' 'N previous papers, ' ' hereafter referred to as I and II,
~ - an investigation of the gravitational-to-inertial
mass ratio m, /m, of massive systems in gravitational
theories was begun. The essential result of II was that
a two-body orbiting system or a gas sphere of mass
elements has a m, /m; ratio of one for Einstein's theory
but not in the scalar-tensor theory of Brans and Dicke
(BD).' In I and also in another paper4 we discussed
possible experimental tests of rN, /rri, ; for astronomical
objects.

In this paper we add the following results to this
investigation:

(a) The m, /m; ratio for a rotating gas sphere is ob-
tained for a general gravitational theory which is ex-

pressible in a space-time geometrical form. The rotation
does not change m, /m; in either the Einstein. or BD
theory.

(b) The res, /m; ratio for a gas sphere maintained in
equilibrium partially by electromagnetic radiation pres-
sure is obtained. The BD gravitational theory predicts
that m, /m; differs from 1 by a term of order (total
radiation energy/total mass) of the gas sphere, whereas
Einstein s theory gives no violation of m, /m;= 1 due to
radiation pressure. This violation of the equivalence

principle for the Sun in the BD theory is of order 10
if a solar temperature of 10' 'K is assumed.

(c) The active gravitational mass' for massive bodies
is determined for the general gravitational theory.
Einstein's theory predicts an active gravitational mass
which agrees with the Newtonian energy of the system

(M, =m+T+ V); the BD theory yields a gravitational
mass which is not the Newtonian energy.

(d) In the Appendix, the metric component gas is

calculated in the BD theory for the case of many mass
sources, complete to second order in the mass strengths.

gpp is required to this accuracy to make the conclusions
above concerning the m, /m; ratio of massive bodies in

the BD theory.

II. ROTATING GAS SPHERE

As in II, we write the most general space-time metric
produced by many mass elements m;:
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' K. Nordtvedt, Jr., Phys. Rev. 169, 1014 (1968).' K. Nordtvedt, Jr., Phys. Rev. 169, 1017 (1968).
3 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
4 K. Nordtvedt, Jr., Phys. Rev. 170, 1186 (1968).' Active gravitational mass of a system is dehned as the strength

of the mass parameter which gives the Newtonian gravitational
potential about the system.

The coefficients y, P, 6, 3,', n', n", n"', and X are
dimensionless, to be determined by a gravitational
theory's field equations. In Einstein's theory all are
equal to 1 except 6'=0.

Now consider a massive body consisting of many mass
elements plus a distant mass no~. The acceleration of
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P m,v,2 (t)„=-', Q m, vP (t) .
each mass element toward ma is given by t'adap'ting the thermal motion:
Eq. (41) of paper II)

mj
a;=ga 1+(4h —2P —2y —IX)P —+yv;2 Finally, (5) gives

a=Ca 1+(k(»—4P —3V—X)
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To simplfy (5), several virial conditions are employed:

mj
+L4~'+l (X ')+—V+P)g. 2

j rij'

—(2V+2)gzv, »v,'. (4)

ga is the Newtonian acceleration toward the external
body ma.

~~
and J refer to the direction ga. Summing

(4) over all the mass elements of the massive body,
each weighted by their mass, gives the acceleration of
the whole body

mimj
+-.'(»'+2~+X- '-2)) Z

ij Mr;j

(86'+2P+X —n' —2) (sin'8 ——')T(rot)

M

(»'+2P+X —n' —2)ga sin8 cos8 T(rot)-
(9)

g is the unit vector perpendicular to ga but in the plane
of gz and the body rotation axis. For the m, /m; ratio
of the rotating massive body to be one leads to two
conditions on the metric coefficients:

8A —4P—3y —X=O, (10a)

Sd, '+2P+X—o,
'—2 =0. (10b)

Using the results of the Appendix to this paper, it is
seen that (10b) is fu161led for both the Einstein and
BD theories. In fact we will denote theories with (10b)
not satisfied as pathological in that they predict a
noncentral 1/E' acceleration toward distant mass.

Equation (10a) does not vanish in the BD theory,

(8h —4P —3y —X)sn ———1/(2+(u), (11)

so (9) yields

mim j
Q m;v;2 (t)+P m;v, 2 (r) =-,'P (6a) asn=azl 1—

4+2') 't 3fr;;f
(12)

' j
pm, v (t)„+pm.;v (r)„=-', g — r;;,P,

mimj
P m, v, (r)„v,(r),=-', P r;;„r,;,. (6c)

'j rij'

Using Dicke's suggested value of co=6, the Sun will

fall anornalously slow in a gravitational fieM, the correc-
tion amounting to about xs of (Sun's gravitational self-
energy/Sun's mass).

III. GAS SPHERE WITH RADIATION PRESSURE

(r) refers to rotational motion and (t) refers to thermal
motion. I.et T(rot) be the rotational kinetic energy of
the massive body and 8 be the angle between gz and
the body's rotation axis; then

More realistically, stars have some of the internal
pressure needed to balance the gravitational attraction
of the matter supplied by electromagnetic radiation
pressure. The pressure is related to the radiation energy
density by

P m, vP(r) =2T(rot), (7a)

Q m;v 2(r) ), =sin'8 T(rot),

P(x) =3~(x).
The modified virial relation for equilibrium now reads

(7b)

P m, v;(r) „v;(r),=sin8 cos8 T(rot) . (7c)

mim jg m, v,2+ m(x)dV=-2 P (13)

Equation (7c) is valid if the perpendicular direction
is in the plane de6ned by gz and the body rotation axis.
Otherwise (7c) gives 0. Also, we have the average over

Also, the presence of radiation in a body will affect
the rate at which the body falls because of the pertur-
bation (deflection and frequency shift) of that radia-
tion by the external mass m~.
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FIG. 1. A photon of momentum p has three contributions to its momentum change during travel of distance d.

Consider a pulse of radiation which has rejected off
one mass element and travels a distance d before inter-
acting with another mass element. Figure 1 shows the
three changes in the momentum of the electromagnetic
pulse relative to the rest frame of the massive body after
the time 1=d/c.

The total momentum parallel to g& absorbed by the
mass elements from the radiation is then

8p = (gad p/c) L (1+y) sin'8+cos'8 —1].
Dividing by the time elapsed between radiation

impacts on matter, d/c, summing over all the radiation
in the body, and making the directional average,
yields an acceleration of the gas sphere due to the
gravitational attraction of the radiation

(14)

However, the radiation modifies (13), the virial
relation in the gas sphere. Also the radiation alters
a(int), , the internal acceleration of the matter which
enters into the result (5). The total acceleration of the
sphere including (5) and (14) becomes

Assuming an average temperature of 10' 'K for the
Sun, (15) gives an anomalous value for m, /m; which is
greater than 1 by about 10 ' in the BD theory if we
set the parameter co=6.

IV. ACTIVE GRAVITATIONAL MASS

The rate at which a test particle accelerates toward
a massive body will de6ne the active gravitational mass
of the body:

d'x/dP=—M.R/R'. (16)

For the test particle at rest the geodetic equation
reduces to

d 1 d
I 00 = go@ goo ~

dt 2 dr~
(17)

Using the general metric expansions (1) and (2), the
first term in (17) gives

dgoA: =—(46+4m') P r...P Pm,v-
dt E.3

a=gal 1+(-,'(8S—4p —3~—x)
r

ns,m;
+-', (8h'+2p+x —u' —2)) p

Mr;;
dV-

+(a(1—v)) I(*)
3f

R is the vector between the massive body and the test
particle. We have kept only the acceleration component
parallel to R, as assuming a spherical symmetric sphere
leaves R as the only direction in the problem. We have
used for the internal particle accelerations, needed in
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evaluating dg()2/dt
fji

a(int);=+ m,
~ 3

7 rij

librium:
ns,'nZ j

M =p m~+ (a"—(2'=,'2(2"'—s'x)p
ij rij

with

d'x/dt' = MR/R'

M =Q m;+(2(r" ——n'" ——6+—,tI(')P m,v'

The V'goo term is straightforw'ard to evaluate. The total
acceleration of a test particle is then As before, T(rot) is the rotational kinetic energy, and

0 is the angle between the rotation axis and the direc-
tion R. X=(2"'=1 for the BD theory as well as Einstein's
theory.

V. DISCUSSION

In Sec. II it was shown that the gravitational-to-
((2 +sX—s~+s~')2 (19) inertial mass ratio of a massive body in the BD theory

rij ls

To obtain (19) we have performed the directional
averages

1 m,m;/2r, ;
~ ~

~ ~

(g+2 &J M
(26)

mim j
2 1 ~rij I I 3 ~. .3rij

(20a) Brans' has previously calculated the inertial mass of
such a body and obtained just the Newtonian mass

P m, v, , P=-; P m, v,'. (20b) mim j
M; =M)v Pm, +——-,' P m, vt2 ——', Q

'j r'j
In order that (19) yield a M which gives the Newtonian
energy of the collection of mass elements, we need tw'o

conditions on the metric coeScients:

/ 2 III 4t) +4t(/ 2

I+lX 2t(+2t(1 2

(21a)

(21b)

The condition on the metric such that M be the
Newtonian en.ergy o)2ly for systems at equilibrium
(where the virial theorem can be applied relating
kinetic to potential energy) is less restrictive:

(22)

So we can conclude from (26) that the passive gravita-
tional mass of a massive body is

Hag(„)
——M~—

1 tg'm~

(g+2 6 2r &

(27)

(The passive gravitational mass is the strength
with which a body couples to a gravitational field;
F=M«»g. ) But (24) gives the result that a massive
body's active gravitational mass is identical to (27).
Therefore Newton's law of action and reaction is valid
for the interaction of two massive bodies in the BD
theory:

Equations (21a) and (21b) are satisfied for Einstein's
theory, but not for the BD theory. Using the results
of the Appendix, so

F(2 ——Mg(„) "'Mg(, ) "'R22/222',
F21=Mg(» Mg(a) R12/+12

F2i ———Fi2.

leads to

D=n"= (3+2(g)/(4+2(g),

Using the virial theorem, (23) becomes

1 f (g+4 mgmg'

Mi)i) ——P m; —
~

~ ~ r;,
'

(3(g+8) m;m;
M)22) ——p m, —

~

(3(g+6) 'i' 2r,;
(3(g+4

+I —P 22m, v'.
(3(g+6

(23)

(24)

Where in the scalar-tensor theory of BD is the
equivalence principle violated when considering massive
bodies? The nonlinearity of the BD theory in the mass
sources is in agreement with Einstein's theory. As
derived in the Appendix both p and (2', which yield the
goo metric terms which are nonlinear in mass sources,
are 1. in agreement with Einstein's theory. X ando. "' are
1 in both theories. These cori.cients are simply the
retardation corrections to the Newtonian potential
expected of a theory which fu16lls Lorentz invariance.

The BD metric has y = (1+(g)/(2+(g), which is now
well known and affects light propagation experiments
and a planet's perihelion advance. But we have also
derived the metric coeKcients

which is not the Newtonian energy.
For completeness we give the active gravitational

mass of a rotating massive sphere otherwise in equi-

A=(2"= (3+2(g)/(4+2(g) .
' C. Brans, Phys. Rev. 125, 2194 (1962).
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However, these are not new' differences between the
BD and Einstein theory in a theoretical sense. They
result from a I.orentz transformation applied to the
y metric term. The linear metric of a static mass in the
BD theory is

gpp= 1 2m/r, g» ——(—1 2&m/—r)p». .

Applying a I.orentz transformation,

Though the active gravitational mass of a massive
system may be of theoretical interest, it appears
essentially impossible to experimentally determine
whether a system's gravitational mass is equal to its
Newtonian mass. On the other hand, as we have shown
in Refs. 1 and 4, the ratio of a body's passive gravita-
tional mass to inertial mass may be experimentally
measurable in the near future.

x'= (x"—v't')
(1 v2)1/2

(t' —v x'),
(1 v2)1/2

APPENDIX

Here we calculate the metric component gpp to
second order in mass strengths in the scalar-tensor
theory of BD. Ke use isotropic coordinates. Their
field equations are

yieMs the metric of a mass moving at velocity v: @'„,=8~/(3+ 2~)T, (A1)

m 1+yv2)
gpp' ——1—2—

r 1—v')

m /'y+v2)

r (1—v')

gpp' ——2(m/r) (1+y)v'.

Approximating the above to the necessary order, we

get
b, =n"= ', (1+y) = (3+-2p/)/(4+2pp).

I+pp ) 4s»J 4&4J
E;;=—l T; — Tg;;

l

— —pp —, (A.2)
3+2M ) p qp

with E;; the Ricci curvature tensor, @ the scalar field,
T;; the stress-energy tensor of matter, T= T;;g'~. co is a
dimensionless parameter which Dicke has suggested is
of order 6 or greater.

We assume many individual mass sources m;. To
sufhcient accuracy (A1) is solved to yield

To the order to which we have investigated this prob-
lem, there is only a single fundamental di6erence
between the Einstein and BD theory: p/1 in the BD
theory.

The y metric term aftects a planet's perihelion
advance by generating new forces on moving bodies of
the form

p vpv(m/r)

yd/dt/m/r (v) 7 .

It is not surprising in retrospect then that massive
bodies in the BD theory have an m, /m; which depends
on y. Such bodies have internal kinetic energy which
participates in maintaining system equilibrium. The
coupling of moving particles to a scalar field differs
from their coupling to a tensor 6eld. This is the essential
cause of the different result above for the BD theory.

A remarkable thing is that in an atom where kinetic
energy balances electrical energy to maintain equi-
librium, the y metric term affects electrical forces in
such a manner as to compensate for the y dependence
of the kinetic-energy contribution to m, /m;. Hence, the
BD theory is in agreement with the "Eotvos" experi-
ments in which different solid substances of laboratory
size have an m, /m; ratio which is 1 to a part in 10".
The details of these calculations will be presented in a
future paper.

Sn- / 1+p1 i Ao„o
&oo=

l Too Tgoo
l

qb i 3+2pp )
(A4)

We use the following results, derived elsewhere":

y„= (4+2pp)/(3+2pp), (AS)

1 3+2p1 f 1 m~

4+2p/ i 2+p/
(A6)

m;
Too=Pg»'I

l Pl 1—2 E ——+" l, (A7)
Kds) i

l
r-r,

l

(A8)

2 (dm, . '

@o o=
3+2o&idt2 ' Ir —r;I

d m;—rop P —l. (A9)
dx" ' lr —r, l)

mi
I'oo"=—

dh"
l r r;l—(A10)

m; are the mass sources. Writing (A2) for i= j=0
(time), we have to sufhcient accuracy
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So, Anally, we have for the Ricci tensor component

+oo= gllP(2 —
I (3+2ol)/(4+2ol)34
+L(3+2 )/(4+2 )3 ')

-L1/(2+-HL~+(«) 3, (A»)
with

In the product Pp the contribution to p from a particular
mass is not to be included when evaluating the product
at the location of that mass.

Equation (A14) is straightforwardly solved except
for the point that in the erst-order source term 8~p we
must use the proper volume corrected to lowest order

' ~r —r~ which yields
d V= d V./(Qg) (dt/ds),

Using the result obtained in the Appendix of II

t 3+2M) Slj
go@=4]

E4+2oli ' [r—r,
)

(A12)

we obtain an expression for the Ricci tensor component
which is of sufficient accuracy to calculate gpp to second
order:

~oo = —2&goo —t:(~+3)/(~+2)li
+8-L(-+1)/(-+2) jfP

+ L(2ol+ 3)/(oo+ 2)j(V'lP)'. (A13)

Combining (A11) and (A13) yields

~'g o=8 P(1—L3/( +2)3+L(2 +3)/( +2)3 ')
—2jk+4(VQ)o. (A14)

dv=dv (1—3L(1+ )/(2+ )jig——',5'). (A15)

We get then for gpp

/4oo+6 m, v,o

goo =1 —2/+2@—
i

Coo+2 ' (r —r;(

m,m; 1 1
+2~ '

)
-+

r —r r—r- r—r;

e, (r—r;) a; m;L(r —r,).v,]'—+Q — — —.(A16)
r—r.

Only one coeKcient in (A16) differs from Einstein's
theory values which are obtained by taking the limit


