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An earlier suggestion by the authors that the unexpected features of angular distributions in heavy-ion
transfer reactions at energies above the Coulomb barrier may be explained by including recoil and finite-
range effects in a direct-reaction theory. ,

' is examined in detail. It is shown that the finite mass of the trans-
ferred particle may be taken into account approximately by the inclusion of a recoil phase factor in the
transfer function of the usual distorted-wave Born amplitude. The implications of modifying the transfer
function are worked out with the help of a sharp-cutoff diffraction model for the scattering of the strongly
absorbing nuclear cores. Simple, closed expressions for the transfer differential cross sectioas are obtained.
Unlike the earlier work, these expressions are valid for arbitrary angular momentum transfers, and intrinsic
spins are included, When the sero-range limit is used or the mass of the transferred particle is neglected, the
model predicts extreme diffraction oscillations in the angular distributions. However, if finit-range and
recoil terms are retained, then, at suSciently high energies and large angular momentum transfers, the
theory gives strong damping of the diffraction oscillations. The resulting structureless angular distributions
fall otf with a 1/its dependence on the linear momentum transfer 9, in excellent agreement with experiment.
The theory is applied to the recent experimental results of Birnbaum, Overley, and Bromley for the
C»(¹4,N») C» reaction. Substantial damping of the angular distributions is predicted.

I. INTRODUCTION

' N recent experimental studies' 4 of reactions in-
. . duced by heavy ions at energies well above the
Coulomb barrier, angular distributions for both single
nucleon and cluster transfer have shown an almost
complete absence of structure. The angular distribu-
tions are monotonic decreasing functions of the linear
momentum transfer' in remarkable contrast to the
oscillatory distributions found in elastic heavy-ion
scattering and in transfer reactions initiated by protons
and deuterons. The smoothness of the angular distri-
butions is also unexpected from previous theoretical
considerations of the reaction mechanism. At incident
energies well above the Coulomb barrier, the strong
nuclear interaction is expected to dominate the
Coulomb repulsion between the heavy nuclear cores.
Phenomenological diffraction models, ~' which take
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account of the strong absorption in the entrance and
exit channels, predict large oscillations in the transfer
angular distributions when Coulomb damping becomes
negligible. The disagreement with experiment is rather
striking in view of the successful application of strong
absorption models to both elastic scattering and
transfer reactions at lower energies~ 9 as well as to
reactions induced by lighter projectiles. '~"

Two different explanations for the smoothness of
the transfer distributions have been proposed. Both
include strong absorption and both rely on the inter-
ference of amplitudes corresponding to angular mo-
mentum transfers of different parity to wash out
diffraction oscillations, but the mechanisms responsible
for this interference are quite different in the two
explanations. Dar and Kozlowsky point out'4 that if
there is strong condguration mixing in the bound states
of the transferred particle or if core excitation takes
place during transfer, both odd and even angular
momentum transfers contribute to the reaction,
resulting in a smoothing of the oscillations predicted
by the theory of Ref. 9.On the other hand, in a previous
publication" the present authors proposed that the
mixing of odd and even angular momentum transfers
is kinematical in origin and is independent of any
specidc assumptions about the structure of the nuclei
involved.

"J.S. Blair, Phys. Rev. 115, 928 (1959)."A. Dsr, Phys. Letters 7, 339 (1963); Nucl. Phys. 55, 305
(1964).

» E.M. Henley and D. V. L.Yu, Phys. Rev. 133,B1445 (1964);
135, B1152 (1964)."K. R. Greider, Phys. Rev. 136, B420 (1964).

"A. Dar and B. Kozlowsky, Phys. Rev. Letters 15, 1036
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It was suggested in Ref. 15 that if terms of order y,
where ii is the ratio of the mass of the transferred
particle (or cluster) to the mass of one of the heavy
cores, were retained in the usual distorted-wave Born
amplitude, that damping of the transfer angular distri-
butions results. The consequences of retaining such
"recoil" terms were evaluated in a particular sharp-
cutoG diGraction model in which harmonic-oscillator
wave functions were used for the bound states of the
transferred particle to the cores, and intrinsic spins were
ignored. The chief limitation of this earlier work, which
prevented a detailed comparison of the model with
experiment, was that the transferred particle was taken
to have zero angular momentum with respect to the
donor core in the entrance channel.

The purpose of this paper is to remove these limita-
tions so that a quantitative test of the model with the
recent experimental results of Birnbaum, Overley, and
Bromley is possible. In particular, the diGraction model
is extended to include arbitrary angular momentum
transfers and intrinsic spins.

In Sec. II it is shown within the context of the dis-
torted-wave Born approximation that the finite mass
of the transferred particle may be taken into account
approximately by the inclusion of a "recoil" phase
factor in the usual transfer function which contains
the nuclear structure information.

With the assumption that the bound states of the
transferred particle are adequately described by
harmonic-oscillator states, simple expressions for the
modified transfer function are obtained in Sec. III. The
modified transfer function is split into two parts, one
containing a Weyl operator which includes the recoil
factor, and the other containing the finite-range
potential responsible for the transfer. This decompo-
sition shows that the recoil factor produces a relative
displacement of the bound-state wave functions in
momentum space as well as the displacement in con-
figuration space which is customary in direct reaction
amplitudes. The details of the evaluation of the matrix
element of the Weyl operator are given in the Ap-
pendix.

In Sec. IV the expression for the modifmd transfer
function found in Sec. III, together with the ring-locus
difFraction modeP~is for the scattering wave functions,
is used to obtain analytic expressions for the transfer
diGerential cross section.

The transfer angular distribution is the sum of two
terms, one of which falls ofF smoothly with a I/qs
dependence on the linear momentum transfer q, the
other has oscillations characteristic of a diGraction
theory. In Sec. V, we define a damping parameter as the
ratio of the magnitudes of the oscillatory and monotonic
parts of the angular distribution. In general, the degree
of damping predicted by the theory, as measured by the
damping parameter, increases as the magnitude of the
maximum angular momentum transfer which is possible

in the reaction increases, and also as the incident
energy increases.

In Sec. V A we note that if either recoil is neglected
or if the zero-range approximation is made, there is no
damping of the angular distributions. In Sec. V B the
results for the special case discussed in Ref. 15 are
recovered, the damping parameter taking a particu-
larly simple form. The eGects of intrinsic spin are
considered in Sec. V C.

Finally, in Sec. V D the results of calculations of the
damping parameter for the reaction C's(N's, N") C"
are compared with the experimental results of Ref. 4.

II. GENERAL FORMULATION

We consider rearrangement process of the type

(a+c)+b~a+ (b+c),

where the transferred particle or cluster t,", which is
initially bound to the core a in the nucleus (a+c) and
is bound in the final state to the nucleus b, has mass
m, much smaller than the masses m, and mg of a and b.
It is assumed that the internal degrees of freedom of the
three nuclear systems a, b, and c are undisturbed by the
transfer and that the many-body interactions between
them may be simulated by effective two-body po-
tentials V~, V„, and V~,.

The amplitude for rearrangement scattering which
includes distorting potentials in the initial and final
channels is

The initial state C,&+& describes the scattering of the
systems (a+c) and b interacting by a potential W;,

The operator H; is expressed in terms of the complete
Hamiltonian of the system H by H;=H —V —V&,
and I, is the energy eigenstate of H, in which (a+c)
has definite momentum ir; relative to b. Similarly, the
final state is distorted by a potential W~,

i
Cy&-i )=[I+(E s Hg Wy) '—Wy'j—

i
C'i )—. (4)

The residual interactions V; and V~ in the incident and
final channels, respectively, are defined by

V;= V~+ Vs,—W;
and

Vy= V~+ V,.—Wg.

It is shown in Ref. 16, for example, that in order for
Eq. (2) to be an exact expression for the amplitude,
the potential S"; must be chosen such that the state

"K.R. Greider and L. R. Dodd, Phys. Rev. 146, 671 (1966).



RECOIL DAMPING IN HEA VV-ION REACTIONS

(
C;&+&) has no component in the final channel. This

condition is satisfied in a natural way, which is well
suited to the heavy-ion transfer problem, by taking
8'; and 8"y in the coordinate representation as functions
of the vectors r; and rf, respectively, which join the
centers of mass of the two systems in the incident and
final channels, as shown in Fig. 1. The final and initial
states are then each simply products of a wave function
of relative motion and a wave function describing the
internal structure, i.e, ,

Fxo. f, Coordinate system.

and

(xr x~ I
C'r& &)=A(xs)x&& &(k~ x~)

&&»&
' replaced in the matrix element (2) by

&&;&+&(k;, r;) B +&(k;, r)—

Here f,(x„) is the single-particle wave function of c
with respect to the core a, and 1'(xs.) is the final bound
state of c and b. In the limiting case where the masses
m, and mq of the cores c and b are infinite, the vectors
—r; and xy coincide with the vector r—=x,s and the
potentials W; and Wf may be used. to remove completely
the core-core interaction Vy from the residual inter-
actions without violating the restriction imposed on
the interaction 8'; in the last paragraph. With the
further assumption that the term in Eq. (2) involving
the full Green's function is small, the usual distorted-
wave Born amplitude is obtained. :

T~ = x~&
—&*

~, r x;&+~;, r G~ r dr,

aIld
Xexp {sk; [r(1is.1s,—1)—1s,.x"]}

where &i«= s&s,/(m, +s&&N) &
etc.

It is seen from Eqs. (6) and (9) that the approxima-
tion Eq. (9) is valid if in the neighborhood of the
nuclear surface the amplitude functions satisfy the
conditions

u
)

V'B;&+& )/} B;&+' )((p.. '

f I~B~' 'I/IBi' 'l&&~.s '

&&I&-&(kf, rf) =B~& (kf, x)-

Xexp{ikr [x(1 Is~p—) —p,,sx"]}, (9)

with the transfer function Gy s(x), which contains the
nuclear-structure information, taking the form

If the masses sN, and srss are finite but much larger
than the mass of the transferred particle m„we may
still write the amplitude in the simple form (7), but
with some important modifications to the transfer
function, which lead, to significant changes in the pre-
dicted cross sections.

The distorted wave &&;&+&(k;, r;) may be written
formally as an amplitude function B;(k;, r;) modulat-
ing a plane wave e'~"'. This representation is always
possible but is most useful when the phase of the
modulating factor B; is more slowly varying than the
phase of the plane wave. For our purpose, we require
that the phase of the distorted wave at the nuclear
surface be given locally by the phase of the correspond-
ing plane wave. That is, B;&+&(k;,r;) should be a
smooth function of r;. Then, since the coordinate
space integrations in (2) are limited by the ranges of
the bound states, the amplitude functions B,&+&(k,, r;)
and BI& & (kf, xr) may be approximated by B;&+&(k;, —r)
and Bf& &(kr, r), and the wave functions 2&

&+& and

with a and b the ranges of the initial and final bound
states. The conditions (10) are satisfied by typical
optical-model wave functions describing elastic scatter-
ing at medium energies accompanied by strong absorp-
tion'~ and may be expected to hold for heavy-ion
scattering. For Coulomb waves, the condition (10)
becomes

k,u/g+ 1))k;a&s,

where» is the usual Sommerfeld parameter. Thus, the
above approximation is valid for q&1 as well as small

r& provided that the incident energy is suKciently
great. For the reactions considered. in Sec. V D, the
condition (11) is satisfied, and we shall ignore Coulomb
distortion in the scattering states entirely.

When s&s, and ms are finite, there is incomplete can-
cellation of the core-core potential V,~ in the residual

potentials V, and Vr in the matrix element (2) in
addition to the mixed coordinate dependence of the
scattering states. But on expansion in powers of p„and
p+ of all functions appearing in the amplitude (2),
except the rapidly varying phases of the distorted
waves, we have, to zero order in p„and p,& from Eqs.

"K. A. Amos, Nucl. Phys. 77, 225 (1966); I. E. McCsrthy
aud D. L. Pursey, Phys. Rev. 122, 578 (1961).
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(2), (6), and (9),

Tf '— Bf&
—~* f, r 8;&+&;,—r e'&'Gf; r dr, 12

p =@ca~i pcb~f (14)

The momentum q is very nearly the momentum
transfer,

q= lr'(t ~t --1)+jrf(t ~t ~—1)

Clearly, when 1/p is of the order of the range of bound
states f; and 1jf, there may be either constructive or
destructive interference between the phase factor and
the wave functions f; and pf. For example, for wave
functions corresponding to small values of angular
momentum and, hence, having few nodes, the mag-
nitude of the transfer function is reduced. It will become
clear from the following that, in general, the transfer
functions Gf; differs considerably from the unmodified
transfer function Gf in which all terms of order p,

and p~ are neglected.
It is important to note that a potential V of finite

range is essential if recoil effects are to be taken into
account. If the zero-range approximation fdr V„ is
made in evaluating the transfer function (13),the recoil
factor is unity and the damping eEects to be discussed
are lost.

For completeness, we also remark that an alternative
definition from the transition amplitude may be used
in place of Eq. (2):
2'f'"'= (@f' '

I
Vf"+Vf'(~ &+ie) 'V' —

I
c""') (2')

The argument of this section carries through for (2'),
leading to an expression for the transition amplitude
identical with Eq (1$), ex.cept that Gf; of Eq. (13) is
replaced by

Gr;&e& exp(ip r&&e)=/e'x'"Pre(r') V& (r')&P;(r+r')dr'

where the new transfer function, which is to be com-

pared with Gf;e of Eq. (8),

Gf;(p, r)

exp( —=ip re,.) f e""P& (r r)'V—..(r')iP;(r')dr',

(13)

includes a "recoil" factor e+'" with the recoil mo-

mentum,

with the aim of understanding the effects of the
modified transfer function on the cross section, it is
valuable to adopt some simplifying assumptions to
obtain analytic expressions for the transfer function.
We assume that the initial state of particle c with
respect to (t in the nucleus (u+c) may be described by
a single-particle state

I nlm) of a three-dimensional
isotropic harmonic oscillator of strength v. After
transfer, particle c is assumed to be bound to the
nucleus b in a state

I
n't'ttt') of an oscillator of strength

v'. Furthermore, the interaction V„ is taken to be local
and central. For the present, we neglect spin, which,
however, is included in Sec. V C.

The transfer function (13) may be written with the
aid of displacement operators in momentum and
coordinate space" "as

with
(17)

U„.t.„.,„t„(p,r) = (I'l'ttt'
I exp(ir P+ip R) I

ttlttt)

(18)

and
v„.„,t ——(tt'l'tl'

I
V„

I
ttlttt) (19)

The Baker-Hausdorff identity" has been used to
combine the position and momentum displacement
operators into the Weyl operator of Eq. (18). We see
from Eq. (18) that the transfer function which includes
recoil depends on the overlap of oscillator states which
are displaced in both momentum space and con-
figuration space. A similar expression holds for the
prior form of the transfer function Eq. (13'),

G. t. ,t.("(p, r) =expLip r(-:—tt )3

X g V„.„.,tU„.t.„.,„t„(p,r). (20)

G t'erne', t re(preer)r= exp (—ip rtte&r)

X (NVttt'
I
ee' e@'"V

I ttlttt), (16)

P and R denoting momentum and position operators,
whereas p and r are c numbers. A convenient form for
the transfer function which separates the potential
and recoil operators is obtained by introducing a
complete set of final oscillator states in the matrix
element (16), so that

Gee& t,re&etrir(prrr, r) = exp "~a~' g Urr't'rre', rr" tree(pr r) Vn"re, tr

III. EVALUATION OF THE TRANSFER FUNCTION

In general, the transfer function of Eq. (13) which
includes recoil may be computed numerically, but

The post form (17) and the prior form (20) of the

"K. Gottfried, Quent' Mechanics (W. A. Benja~~~, Inc. ,
New York, 1966), p. 260.

iP J. Klsuder snd E. Sudsrshsn, FNptdadvtedttals af QNavttlvdt
Optics (W. A. Benjsmtnr Inner r New York, 1968), Chap. 7.
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transfer function are equivalent only when either the
initial and 6nal single-particle states are identical or
when the range of the potential V is much greater than
the range of the bound state. '0

The form of Eqs. (17) and (20) is useful since the
recoil effects are isolated in the matrix element of the
Weyl operator. In the Appendix the following explicit
expression for the matrix elements (18) of the Weyl
operator between oscillator states in the {nlml repre-
sentation is derived:

for transfer of de6nite angular momentum I. and
component M:

( l'

G v . t=Q~( —1)'l
its M

(24)

The differential cross section for the transfer from a
state e, l to a state e', l' is

U& v~,&tm(p&r) o:e s

i&~+ts-ts[ftf )ss)py»y't ~&e(s) y't ~s( g)
lgl gl yngmyn3

(l' lg ls) (f lg ls
r
(l lg ls)

xl
) E .) Eo o 0)

where p,; and py are reduced masses in the initial and
6nal channels. De6ning TJ.~,„.~.„~ in terms of T„g~,„~~
in the manner of Eq. (24), we have from Eq. (12),

TiM. I;~g= B;&+& h;, —r Bf&-&~

(&' Js 4)
x/ ~D„.„,t, t, t, (s, t), (21)

&0 oo)
X (irr, r) e~'Gr, st,„v„t(p, r) dr. (26)

Summation over the magnetic substates in Eq. (25)
yields the differential cross section in the form

where the complex vectors s and t are de6ned by

s= r+ip, t= r—ip, (22)
&y& 1 &s-,

=tt tt/
k

I ~'s I
~

' Z ~
I 2rsr. - vst(&', iran) Is

dQ k; 2rrfPi

and the notation for the angular momentum algebra,
which is explained further in the Appendix, is that of
Edmonds. "The functions D„„,~,~,~, are de6ned in terms
of spherical Bessel functions by

N=N'=0. (23)

The parameter differentiations are carried out in the
Appendix, resulting in simple expressions for the D
functions. For small values of n or e', the sums over
l~, l2, and l~ are limited to a few terms, making the ex-
pression (21) for U quite tractable for practical cal-
culations.

The matrix elements of V, Eq. (19), are easily cal-
culated. They are given for a Gaussian potential in the
Appendix.

It is useful to define a transfer function Gl,~,„~ ~

"This ambiguity is, of course, not peculiar to the present model
but is inherent in all distorted-wave Born theories. It is particu-
larly difBcult to decide on the most appropriate form in this case
since, unlike stripping theories, there is symmetry between the
final and initial channels and a choice cannot be made on the
grounds of physical or mathematical simplicity. However, the
angular distributions for the post and prior forms have the same
qualitative features, and for definiteness we use the post form as
the basis of our discussion.

s' A. R. Edmonds, ANgglar Momegtlm At Qrtaatlm Mechanics
(Princeton University Press, Princeton, N.J., 1957).

(27)

IV. DIFFRA CTION MODEL

We turn to the evaluation of the amplitude (26).
The transfer function (17) could be used in present
distorted-wave Born computations, where the scatter-
ing states 7t;&+' and 7'&

& of Eq. (9) are derived from
optical potentials. However, here we shall use a dif-
fraction model for the distorted waves which avoids
partial-wave expansions, leading to simple results in
closed form for the di8erential cross section (27)
which clearly exhibit the effects of the recoil factor.

Because of the strong nuclear absorption for scatter-
ing of complex nuclei well above the Coulomb barrier,
the distorted wave x;&+& is represented in configuration

space by a plane wave which vanishes inside a sphere of
radius ro, given by the sum of the radii of the colliding

nuclei, and also in the shadow region. '~" Thus the
factor B;&+&(lr;, r) in Eq. (9) is zero when the vector r
lies within a semi-in6nite cylinder of radius ro which is
aligned in the direction of lr;, capped by a half-sphere,
and is unity elsewhere. A similar representation holds
for xf . If we con6ne our attention to scattering at
forward angles, the product B,&+&Bf& &* in the integrand.
of Eq. (26) vanishes inside a cylinder of infinite length,
aligned along the beam direction. Also, G~~,„~„~ is

rapidly diminishing in magnitude with increasing r,
so that the principal con'tribution to the amplitude
comes from annular region which lies in the plane
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where the z axis is taken in the beam direction A;;, and
we use spherical polar coordinates.

The generalized adiabatic conditions that are as-
sumed here,

k;~—ky, (29)

imply with Eqs. (14) and (15) that the recoil mo-
mentum jp is in the direction of the z axis and that the
momentum transfer q lies in the annulus. Conse-
quently, in evaluating the transfer function on the
annulus in Eq. (28), the vectors t and s of Eq. (22)
have spherical polar coordinates

perpendicular to the momentum vector k;. The pre-
ceding discussion indicates that the amplitude (26) is
approximately

QQ 2v

2'LM, „.V„l ——r'dr dltl$e'&'GLM, ».P»1(r) p) )8=SS',
rp 0

(28)

we may use the asymptotic form

JM (qr) ~cos(qr —1pMs —per) (qr)' »P

in Eq. (31).For heavy-ion reactions at energies above
the Coulomb barrier, this approximation is valid for a
range of scattering angles in the forward direction, and
thus does not conQict with our earlier assumption of
forward scattering. Since the polynomial gL,M,~ &,& is
a slowly varying function of r compared with the other
factors in the integrand, it may be taken outside the
integration. Finally, by integrating by parts, we obtain
an asymptotic expansion in powers of the inverse
momentum transfer q ', and the amplitude (31) be-
comes

TLM,» v»=2~i e n ~ e (qro) "ro'gLM, v.l(p, ro)
'M —24 -r 4

X sin(qro ——',Ms.—~1s ) . (34)

Substitution of Eq. (34) into Eq. (22) gives our final
result for the differential cross section

and

with

s= (s, cos '(ip—/s), p! )

t= (t, cos '( ip/t)—, lt),

s t (ro PP) 1/2 (30)

do„.l,al fkf'1!'rp'l'" '"
=/"//I —

II

—I& 'e '"(qro) '
dQ Ek, /& v j

Xl ' p L
I gLM, » v l(p) I' Ll —(—1)M sin(2qrp) $. (35)

LM

We note that s and t are real for p&r and equal on
the annulus, and that the angular dependence of the
transfer function contained i'n Eq. (21) takes the
simple form

gLM, a'Pal(P) g NLM, »'Va" l(P) ~a"a, lp (36)

The explicit form of the transfer polynomial g is found
from Eqs. (32), (1/), (21), and (24):

where
I
I 1,

"' (e) I'1, P(t)g,n ~nln. ~Pl,"1(iX)P1,"P(iX)
NLM»~V„l(P), =&''C»~v»l,

with the arguments of the associated Legendre poly-
nomials being pure imaginary, x= p(r' —p')»'. Thus
the Q dependence of the integrand in Eq. (28) is simply
expLi(qr co& MP)7, —and the integration over the
azimuthal angle g is readily performed, yielding

TLM, ».val ——2pri e l' " e ""JM(qr)gLM, » Pal
rp

l 1,lgl8mgmg

il +1 l (—1) v+ML2, t,E,)LE/'1»P

( ll tp L) t t L (t tl l )(pl' lg los
xI

(—till plop MJ lg lp lp EO 0 0) (0 0 0)

t (tl —oil)! (lp —Nlp)!l»' tip)
XI

E(4+PN1)! (to+plop)!/
'

E spj

with
X (r, p) r'dr, (31)

XI —ID ', 1 l 1 (so so) ~ (37)
(ip!
I so/

gLM, „P»l(p, r) = Le' e" e" GLM,»~Pal(p, r) (on annal»a&

(32)

The polynomial D is defined by Eq. (23), and

so= (ro' —p') 'l'.

q 2k; sin(s1e) .

Whereas the evaluation of the transfer function in

(33) Sec. III was quite general under the conditions listedqrp»M,

which from Eqs. (20), (21), and (24) is a polynomial The scattering angle e is related. to p and q by Eqs.
111 r and p. (14), (15), and (29),

If the product of the momentum transfer q and dif-
fraction radius rp is greater than the order of the cylin- p~2tlpakl COS(pe), (38)
drical Bessel function,
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there, this relatively simple expression for differential
cross section has been obtained with the diffraction
model by making the additional restriction to forward
angles and the assumptions of general adiabatic con-
ditions Eq. (29) and large momentum transfer Eq.
(33). We stress that the formulation of Sec. II is of
greater generality than the particular diffraction model
of this section.

V. DIFFERENTIAL CROSS SECTIONS

The differential transfer cross section (35) falls off
sharply with increasing momentum transfer q or
scattering arigle with a q

' dependence characteristic
of a diffraction theory. Apart from the over-all q

'
dependence, the angular distribution is the sum of two
components, one of which is monotonic in the scattering
angle and the other of which has characteristic diffrac-
tion oscillations of period (2qrs) .

It is useful to define a damping parameter X, which is
the ratio of the magnitude of the oscillating part to the
smoothly varying part of the angular distribution, as

( 1)l~—i

&&4 g (—1) L
I gI.sr, i i I'/ PL I gr.sr, i i I'] (39)

LM

This parameter provides a measure of the washing out
of the angular distribution of the diffraction model
when recoil is included.

A. Angular Distribution without Recoil

The cross section with the modified transfer function
(8) is simply obtained by putting the recoil momentum
equal to zero in the final result (37). In this case the
factors Pi, '(0) and P» '(0) imply that ti+mi and
le+ms, and hence li+mi ls ms—= ti—ts+M—, are even
for a nonvanishing contribution to the sum in Eq.
(37), but then the 3-j symbols in Eq. (37) require
that lt+l+ls and I'+ls+ls be even. Hence, there is a
contribution to the cross section for a given M com-
ponent of the angular momentum transfer only if
M l+/' is even, —resulting in the selection rule'
that if

extreme diffraction oscillations, the minima going to
zero. Furthermore, there is a phase rule": Diffraction
maxima for even I. ;, or parity preserving transitions,
correspond to diffraction minima for odd I. &„ or parity
changing transitions.

g (I—m) ! ~(s'p'I I(ip!
„(t+m)! E spi & ssj

XI 1—(—1) sin(2qrs) ].
With the help of the addition theorem for the Legendre
polynomials, ~ written in the form

(I m)!—
Pi(s' —(s' —1) cosg)=PP(s)+2 Q

=i (1+m)!

XLPi(s) ]' cos(mf),
and the relation

Pi e(ix) =Pi"(—x) =Pi (sx) (—1)'+"

the summation over m yields

d0'oo, mr

dQ

( 2p'l
PiI 1+

I

—(—1) ' sin(2qrs)
sss j

and the damping parameter is simply

B. Angular Distributions for l—+0 Transitions

For nonvanishing p both odd and even M terms
contribute to the sum in Eq. (36), resulting in a partial
cancellation of the diffraction oscillations. The de-
pendence of this effect on the angular momentum
transfer is most easily seen in the special case where the
final single-particle state is the is state. Then, since
ts+2w&min fI', eI and I'=0 in the expression for the
D function, the sum on m reduces to a single term and
l3 is zero. Also, from the properties of the 6j symbol
in Eq. (37), ls ——0, ti ——l', and I.=/' for a nonvanishing
contribution to the transfer function. With these
simplifications in the transfer function (37), the dif-
ferential cross section (35) reduces to

dg'oo, el e-'Is(qr, )-sI ZD . oCoo.. V.... I'
nI

I ;,= I
I l'

I
is even—, then M is even, Ass, „i——Pi—'L (rs'+ p') /(re' —p') j. (42)

and if
I. ; =

I
l l'

I
is odd, —then M is odd. (40)

Thus, only odd or even M, but not both, contribute to
the cross section:

The damping increases strongly with increasing
angular momentum transfer and recoil momentum.
The case of zero angular momentum transfer is ex-
ceptional; since Ps(x) = 1, there is no damping for any
value of the recoil momentum.

'"
er QL'I gz~, i i I'I 1+ sin(2qrp) j, (41)

LM

the positive sign being taken when I. ; is odd, the
negative sign when I. ; is even. We note that in both
cases X„~.,„~=i and the angular, r distribution exhibits

C. General Transfers with Spin

In the general transfer nl~n'l', the angular distribu-
tion consists of a sum of terms, one for each possible

'2 E.T.Whittaker and G. N. Watson, Course of Modern Analysis
{Cambridge University Press, New York, 1963), 4th ed. , p. 326.
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angular momentum transfer. Each of these terms in-
cludes a monotonic and fluctuating component, which
is damped according to the magnitude of the angular
momentum transfer and the recoil momentum as in the

FIG. 2. Dependence of the damping on the recoil momentum
for transfer between various single-particle states. Note that the
dimensionless quantity (ps/rssv'l is plotted along the abscissa.
The curve u shows the damping parameter for 1si/~—+1si/2 transi-
tions; b, 1pi/g~1&/2, c, isi/~-+i+/2, 3/2, d, 1si/2 —+1d3/Q, 5/Q e, ipip~
1d8IQ' f, 1pvs~1d614

simple case of /—+0 transitions discussed above. For
nonzero recoil momentum, all transfer functions
gr,sr,„.i.„4 contribute to the cross section (35), and hence
the selection rule (40) is no longer valid. In a given
reaction the degree of damping predicted by the model
depends on the recoil momentum, which is determined
by the incident energy, the range p of the interaction,
and the oscillator parameters v and v', which fix the
range of the initial and final single-particle states.

The inclusion of the spin in the model is straight-
forward. The spins of the cores c and b enter the cross
section only through some over-all statistical factors
and do not change the shape of the differential cross
section. The spin of the transferred particle, which we
now take to be a nucleon of spin —', does, however,
modify the angular distribution. The differential cross
section for transfer from the single-particle state with
total angular momentum j and orbital angular / to the
state with quantum numbers e', j', and l' becomes

'I

i& ~e»s(pro) —' I ' Igrs4, vil
dQ I,M P 2.

XL1—(—1)~ sin(2grs) ].
Thus, the damping is now determined by

( ])i 4
I g ( 1)ML,.

IM
ZL' ' lgisr. i 4(p) I'

I
(43)

I sr p I 1 )

The damping parameters for various single-particle
transitions are plotted as functions of increasing recoil
momentum (which corresponds to increasing incident
energy) in Fig. 2. In our calculations we have used a
Gaussian potential V„=Voe &"'. Since the results are
insensitive to the parameter p, provided it is not much
larger than the oscillator strength v, the damping
parameters for Fig. 2 are shown for p=0. (The effects
of varying the range of the potential may be seen in
Fig. 4 for the 1p»scrip»s and ip»s~ids~s transitions. )
The damping parameters for the ip»s~ip»s and
is&p~isjp transitions are atypical since they include a
constant component for transfer of zero angular mo-
mentum, which is independent of the recoil momentum.
The other transitions shown consist of nonzero angular
momentum transfers, leading to complete damping at
p=rs Transition. s in which there is no angular mo-
mentum transfer should provide valuable experimental
tests of the assumptions of the theory, which predicts
strong oscillations in the angular distributions for these
transitions in contrast with the smooth behavior pre-
dicted for other transfers.

D. Damping in t'he Reaction C's(N'4 N's)C"

As a specific test of the damping mechanism pro-
posed here, we discuss in this section the reaction
C"(N'4 N") C" E,,~.=68.5 MeV, recently examined
experimentally by Birnbaum, Overley, and Bromley. 4

The final states of C" most strongly excited were
identified as the ground state 0.0 MeV(J' = s ), and the
3.85-MeV(s+), the '7.65-MeV (-',+), and the 9.51-
MeV(s ) states. These states are believed to have
dominant parentage I

Cis(ground state)+I], support-
ing the assumption of Sec. II of single-particle transfer
without core excitation for this reaction. The transition
to the ground state is taken here as the transfer of a
ip»s nucleon in N' to a ip»s orbit in C" and the
transition to the 3.85-MeV level as a 1p»s —+ids/s
transfer. The N" angular distributions for the ground
and 3.85-MeV states are plotted in Fig. 3 together with
the over-all q

—' dependence predicted by the present
theory, showing good agreement. The experimental
curves show negligible diffraction structure, requiring
theoretically a small value of the damping parameter of
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FIG. 3. Comparison of the experimental transfer cross sections
of Ref. 4 for the reaction C's (N'4, N") C"with the q

' dependence
on the linear momentum transfer q given by the present theory.
Angular distributions for transitions to the ground state and the
3.8-MeV level of C" are shown. The theoretical curves are arbi-
trarily normalized,

Eq. (43). The reciprocal of the recoil momentum at
E, =68..5 MeV is approximately 1.5 F, which is

comparable with the diGraction radius r0~6 F, so that
damping is expected. Calculations with the aid of Eq.
(43) and Eq. (35) show that the degree of damping
depends quite critically on the choice of the oscillator
strength u. Figure 4 shows the damping parameter
plotted against the oscillator strength for transitions
to the ground and 3.85-MeV states, at E, =68.5
MeV. In shell-model calculations, " the oscillator
strength is taken as v 0.3 F '. For this value, the
present theory predicts oscillations in the angular dis-
tribution for transitions to the ground state, whose
amplitude is within the experimental error. On the
other hand, for this value of v, the damping parameter
for transitions to the 3.85-MeV level is about 0.6,
whereas no oscillations are discernible in the experi-
mental results. A smaller value of v~0.2 F—' yields
damping parameters for both transitions of about 0.3,
which is more consistent with experiment. A smaller
value of v in the scattering calculation is perhaps
reasonable when the obvious shortcomings of the oscil-
lator single-particle state are considered. The transfer
function is evaluated on the di8raction radius r=r0,
so that the principal contribution to the integral of Eq.
(13) comes from the overlap of the tails of the bound-

state wave functions. The oscillator wave functions fall

.8- lp1&~ )de

Cg

.4

.0
0
X

4

A

Ec.m " 68.5 NeY

-.8 - ~~
)ply~ )pl]

l 1 I 1

.15 .20 .2S .30 .35

OSCILI.ATOR STRENGTH (F ~)

Fre. 4. Predicted damping in angular distributions for neutron
transfer to the ground state and 3.8-MeV levels of C" in the
reaction C"(N'4, N") C".The diffraction radius ro is taken to have
the value 6 F. The solid curves were calculated with in6nite
range (p=0) of the interaction V,. For the dashed curves the
range parameter p was taken with twice the value of the oscillator
strength v. For the broken curve, p=v.

.40

off too quickly at the nuclear surface; this may be
compensated by decreasing the oscillator strength.

In addition, it must be emphasized that our model
for the scattering wave functions is extreme, the sharp
nuclear surface leading to complete diGraction oscil-
lations in the absence of recoil. In a more realistic
calculation, a disuse nuclear surface should lead to
some damping apart from recoil eGects.

In view of the simplifications of the model and the
more general limitations of the distorted-wave Born
approximation, including the post-prior discrepancy
mentioned previously, it cannot be concluded from the
limited agreement with experiment demonstrated in
this section that the mechanism of recoil damping
provides a complete explanation for the absence of
structure in' the angular distributions of transfer re-
actions at energies above the Coulomb barrier. This
work does show, however, that a simple distorted-wave
direct-reaction model can, when recoil is included, give
substantial damping of angular distributions. The
question of whether the recoil mechanism alone is
sufhcient to explain the experimental phenomena
is open, but the present model suggests that recoil must
play a major role in a more realistic theoretical treat-
ment of the transfer mechanism, and that the picture
of the transfer reaction as a direct transfer between
strongly absorbing cores is not in disagreement with
experiment.

APPENDIX
In this appendix the derivation of Eq. (21) for the

matrix elements of the Weyl operator U(p, r) in the
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{n, l, mI representation is outlined. It should be
mentioned that an expression for U(p, r) in terms of
ladder operators in the {n„n„,n, I representation is
well known""' and that explicit forms for U(p, r)
in the {nlmI representation may be found from this
expression with the help of the transformation brackets
(n, l, tn

~
n„n„, n, ). Alternatively, as shown here, Eq.

(21) may be derived from an integral representation of
the oscillator wave functions.

In coniguration space,

..t (p r)

= (n'l'm'
~ U(p, r) ( nlm)

=erp( —dp r) fP„r "(r'—r)e' '"P r (r')dr'. (A1)

The evaluation of this integral rests on the following
integral representation of the oscillator wave functions:

y„t~(r) =C.t (—1)"e-"" e"' e""'Yt"(it) du
BN" m=0

(A2)
where

C„,= [-,'(n —-,'l)!I (-', n+-s, l+-,s) ]»'/2'(sit~st'n!

and r is dimensionless, since we measure p and r in
terms of the oscillator strength v.

The equivalence of Eq. (A2) with the usual definition
of the oscillator wave functions, "
Pid„t (r) = (—1) [(SSn—rSl)!/I'(SSn+Sl+SS) ]»'r'e &r

XL;„~t'(r') F't (r),

is easily demonstrated by expanding the exponential
e""'of Eq. (A2) in partial waves'

e'* '=4sr Q i'jt(2Nr) lrt (tt) Ft"(r), (A3)
ltn

performing the parameter integrations, and using the
fact that the spherical Bessel function is a generating
function for the Laguerre polynominals, 's

(2/+sr) e" jt(2Nr)

= Q [I' +v'/I'(P+l+-) sjL '+'"(r')r'.
@=0

After substitution of Eq. (A2) in Eq. (A1), the in-
tegration with respect to r' is easily performed, yielding

,.t (p, r)
8 8=C„(C„.t.e(2sr) st'( —1)~+"'e v't'e—-"t'

8N 8N"

dl dA'e'"'e'""e '"'"'Vp 4 Fp* 4'
u=0, th~M

(A4)
with s=r+ip and t=r —ip.

On expansion in the partial-wave series (A3) of each
of the exponentials involving the parameters u and
u', the parameter integrations in Eq. (A4) may be
carried out, resulting in Eq. (21) given in Sec. III.

An explicit expression for the D function of Eq. (23)
is obtained by substituting the series expansions of the
spherical Bessel functions and carrying out the param-
eter differentiations,

D„.„,„(s,t) = ~r't' g i.+"'-»-'~' (p-', )"+"-'t~'"

X js" ''"t"' '-'"n!n'!-/[r ( ', l,+-,'+-,'n-',I,—w) I—"(--',I,+ s+-', n' —-', ls —w) jI, (A5)

where the sum is over non-negative integers m which satisfy both 2m &e—
l&
—l3 and 2m&n —l2—l3.

The matrix elements of the Gaussian potential used in the calculations of Sec. V are also easily found with the
aid of Eq. (A2) for the oscillator wave functions. The result is

(n'lm
( e Ps'

[ nlm) = [(-',n—-', l)!(-',n' ——',l)!I'(-,'n+sl+s) I'(-,'n'+-', l+-,') j '"
X(1/1+e)"'(e/1+a)*'("+ ') Q e ' '"/[-,'(n —l) —w]![-,'(n' —l) —w]!w!I'(l+-,'+w), (A6)

where the sum is over non-negative integers mr which satisfy both 2m&&m —l and 2m&m' —t, and ~ is dehned by
s= p/2v.
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