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Itis demonstrated that the dynamical equations for a massless scalar field, incoherent matter, or incoherent
radiation may be put into such forms that they may be solved without a metric. The equations reduce to the
usual forms when four conditions on the form of the metric are imposed, which do not restrict its nature.
The conservation laws 77, =0 are thereby satisfied before the integration of the Einstein equations is at-
tempted, ensuring that solutions will exist. The equations of motion of a perfect fluid in isentropic flow are
similarly reformulated nonmetrically; but since five conditions must be placed on the metric to reduce the
theory to its usual form, there is one real restriction on the metrical geometry implied in this case.

I. INTRODUCTION

HEN one considers a macroscopic, classical field

created by certain sources, two approaches may
be taken toward the sources. They may be regarded as
given functions of the space-time coordinates; or they
may be regarded as themselves built up from other field
or particle variables (possibly including the original
field, as in the gravitational case with which we shall be
concerned), obeying their own equations of motion.

In the first case, the physical system being considered
is regarded as open. We do not concern ourselves with
how the source fields are created, but just take them as
given and investigate how their presence affects the field
with which we are concerned.!

In the second case we generally regard the physical
system as closed, in the sense that we are interested in
the interaction between our field and various other
fields and particles; so that one is concerned with a
coupled set of equations for a group of interacting fields
and particles that may be regarded as forming an
isolated system.

In the first (open system) approach, the mathematical
problem is that of finding the solution to a set of
inhomogeneous partial differential equations for the
field in question, the inhomogeneity being provided by
the source fields. Examples are the inhomogeneous
scalar wave equation (which may be looked upon as the
equation for a massless spin-0 field); or Maxwell’s
equations with given source fields. What makes these
equations simple to solve (in principle in any back-
ground metric, and in practice in Minkowski space) is
that the behavior of the external sources is easily pre-
scribed before solution of the field equations. In the case
of the scalar wave equation ] ¢=p, the source p(%,y,2,?)

1This question is discussed for fields with gauge groups by
D. G. Boulware and S. Deser, Nuovo Cimento 30, 1009 (1963).
They analyze the gravitational case on a spacelike hypersurface
assuming the metric given on the hypersurface, and show that
while certain components of the stress-energy tensor may be given
arbitrarily, the other components depend on the gravitational field
variables nonlocally in time. This does not contradict the results
of Pereira discussed in the text, which assume the stress-energy
tensor to be given as a function of the coordinates throughout
space-time. Recently, the question of the construction of a
quantum theory of gravitation starting from the concept of
sources of gravitons in flat space-time has been discussed by J.
Schwinger, Phys. Rev. 173, 1264 (1968).
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may be given quite arbitrarily. In the case of Maxwell’s
equations F#» ,= 7#, the charge-current four-vector den-
sity 7* must obey the conservation law 7* ,=0, which
forms an integrability condition for Maxwell’s equa-
tions. However, this condition is easily satisfied quite
independently of the field equations; e.g., by setting
j*=KWw1 , where K is any antisymmetric tensor
density of second rank.?
In the case of the Einstein equations with sources,

Go=«T, (1.1)

where G,” is the Einstein tensor and T’ is the stress-
energy tensor of the sources of the gravitational field,
the situation appears to be quite different. The con-
servation laws 7',”,,=0 form a set of four integrability
conditions for the field equations (1.1). Since the
covariant divergence involves the metric tensor g,,, the
set of field variables for which we are attempting to
solve (1.1), it seems at first sight as if the sources may
not be prescribed arbitrarily if they are to obey the
covariant divergence law. However, recent work by
Pereira® has indicated that, locally at any rate, this
problem really does not occur. He has shown that if we
take the stress-energy tensor field 7#* (in the form of a
contravariant tensor density) as arbitrary functions of
x* (the coordinates of the manifold); and if we take any
metric g,,(Z), locally there always exists a nonsingular
coordinate transformation x” =x”(Z*) such that when we
transform the metric by this coordinate transformation,
the covariant divergence of the untransformed stress-
energy tensor with respect to the original metric in the
new coordinates vanishes. Thus, if we write Egs. (1.1) in
the equivalent form

Grr=«T"(x), (1.2)

the integrability conditions will automatically be satis-
fied in the course of solving the equations, a solution to
which must always exist locally for any specified 7% (x).

2 A tilde over any tensorial symbol denotes that it is a tensorial
density of weight +1; a German symbol represents a tensorial
density of weight —1. Once a metric has been introduced, this
will, of course, be equivalent to multiplication or d1v151on re-
spectlvely, of the corresponding tensor by vV (—g). We use the
signature —2 for the metric.

3 Carlos Pereira, Ph.D. thesis, Case-Western Reserve Uni-
versity, 1967 (unpublished).
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Although this result is mathematically satisfying, its
physical relevance is more doubtful. First of all, once
one has solved for the given metric, it is by no means
guaranteed that the metrical properties of the given
T (x) will be such as to make it a physically reasonable
stress-energy tensor. For example, the time-time com-
ponent in a local Lorentz frame (physical component)
need not be positive for all Lorentz frames.* Perhaps
more important, the very notion of an open system, in
this sense, in general relativity is open to question. In
the case of Maxwell’s equations, since we can move
charges by nonelectromagnetic forces, it is quite reason-
able to assume, on the macroscopic level, that arbitrary
motions of sources consistent with the conservation of
charge may be produced; and then to study the fields
with which they are associated. In general relativity, on
the other hand, there are no forces which are not as-
sociated with an inertial stress-energy tensor; and thus,
by the principle of equivalence, with an active gravi-
tational stress-energy tensor, i.e., a right-hand side for
Egs. (1.1) or (1.2).5 These considerations do not make
meaningless the ideas of open systems in general rela-
tivity or of a macroscopic stress-energy tensor given as
a function of the space-time coordinates, as we have
tried to argue elsewhere.® But they do indicate the need
for extreme caution in interpreting entirely arbitrary
stress-energy tensors of this form as having any physical
meaning. Clearly, there are interesting problems here
which require further investigation.

When the problem is examined from the point of view
of what components of the stress-energy tensor may be
specified on a spacelike hypersurface, for example,
serious difficulties arise.!

In the remainder of this paper, however, we shall
confine ourselves to the second class of problems: closed
systems of coupled fields and/or particles. An example
of this is the coupled Maxwell-Dirac fields. Here the
current vector for the Maxwell fields is formed from the
Dirac fields, while the Dirac fields in turn are affected by
the presence of an electromagnetic field in the usual way
(minimal coupling). Such problems almost always in-
volve coupled nonlinear partial differential equations, in
which the sources may not be freely specified, but are
known as functions of the space-time variables only
after solving the entire coupled problem.

In the gravitational case, the stress-energy tensor is
to be thought of as built up from some set of dynamical
variables describing the nongravitational fields and

4 This requirement has been stressed by J. L. Synge, Relativity:
the General Theory (North-Holland Publishing Co., Amsterdam,
1960), pp. 184-187.

5 We have discussed the advantages of defining inertial, passive
gravitational and active gravitational stress-energy tensors, and
formulating the principle of equivalence in terms of these concepts,
in Boston Studies in the Philosophy of Science, edited by R. S.
Cohen and M. Wartofsky (D. Reidel, Dordrecht, Holland, in
press), Vol. 6.

6 J. Stachel, in Boston Studies in the Philosophy of Science,
edited by R. S. Cohen and M. Wartofsky (D. Reidel, Dordrecht,
Holland, 1969), Vol. 5, p. 96.
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particles, and from the metric tensor as well. (The
principle of equivalence usually implies that, for some
choice of dynamical variables, only the metric field and
not its derivatives need enter.) Its divergence then
vanishes as a consequence of the nongravitational dy-
namical equations obeyed by the dynamical variables.
Since these equations usually involve the metric, we are
usually faced with the problem of solving these dy-
namical equations and the gravitational equations (1.1)
as a coupled set, again without the freedom to prescribe
the behavior of the sources in advance.

However, we shall show that there are certain cases
in which, by suitably choosing the set of dynamical
variables, the dynamical equations they obey may be so
formulated as not to involve the metric (i.e., as tensorial
equations in a bare manifold). If only four components
of the metric are then needed to relate these dynamical
variables in such a way that the theory reduces to the
usual form, and the divergence of the usual stress-energy
tensor vanishes, then the integrability conditions for the
Einstein equations may be satisfied without restricting
the nature of the metric. The problem of solving the
dynamical equations and the Einstein equations is thus
split into two separate parts. Thus, sources may be
specified for the Einstein equations before they are
solved, with the assurance that the integrability condi-
tions are satisfied beforehand.

We shall illustrate this procedure for several cases
where it works completely: the massless scalar field,
incoherent matter, and incoherent radiation. We shall
also discuss one case where it does not work completely,
but only “three-quarters” of the way. This is the case of
isentropic flow of a perfect fluid, where it is of some
interest to see that all the dynamical equations may be
formulated nonmetrically. However, five conditions on
the 10 components of the metric are then needed to
reduce our formulation to the usual one.

II. MASSLESS SCALAR’ FIELD

In the usual formulation of the massless scalar field, ®
obeys the scalar wave equations (1®=g*®,,,=0, as a
consequence of which the stress-energy tensor I,”
=@ ,d*—15,(®,2*) has a vanishing divergence. We
shall reformulate the theory in an equivalent way, using
variables such that no metrical concepts enter into the
equations replacing the wave equation. Only four com-
ponents of the metric then will be seen to enter into the
relationships making the new formulation equivalent to
the usual one.

We shall take as our dynamical variables a contra-
variant vector density /%, and a scalar field ®. We define
the field v, by

Ve=P,q, (2.1)

and postulate the field equation (involving no metric)

U .=0. (2.2)
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Alternatively, we might have chosen v, asafundamental
field, subject to the nonmetrical field equations

va,g—v,g,.,=0, (23)

which locally imply (2.1). This procedure would be
more analogous to that which we use in the two hydro-
dynamical cases to follow. We may solve (2.2) by
letting U= V1 5 where V1l is any antisymmetric
tensor density field. So far, we have introduced no
metrical concepts. But if we introduce any metric (of
signature —2) such that

Vo= gaﬁﬁﬂ ’ (2.4)
where gas=gas/A/(—g) is the metric tensor density of
weight —1, then (2.1) and (2.2) imply that the scalar
wave equation for ® holds in this metric. We now define
the tensor 7. by

T P=v,0—15,5(v,U%). (2.5)
For any metric obeying (2.4), this is the usual stress-
energy tensor for the massless scalar field; it is easily
checked that its divergence then vanishes as a conse-
quence of (2.1) and (2.2).

Now, how much does (2.4) restrict the metric? If we
complete U* by any three linearly independent con-
travariant vector density fields &;* (=1, 2, 3) we can
see that, once U® and v, are given, only g.sU*0? and
Qa5 U2 .f are determined by (2.4). Or, as we may loosely
say (since no metric exists until we have defined it
fully), (2.4) determines only the “parallel-parallel” and
“parallel-transverse” parts of g with respect to U=, If
we were to adapt a coordinate system to U (which can
always be done in an infinite number of ways), so that
U*=6,* in such a coordinate system, then this would
mean that the components go,. would be determined in
this coordinate system. But the remaining six “trans-
verse-transverse’”” components of g,, with respect to
U® (g;; in the adapted coordinate system) are left com-
pletely free by (2.4). This therefore constitutes no re-
striction on the nature of the metric, i.e., these condi-
tions are compatible with any Riemannian structure,
but only on its form as a function of the x*. These six
components may be determined from the Einstein
equations (1.1), which must have solutions, because we
have already satisfied their integrability conditions,
T2.,=0.

Note that by the use of the reciprocal tensor densities
2= (v—g)g" and Qu»=gus//(—g), which obey

88 = 04",
we can write the Einstein equations in the form
Guv= (’\/_g)Gﬂv="(\/_g)Tuv="Tlsvy

where G,*=G,*(2*",8.»). The exact form of G,” as a
function of these variables will not be necessary for our

(2.6)

JOHN STACHEL

180

purposes, but may be found in a number of places, e.g.’
in Ref. 7.

To summarize the procedure in this case: First we
solve (2.2) (for example, by letting J2= V181 ), Then
® is picked arbitrarily [general solution to (2.3)].
Equation (2.4) is then used to determine the parallel-
parallel and parallel-transverse portions of §.5. We have
now satisfied the scalar wave equation for ®, and the
divergence condition on the stress-energy tensor, no
matter how the rest of the metric is determined. Then
we use the Einstein equations in the form (2.6) to
determine the rest of the metric.

If we wanted to solve the scalar wave equation in any
given background space, such as Minkowski space, we
could use the same procedure, up to the application of
the Einstein field equations. Since we have only imposed
four conditions on the form of the metric, it is still
compatible with any Riemannian structure, and we
need only choose the six remaining components ac-
cordingly. For example, in Minkowski space, we would
pick them to satisfy R,,a=0.

III. INCOHERENT MATTER AND
INCOHERENT RADIATION

By incoherent matter, we mean matter whose stress-
energy tensor is of the form 7',”=pu,u’, where the
matter density p must be positive in regions where it
does not vanish ; and #* represents a timelike unit vector
field. With our choice of signature, #,u*=1. It is well
known that the conservation equations for the stress-
energy tensor are equivalent to the two equations

(pu*);a=0, (3.1)
which expresses the conservation of matter, and
uoug; =0, 3.2)

which expresses the fact that the streamlines are time-
like geodesics.® A set of equations equivalent to (3.2) is

(3.3)

since #%u.,3=0 as a consequence of its being a unit
vector.

We now choose a set of dynamical variables that
allows us to rewrite (3.1) and (3.3) without metric. If
we assume that U*= pu®, then we may replace (3.1) by

U= ,=0. (3.4)

In terms of #, and Ue, (3.3) then takes the form (since
p cannot vanish wherever the matter is present)

(e, p—148,0) U=

(te,s—ug,a)uP=0,

(3.5)

7 A. Papapetrou, Ann. Physik 20, 399 (1957). The result needed
above may be obtained from Eq. (2.2) of this paper.

8 See, e.g., A. Lichnerowicz, Théories relativistes de la gravitation
et de lelectromagnensme (Masson, Paris, 1955); A. Lichnerowicz,
Relativistic Hydrodynamics and M agnetohydrodynamzcs (W. A
Benjamin, Inc., New York, 1967). Lichnerowicz calls this the case
of pure matter.
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In this form, neither equation involves a metric. We can
now start with the fields %, and U# as our fundamental
dynamical variables, for which we postulate Egs. (3.4)
and (3.5), and define p by

U= p>0. (3.6)
If we introduce any metric such that
Pthe=gapU?, 3.7

then (3.4) and (3.5) will be fully equivalent to (3.1) and
(3.3). We can satisfy (3.4) by choosing Ue= el
where 71 is any antisymmetric tensor density of
rank 2. Equation (3.5) can always be satisfied by the
introduction of three potentials ¢, £, and 5, where ¢ is
an arbitrary scalar field, and ¢ and 7 obey

1,e0%=£,,U*=0. (3.8)

Then u,=y +né . will be the most general solution of
(3.5).2 Since we need to have  positive for our physical
interpretation, we may pick » and £ subject to (3.8) and
¢ arbitrary except that #,U%=y ,U*>0. As in Sec. 1II,
(3.7) implies a restriction on only the four components
of gas parallel-parallel and parallel-transverse with re-
spect to U/®. In summary, by appropriate choices of T
and the three scalar potentials ¢, & and », we have
satisfied (3.4)-(3.6) without any metrical considera-
tions. By then choosing four components of g.s to
satisfy (3.7), we are assured that (3.4) and (3.5) are
equivalent to (3.1) and (3.3). Itis then easily shown that
if we define 7,8 by

T.h=u,U8, (3.9)
this becomes the usual stress-energy tensor for in-
coherent matter, and its divergence vanishes as a conse-
quence of (3.4). Thus we have satisfied the integrability
conditions for the Einstein equations, which may now
be solved to find the remaining six components of the
metric.

A similar approach may be used to handle the case of
incoherent radiation.’® Here the stress-energy tensor is
of the form T,”=pk,k”, and p is normalized (as may
always be done) so that pk” obeys the conservation law
(ok”),,=0. k”is the tangent to a family of null geodesics,
which then obeys £%k,=0, and &,;,k*=0

An equivalent set of equations is again given by

(ok”).,=0 (3.10)
and
(Byyy—tky u)k”=0

These may again be rewritten without metric by using

(3.11)

9 This question will be discussed more fully in a paper on
relativistic hydrodynamics being prepared with J. Plebanski. A
brief proof of this result is given in the Appendix.

1 Incoherent radiation is discussed, e.g., in R. C. Tolman,
Relativity, Thermodynamics and Casmology (Oxford Umversxty
Press, Oxford, 1934).
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the dynamical variables %, and V7= pk”, which are to
obey

77 ,=0 (3.12)
and _

(ky,y—Fy,s) V?=0, (3.13)
as before. However, now we want & . 7#=0, so that when
we solve (3.13) we must pick ¢ so that

¥, V=0 (3.14)

with ¢ and % picked as before. Now if we specify p, we
need a metric such that

pky=Qu 17”

in order for our equations to reduce to the usual ones for
incoherent radiation. The divergence of the stress-
energy tensor T,”=Fk, V" will then vanish, as may easily
be checked. Because (3 15) represents only four condi-
tions on the form of the metric, no restrictions on the
Riemannian space are implied, and we may proceed
as before to solve the Einstein equations with this
stress-energy tensor.

(3.15)

IV. ISENTROPIC FLOW OF PERFECT FLUID

It has been shown that the four conservation laws
following from the vanishing of the divergence of the
stress-energy tensor for a perfect fluid in isentropic flow
may be written in a form quite similar to (3.1) and

(3.3).8 1f
dp

(o By
p

then the equations of motion which are equivalent to
the vanishing of the divergence of the stress-energy

tensor
dp
=p(1+f —

>uﬂu"——p6,"'
p

take the form
(ou®);0= (+.1)
and

(va,5—08,0)uf=0. 4.2)

Here p is the conserved density of matter, since (4.1) is
the equation of continuity of matter; p is the isotropic
pressure, related to p by some given equation of state
p=p(p); and S dp/p represents the specific enthalpy of
the fluid.

We begin by analogy with the work of Sec. ITI. We
take as our fundamental variables a contravariant
vector density 0%, and a covariant vector field v, which
are to be subject to

U= ,=0 (4.3)
and

(Va,g—8,0) UP=0 (4.4)

We may again solve (4.3) by introduction of 7181, and
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(4.4) by introduction of £ 7, and ¢, where £, g»
=7,,0¢=0. Let ¢ ,U*=X; then we shall demand that
>0 for the phySICal 1nterpretatlon but leave ¢ other-
wise unrestricted. This ensures thatv,Ur=y ,U*=1>0.
Now we must relate v, and U” so that our theory is
equivalent to the usual hydrodynamics of a perfect
fluid. It is clear that the lowered components of U” must
be parallel to v,:

v,=Kg,,0", K>O0. (4.5)

If K is given, this becomes four conditions on the 10
components of the metric, as before. In addition, we
must introduce the stress-energy tensor

~"v=1)“l7v__?6“v. (4.6)

We shall show that if p=p(\) and K=K (\) are picked
as suitably related functions of the scalar A, whose
scalar density was introduced above, this is equivalent
to the choice of an equation of state, and that the
theory then does reduce to ordinary hydrodynamics.
However, note that we are forced to use scalar func-
tions of a scalar variable here. It would not make sense
to use scalar densities, since we require the argument
and value of the function giving the equation of state to
remain unchanged by a coordinate transformation.
Thus, in addition to the four conditions on the metric
(4.5), we must also assume the determinant of the
metric known''so that we can go from scalar densities
to scalars. But this imposes a fifth condition on the
metric, so that we have one real restriction on the
Riemannian space in this case. However, let us proceed
under this assumption. Let us define p by p= (\/K)'2
and p(\) by K=e* (always possible since K has been
assumed positive). Then either pick p(\) arbitrarily,

and define 0
N—1
u(A)= / i———d

or, pick u(\) arbitrarily [equivalent to picking K (\)],

and define
p(x)=%(x+ Jwoan),

where a prime denotes the derivative with respect to A.
In either case, by elimination of A, it follows that p and p
are related to each other by an equation of state. It
follows from a result of Lichnerowicz® that the local
speed of sound is given by

N

e=(4f5) Q)
In terms of u and \, thisjmeansjthatiV2= (1+\u’)/
(1—Mu’). Thus, if we pick u(\) in such a way that
©’' (M) <0, we will assure that the resulting equation of

state keeps the local speed of sound less than the speed
of light.

@7

(4.8)
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Using the relationship (4.7) or (4.8) between K (M)
and p(\), it may now be verified that the theory does
indeed reduce to the usual hydrodynamical relationships
in the form given at the beginning of this section, and
that the divergence of the stress-energy tensor (4.6)
vanishes as a consequence of (4.3)-(4.5).

However, when we turn to the Einstein equations,
since we have imposed five conditions on the metric
components in this case, we cannot hope to always find
a solution if we have picked the various functions
arbitrarily. Thus, it seems that this approach leads to
the conclusion that one real restriction on the nature of
the metric is contained in the four conservation equa-
tions, so that we may say we have only been “three-
quarters” successful in this case.

V. CONCLUSIONS

The basis of our procedure is to choose dynamical
variables such that their form as functions of the points
of the manifold may be specified in such a way that the
conservation equation for the stress-energy tensor can
then be satisfied without imposing any real restrictions
on the nature of the metric, but only on the functional
form of certain of its components in some coordinate
system. Then the field equations for the metric may be
solved to determine the metrical significance of our
nongravitational fields.

It would be interesting to know whether there are
other cases in which this procedure may be applied
either fully or partially and, in general, whether some
criterion for its applicability can be given. We note that
in the cases we have considered where it works, as well
as the one case where it does not fully work, the
dynamical equations for the nongravitational fields
follow fully from the conservation law. Hence this
criterion, which one might first think of, cannot be
necessary and sufficient. In the case of the electro-
magnetic field, it is easy to introduce dynamical vari-
ables in terms of which the Maxwell equations may be
written nonmetrically. However, the usual constitutive
equations relating the dynamical variables involve so
many components of the metric that the method seems
of little practical interest.

We have been able to use the ideas of this paper,
together with restrictive symmetry assumptions, to
actually solve the equations for the fields in a few
trivially simple cases, where the solutions were already
known by other methods. For example, the 1/7 static
solution to the massless scalar field equation in
Minkowski space may be easily be transformed into a
nonmetrical solution which can be fitted into any static
spherically symmetric Riemann space. It remains to be
seen whether the method will prove useful in actually
finding interesting solutions of the relevant field
equations.

1 A further discussion, with references, of this point is found in
J. Stachel, Acta Phys. Polon. (to be published).
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None of the work of this paper (nor that of Pereira
discussed in the Introduction) should be interpreted as
contradicting the idea that the conservation laws
T,*,,=0 constitute four conditions on the motion of the
sources of the gravitational field which, under certain
conditions, may even serve to determine that motion
completely.’? In the case of incoherent matter, for ex-
ample, those conditions require that the streamlines of
the matter velocity field be geodesics of the Riemann
space; so that if the matter is confined to timelike world
tubes of narrow cross section (filamentary matter),
these filaments must be timelike geodesics of the space-
time.® Now, if we are given a congruence of curves in a
bare manifold, there are an infinite number of ways to
metrize the manifold in such a way as to make the
congruence timelike and geodesic. The work of Sec. 111
shows if the congruence is defined by Egs. (3.4)-(3.6),
then any metric obeying (3.7) will make the congruence
geodesic. Thus, once the Einstein field equations are
solved, the matter will indeed be moving along timelike
geodesics of the Riemann space.
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APPENDIX

Schouten!?® proves that a simple covariant multivector
is a product of gradients if and only if its rotation
vanishes. For a bivector F,,, the vanishing of its rotation
is equivalent to the vanishing of the divergence of its
dual bivector density F*=21e*wF,,. A criterion for a
bivector to be simple is that its determinant vanish. We
can thus restate Schouten’s result in the case of a
bivector in the form: A covariant bivector whose de-
terminant vanishes and whose dual has vanishing
divergence is the antisymmetrized product of two
gradients. Another form of this result may be gotten by
noting that the rotation of a bivector vanishes if and
only if it is the curl of some vector (locally). It follows
that a covariant bivector which is the curl of a vector
and whose determinant vanishes is the antisymmetrized
product of two gradients. In this latter form we may use
this result to find the general solution to the set of
equations which we have indicated form much of the
basis of relativistic hydrodynamics:

('Uu.v_'”v,n)U”=O: (A1)

It is clear that v,,—v,,, satisfies the conditions of our
theorem, so that we may write

(A2)

where £ and 5 are two scalar fields. But then v,— &7, (or
v,—né,, as well) is a vector whose curl vanishes, so that
it must be a gradient (this is actually the “zeroth-
order” case of Schouten’s result, although much better
known otherwise). Thus finally we have

=Nt .
as the general solution of (Al).

Vo~ Uy, = 5.#77,"_ E.V"],M)

(A3)

18 J. Schouten, Ricci Caleulus (Springer-Verlag, Berlin, 1954),
p- 84.



