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The p-atomic hyperfine structure in the E, L, and M lines of U"' and Th"' was obtained using a large
high-resolution Ge(Li) detector. The hyperfine structure is due to large deformations in these nuclei and
arises from a dynamic electric quadrupole interaction between the muonic states and the lowest nuclear
states. The measurements were interpreted using the Bohr-Mottelson rigid-rotator model with a symmetry
axis for the nucleus and taking into account the first and second rotational states. The charge distribution
chosen was a Fermi type whose constant-density shells are concentric ellipsoids of revolution of constant
eccentricity. By numerically solving the Dirac equation, it was possible to determine three parameters of
the size and shape of the nuclear charge distribution. The intrinsic quadrupole moments were found to be
(22.47+0.23) X20 '4 and (9.83+0.26) X20 '4 cm' for Uses and Thss', respectively, in good agreement with
other measurements. The deformation parameter P was found to be 0.244+0.002 and 0.222+0.003, respec-
tively. The central density, found to be 0.153+0.002 and 0.153+0.003 nucleons per cubic fermi, respectively,
differs only slightly from the value of 0.158 nucleons per cubic fermi that one finds for most spherical nuclei.

I. INTRODUCTION

r 1HE usefulness of the muon as a nuclear probe was..first recognized by Wheeler, ' ' whose original papers
still serve as the basic guide to the subject, Wheeler
pointed out that from measurements of muonic x rays
the shape as well as the extent of the nuclear charge
distribution could be determined. This method for de-
termining nuclear charge radii has been used exten-
sively following the pioneer experiments of Fitch and
Rainwater. ' It complements the determination of the
same quantity from electron scattering measurements. '

Among the effects considered by Wheeler in his 1953
paper' was the hyperfine splitting induced by the static
electric quadrupole moment of the nucleus. This is
entirely analogous to that produced by an electron but
much larger because the muon moves much closer to
the nucleus. Such effects occur only for nuclei with
nuclear spin I&1 and muon orbits with j&&.

Subsequently, Wilets' and Jacobsohn' reconsidered
this problem, giving particular attention to the highly
deformed nuclei. Such nuclei have low-lying rotational
states which give rise to a novel effect. In the presence
of the muon in a low-lying atomic state the low-lying
rotational states mix with the ground state by quadru-
pole interaction. A complex hfs results which appears
even when the nuclear spin is zero or -', .
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The early observations' ' made with NaI showed

very little of the detail of the line structure which the
dynamic quadrupole effect can produce. However, from
a careful analysis of the broadened line shapes obtained
it was possible to establish the existence of the effect
and to use it in a determination of the sign and magni-
tude of the quadrupole moment.

The development of Ge(Li) detectors" made it pos-
sible to observe hfs effects with much higher resolu-
tion. Such a measurement was first reported by Ander-
son et al." in this laboratory. The present work was
carried out as an extension of that initial effort, using
a number of refinements of technique in an attempt
to reveal the dynamic quadrupole effect in as much
detail as possible with the means currently available.
The suggestion by Jacobsohn' and. Wilets' that such
measurements of muonic x rays could serve to deter-
mine the intrinsic quadrupole moments of even-even
nuclei is realized in this work for Th"' and U"'. During
the course of this work, other reports have appeared'~ "
with which a comparison will be made.

Section II reviews the theory of the muonic atom
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Moscow, 2965), Vol. 1, p. 874; Phys. Rev. Letters 13, 550 (1964).
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Tavendale, in Proceedings of the Twelfth Annnul Conference on
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A. Gaigalas, R. B. Sutton, and C. C. Trail, Phys. Letters 19, 18
(1965) .
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with a view to establishing the notation used in the
hfs formalism and for discussing the Dirac equation
which must be solved numerically to relate the energy
parameters of the hfs formalism with specific distorted
charge distributions. Also included in Sec. II is a dis-
cussion of the various corrections that are made to the
energy levels calculated from the Dirac equation. Sec-
tion III outlines the hfs formalism.

The material of Secs. IV and V can be found in
greater detail elsewhere. "Section IV describes the ap-
paratus used in obtaining the muonic x-ray spectra,
and Sec. V describes the data-reduction methods and
also includes the Pb"' muonic x-ray results which were
used as the calibration standard for the U"' and Th"'
spectra.

Section VI describes the fits to the U"' and Th"'
spectra using the hfs formalism, Sec. VII describes the
extraction of the nuclear parameters, including the
quadrupole moments, using a specific charge distribu-
tion, Sec. VIII compares the present results with other
work done on U"' and Th"', Sec. IX is a discussion of
the quadrupole moment, and Sec. X concludes the
paper.

II. THEORY

A. Monopole Interaction

The muonic atom is best described by the relativistic
Dirac equation, since the muon in the field of a heavy
nucleus has an energy in the lowest states which is an
appreciable fraction of the rest mass of the muon. In
addition, except for the anomalous part, the Dirac
equation has the proper fine-structure splitting built in.

The Hamiltonian of the muon is written

H(x, d) =ce p+p rt+scsV(r), (1)

where sN is the muon mass and V(r) is the electrostatic
potential energy of the muon in the field of the nu-
cleus. The quantities e and p are the usual 4X4 Dirac
matrices, Only the electrostatic potential of the nucleus
is included here; other effects, such as vacuum polariza-
tion, are small or negligible and will be dealt with later.

The quantity p(r) stands for the charge distribution
of the nucleus and is normalized to Z, the charge num-
ber of the nucleus. With this normalization the mono-
pole term of a multipole expansion of V(r) in terms
of spherical harmonics is

Ze' 4n-e'
Q(r) =— + p(r') (r" rr') dr', (2—)r r r

where the angular-averaged charge distribution p(r) is
defined by

P(r) =(kr) ' Ip(x)t(D.

"H. L. Anderson, C. K. Hargrove, E. P. Hincks, J. D.
McAndrew, R. J. McKee, R. D. Bartonk, and D. Kessler (un-
published) .

The monopole term has no angular dependence. For a
spherically symmetric nucleus, only the monopole term
appears in the expansion.

Using the monopole term, we define a new Hamil-
tonian:

Hp(r, d) =ce p+prlc'+g(r).

The Dirac equation that is solved is

Hoy=Ey

(4)

For low-Z nuclei or for the higher levels of high-Z
nuclei, it is sufhcient to use the point-nucleus eigen-
values which are available in analytic form. "A correc-
tion for the effect of finite size of the nucleus may be
obtained from a first-order perturbation calculation
using the second term in the expression (2) . However,
for the cases of interest herc -the lowest levels in
high-Z nuclei —Eq. (5) must be solved by numerical
integration.

Equation (5) describes the muon in a central poten-
tial field. In this case, the eigenfunctions for muon
states eljp, where p, is the 2' component of j, are

f„„&(r)= ( 1/r) G„„(r)g„&(8, P)

= (s/r) F-(r)q-„"(g y)

where F and G, the small and large components, re-
spectively, are real and have the normalizations

(F'+G') dr =1.
0

The quantum number a is related to l and j by

for z&0,

l =—(x+1), for x(0. (g)

The radial wave functions satisfy the two coupled dif-
ferential equations

F'(r) =xF(r) /r pE rlscs re—(r) jG—(r) /5—c,

G'(r) = xG(r) /r+—[E+rtscs $(r) ]F(r—) /Sc. (9)

B.Radiative Corrections

The eigenvalues that come from a numerical solution
of Eq. (9) do not describe the energy levels of the
muonic atom accurately enough, even for a spherically
symmetric nucleus. Several corrections must be con-
sidered.

The most important correction is the electronic vac-
uum polarization. This effect arises from the emission.
and reabsorption of virtual electron-positron pairs which
cause the vacuum to act like a classical dielectric me-
dium. To order e=es/Kc and for a general nuclear
charge distribution p(r) the vacuum polarization may

"See, for example, L. I. Schiff, Qaantlm Mechaascs (McGraw-
Hill Book Co., New York, 1955), pp. 331-339.
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Xs(k) = Z ius(2&) ' exp( —2k)+b (2k)'"+'~, (2k) 3,

where E,(2$) is the exponential integral

"exp( —2&a)
GS.

1 8

(12)

Cutting off the expansion at u4 and b2 as we have done
introduces an error no larger than about 0.01%.

The electronic vacuum polarization is obtained in
the present work from a first-order perturbation cal-
culation using the numerically derived wave functions

b,E~= ~ r Ii' Q' dr. 13
0

The vacuum polarization increases the binding energy
of the muon somewhat less than 0.7%. Thus, for the
heaviest nuclei, the 1s-level vacuum polarization is on
the order of 70 keV.

For the muonic Lamb shift, we use the usual ex-
pression to order n in the form of a potential energy" ":

PLs (») =snes)(„'Pln(stre'/268) +~s' —s jp (»), (14)

where X„ is the Compton wavelength of the muon and
5E is a certain average of the excitation energy of the
muon defined by the Bethe sum. ""We have used
p(») instead of p(r) for simplicity, in view of larger
uncertainties inherent in Eq. (14). Equation (14) was
derived originally to explain the 2ptts-2srts splitting in

"E.A. Uehling, Phys, Rev. 48, 55 (1935); R. Serber, ebNt
48, 49 (1935).

'e J. Schwinger, Phys. Rev. 75, 651 (1949).
'e R. C. Barrett, S. J. Brodsky, G. W. Erickson, and M. H.

Goldhaber, Phys. Rev. 166, 1589 (1968)."R.Glauber, W. Rarita, and P. Schwed, Phys. Rev. 120, 609
(1960).

"H. A. Bethe, L. M. Brown, and J. R. Stehn, Phys. Rev. 77,
370 (1950);J. D. Bjorken and S. D. Drell, Reluteeestec QNultgta
Mechuaecs (McGraw-Hill Book Co., New York, 1964), pp. 177-
179.

be written as a correction to the electrostatic energy'~ ":
V(r) +V„(r). A multipole expansion of V„(r) gives as
the monopole term the result"

Ps(») = (2ne'/3») X,

(»+»') t'
I

» »—'
I )

X p(» )» x21 I xs I I
d» (10)

where X„($) is the integral

~ 1 1 1t'~'
X ($) = — 1+ —1——

I exp( —2&s) ds (11)
~']

and X, is the Compton wavelength of the electron. It
is rather unwieldy to use Eq. (10) in actual calcula-
tions as it stands. Following Glauber et a/. ,

"who give
an expansion for x~, we have expanded x2, with the
results

n "~(»)
AF. = ——7t.„F(»)G(») d»

2X'
p Gf

(16)

The anomalous magnetic moment correction as for-
mulated in Eq. (15) also suffers the same uncertainties
as the Lamb shift, resulting from the assumption of
r))X„. But in the lowest levels where the uncertainty
is greatest, the anomalous magnetic moment shift is
considerably less than the Lamb shift. It is about
0.4+0.1 keV for the 1s level for nuclei in the vicinity
of Pb. The anomalous part also increases fine-structure
splittings; in the vicinity of Pb the 2p fine-structure
splitting is increased by about 0.4 keV.

Among other possible corrections, the nuclear polari-
zation effect is probably the most important. This has
been calculated by many authors with widely di8er-
ent results, "-"depending on the nuclear model used.
Recently, Cole" has calculated, using an average nu-
clear model, the nuclear polarization due to the giant
dipole resonance, and in the vicinity of Pb, his results
show an extra binding of the muon of about 5 keV for
the 1s level and 1 keV for the 2p levels. Pieper and
Greiner, " on the other hand, have taken specific nu-
clei, including U"' and Th"', and have calculated the
nuclear polarization due to the giant monopole, dipole,
and quadrupole resonances. They find that the binding
is increased by about 1 keV for the 1s and 2p levels.
Nuclear polarization effects increase the binding en-

ergy by a small amount. However, because of the

"L.N. Cooper and E. M. Henley, Phys. Rev. 92, 801 (1953).I W. Lakin and W. Kohn, Phys. Rev. 94, 787 (1954) .
'4 F. Sheck, Z. Physik 172, 239 (1963).
s' R. K. Cole, Jr., Phys. Letters 25B, 178 (1967).
"W. Pieper and W. Greiner, Phys. Letters 24B, 377 (1967).

electronic hydrogen and is meant to be valid, provided
Zo;&(1. The condition is not satisfied very well for
heavy, high-Z nuclei. However, for heavy muonic atoms
there is a saving feature, to the extent that the nuclear
charge reduces the effective value of Z in the critical
region r~X„. In Pb, for example, the radius of the
nucleus is 7 F, the 1s Bohr radius is 3 F, while X„=1.9 F.

A second problem occurs with the Bethe sum. We
follow Barrett et al." and use for hE the binding
energy of the muon for the particular energy level to
which the Lamb shift is being applied. These authors
estimate that the resulting Lamb shift has a 30% un-

certainty, arising principally from hE.
We calculate the Lamb shift in first-order perturba-

tion. In the region of. Pb, the 1s muonic Lamb shift is
on the order of 3.0&1.0 keV. The Lamb shift decreases
the binding energy.

The energy shift due to the muon anomalous mag-
netic moment can also be written in the form of a
correction to the potential energy. To order n, this is

y„(») = —(sn/4tr) X„(tdrtt (») /d»)Pn„,

where n, =r. u/». In first-order perturbation the energy
shift is
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uncertainties in calculating them they have not been
explicitly included in this work.

Other corrections which have been considered" "ap-
pear to be negligible for the purposes of this work. In
particular, the screening due to atomic electrons ap-
pears" to produce a shift of only a few eV. The non-
electromagnetic (weak) interaction of the muon witl.
the nucleus has been estimated" to be on the order of
a few eV. The error introduced by using the reduced
mass in the Dirac equation has been estimated" to be
less than 1 keV.

n"'(r ) =(3 '- '))p(r )

Q~= Ip(')(r~)tpr„.

The function f(r), called the penetration factor, is

1f, "r)))P—r'
f(r) = —

I
)—Qo

' d~~f pa'(rp)rtp~).r' I, „r„'

(18}

(19)

(20)

The quantity H' is the quadrupole part of the inter-
action energy between the muon and the nucleus. The
muon coordinates are r, 8, and (QI), while the nuclear
coordinates are collective, with 8)p and pN, the polar
and azimuthal angles of the s~ axis of the nucleus, in
the 1aboratory frame. There is a third nuclear coordi-

III. QUADRUPOLE HYPERFINE STRUCTURE

A. Bohr-Mottelson Model

The muon binding energies, which include the vari-
ous corrections discussed in Sec. II, and the eigen-
functions f„„s of the Hamiltonian Hp(r, d), Eq. (4),
form the unperturbed states of the muon in the electro-
static field of the angular-averaged charge distribution
of the nucleus. If the charge distribution were spher-
ically symmetric, this would be the end of the story.
But the asymmetry of the charge distribution intro-
duces new eBects; the unperturbed states will be mixed;
unperturbed energy levels will be split and shifted. In
this paper only electric quadrupole eGects are con-
sidered.

The quadrupole term is the next term in the multi-
pole expansion of the electrostatic potential energy
V(r) which contributes anything. It is assumed that
the nucleus is rigid with a cylindrically symmetric
charge distribution p(rs(). The vector r))( refers to a
coordinate system fixed in the nucleus with the axis of
symmetry in the direction of s&. Thus, following
Wilets, s the quadrupole term of V(r) can be written

H = ——Qpe'f(r) Pp(coso), (I&)

where 8 is the angle between the muon coordinate r
and the si(( axis. The intrinsic quadrupole moment Qp
is defined in terms of the body-fixed quadrupole charge
distribution

nate, iJ)~, which is the angular position of the nucleus
about the axis of symmetry.

We adopt as our nuclear model for U"' and Th"'
the Bohr-Mottelson collective model for highly de-
formed nuclei. '~ Nuclei in the region of 155&A&185
and A & 230 display in their spectra rotational sequences
indicating permanent intrinsic deformations. Usually
the spacings of the rotational levels show the regularity
that would be expected from the energy levels of the
rotations of the quantum-mechanical symmetric top,
thus indicating that the nucleus has an axis of symme-
try and acts like a rigid rotator. In this model the
nuclear state is described by three quantum numbers:
I, the total angular momentum of the nucleus; h. , the
angular momentum component along the s axis in the
laboratory frame; and E, the component along the nu-
clear axis of symmetry. For the lowest rotational states
E is constant and is equal to the ground-state spin.
In the case of even-even nuclei, whose ground-state
spin is zero, E=O.

The rotational Hamiltonian of the nucleus is that of
a quantum-mechanical rigid rotator H„t, for even-even
nuclei its eigenvalues are the rotational levels:

Er (fis/2d) PI(I+——1)g, (21)

where 8 is the moment of inertia. The sequence of
states is I=O, 2, 4, 6, etc. The eigenfunctions of H„~
are the spherical harmonics:

4rx'= (2pr) '"Via(6, 4~s() (22)

For the present purposes, it is not necessary to con-
sider the more detailed aspects of the Bohr-Mottelson
model, such as vibrational modes. It is sufficient to
consider, in addition to the ground state with I=O,
only the first two excited states with I=2 and I=4.

It is of interest to see how well the rotational levels
of U"' and Th"' satisfy the criteria of a rigid symmet-
ric rotator whose energy levels are given by Eq. (21).
According to this equation, the energy levels of the
first two excited states are given by Es=35'/8 and
E4 10'/d. By defining a——quantity e as

e = 10Ep/3Ep —1 (23)

2'A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -Phys. Medd. 27, No. 16 (1953).

and using the experimental values for E2 and E4 in
calculating e, the departure from the ideal rigid rotator
will be revealed to some extent. Any small departure
of e from zero is an expected small centrifugal stretch-
ing increase in the moment of inertia. Table I gives
the experimental values of E2 and E4 and the resulting
values of e for U"' and Th2~'. The results of Table I
show that, at least for the lowest two excited states,
the U"' and Th"' nuclei are evidently very well de-
scribed by the rotational model.
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II=IIo+II-p+II'. (24)

The muon states are found by solving the Dirac equa-
tion numerically, while the nuclear energy levels of
U and Th 2 are taken from experiment. 8 Various
corrections, as discussed above, are added to the muon
energies.

In the coupled representation the unperturbed Ham-
iltonian IIp+II„p has as eigenfunctions the eigenfunc-
tions of total angular momentum Ii:

Pssr, n.rrr = g C( jIF; Ir AM) P "tPrzs, (25)
yA

B.Matrix Elements

The total Hamiltonian of the muon plus nucleus sys-
tem up to the quadrupole interaction term is

All the physics of the quadrupole interaction is con-
tained in the E(nlr, nY}; the remaining factors of
Eq. ('26) are just the coefficients of the angular mo-
mentum algebra which are tabulated in many places. "
Thus, the matrix elements of the total Hamiltonian
are, after collecting all the factors,

(FM, n.IE
I
II

I
FM, n YI'E')

( En@+Erx) '4n'bxa'5rr'5KK'

—5(—1) "+' '"E(n~, n's')5~x

X I (2j+1) (2j'+1) (2l+1) (2I+1)7'I'

XC(l2l'; 000) C(I2P; —E, 0, E)—
XW(jIj 'I'; F2) W(lj lj''; s2) . (28)

For a given muonic atom all the quantities in Kq.
(28) are known except the unperturbed atomic ener-
gies E„„and the quadrupole energies E(ns, nY) . These
remain as parameters to be determined by fitting the
observed spectrum. Once they are determined, we seek,
from a solution of the Dirac equation (with correc-
tions), a consistent set of nuclear shape parameters.

The assumption made in the Bohr-Mottelson model
that the nucleus keeps the same shape in the excited
rotational states means that the quadrupole energy
depends only upon the muon states. The actual muonic
spectra seen in experiment may depart from this to
some extent; if the departure is due to breakdown of
the assumption of a rigid nucleus, perhaps due to the
mixing in of vibrational states or individual particle
excitations, the breakdown may be taken care of for-
mally, following Iacobsohn, s by introducing "nuclear
parameters" el& into the quadrupole energy:

where C(jIF; pAM) is the usual Clebsch-Gordan"
eoeScient. In this representation the matrix elements
of H are

(FM, nirIE
I
H

I FM, n's'I'E')

= (E .+Errr) &. ~- &rr &zx sQo&'s~(—2j+1)"
X (2I+1)t~sW(jIj I

~ F2) ( 1)r+r -z

If(&) I s(i7 4) II n'")
X(IE II I;(ll~, y~) II I'E'), (26)

where the 8' symbol is the Racah coeScient and the
double-barred symbols are the reduced matrix elements.

All the quantities which depend on a choice of a
speci6c charge distribution for the nucleus are con-
tained in Qp and the function f(r) in the muon reduced
matrix element. These two quantities are combined to
give what is termed here the "quadrupole energy. "
Following Wiletsp (except for the sign), the quadru-
pole energy is de6ned as

(29)E(n~I, n'lr'I') =err E(nir, n'lr'),

where, by definition, cps=1, since Qp is the quadrupole
moment of the ground state. The quantity Qrr =err Qo-
could then be called the "dynamic quadrupole mo-
ment. " It reQects the change in shape of the nucleus
in leaving the ground state.(2&)

s(Na, wY) +—,', Qse' J f(r)(p=p +G G „),dr„. „. „..
0

Quantity Thai'

Ep (keV)

E4 (keV)

p (%)

44. 7~0.2 49.75+0.25

147.7+2.0 162.80&2.0

0.9+1.4 1.90&1.4

Taken from Ref. 28.

'8 F. S. Stephens, Jr., R. M. Diamond, and I. Perlman, Phys.
Rev. Letters 3, 435 {1959).

"M. E. Rose, Elementary Theory of Ae liar 3fomeetem (John
Wiley 8r Sons, Inc. , New York, 1957), E . (6.21). The notation
of this reference is used in the present work.

TABLE I. First two rotational levels of U"' and Th"'.' The
quantity e, de6ned by Eq. (23), measures the amount of de-
parture of the first two nuclear levels from those of an ideal
rigid rotator with a symmetry axis.

C. Energy Levels

In the present work only principal transitions 4f~3d,
3d~2p, and 2p-+is were analyzed in both IT'I and
Th'". Off-diagonal matrix elements connecting states
with diferent e or / are small and were ignored. Thus,
only the muonic states 2p, 3d, and 4f were considered
and each was handled separately. For each nl muonic
state several matrices appear, one for each of the pos-
sible values of P. Each matrix, having a given P, n,
and /, was separately diagonalized.

For a given muonic state nl, except s and p states,
three quadrupole energies E(nir, ns') describe the state.
In general, the three quadrupole energies dier by less

"M. Rotenberg, R. Bevins, N. Metropolis, and J. K. Wooten,
Jr., The 3N-j Symbols (The MIT Press, Cambridge, Mass. , 1959) .
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than 15%. For the 2p state, in which the quadrupole
energy is by far the largest, the two quadrupole ener-
gies that occur differ by about 1%. Also, the ratios
of the three quadrupole energies are calculated to be
almost constant over wide ranges of nuclear charge
distribution parameters. For this reason, one quadru-
pole energy, the one off-diagonal in j, and two ratios
are chosen to describe the quadrupole interaction. The
two ratios gi and g2 are then defined as

E(nl, l—-'„nl, l—-', )
E(nl, l—'„nl, l+--', )

'

E(nl, l+-,', nl, l+ ',)-
E(nl, l—-'„nl, l+-', )

(30)

In 6tting the spectra it is an excellent approximation
to assume that y~ and y2 are constant. This procedure
was adopted in this paper.

The I=4 rotational level of Th'" and U'" is around
150 keV, which is on the same order of magnitude as
the 2p splitting and 2p quadrupole energy. For this
reason it is necessary to include the /=4, as well as
the I=O and 2 rotational states, in the 2p Hamiltonian.
For the 3d and 4f levels, only the I=O and 2 states
are needed. Actually, the hfs in the 4f level could be
done in first-order perturbation or just ignored; how-
ever, it turned out that it took very little extra work
to include it.

After diagonalizing a Hamiltonian matrix of given
nlF, the mixed states which occur are written as

I

+~ l«M P Cpa lj r f«M, n lir & (31)
jE

where lj is now written in place of ~, and the nuclear
quantum number E, which is zero everywhere, is sup-
pressed.

The eigenvalues of the Hamiltonian are the energy
states of the total system of muon and nucleus; these
eigenvalues are denoted by E„&F'. The 2p energy states
of Th"' and U" are greatly split and shifted as shown
in Fig. 8; the mixing is so great that j and I are not
even approximately good quantum numbers. However,
2p is still a good description of the state because of the
negligible amount of mixing in from other nl states.

D. Line Intensities

The muonic x rays are emitted when the muon nu-
cleus system undergoes a transition from the state
nVF'i to the state e/Fk. Only the electric dipole radia-
tion is of any importance here. The usual selection
rules, hF =0, +1, except 0—+0 apply, and since only the
principal lines are dealt with, the further restrictions
6/= —1 and he= —1 pertain.

In the nonrelativistic dipole approximation the tran-
sition probability from initial state n'l'F'i to final state

nlFk is proportional to

I I,(n'l'F'~nlF) =E;g' Q [ (n/FMk
~
r

~

n'l'F'M'i) (',
MMI

(32)

where E;I,=E„~p'—E„~~~ and r is the muon coordi-
nate. Again, by using theorems" dealing with spherical
tensors, this becomes

I;g(n'PF'~nlF)

=E;g'(2l+1) (2F+1) (2F'+1) i C(ill'; 000) i'

X I P (—1)~~'-'(2j+1) 'I'(2j'+1) 'I'

X(njlI «
I
n'lj'')C«„s7"

XC« ~ p'r'W(j~lj''; p1) W(jj'FF'& 1I) ~'. (33)

In this work the sequence of transitions 4f~3&~
2~1s is studied. Corresponding to each successive
transition is a group of lines, the M, I., and E lines,
respectively, each widely separated in energy. %ithin
each group the relative intensity as well as the absolute
energy of each hfs line was calculated. for comparison
with experiment.

The relative intensity of a transition from the initial
state e'l'F'i to the final state nlFk is the product of
the population of the initial state and the branching
ratio of the transitions to the final state. For a statis-
tically populated initial state the population is just
2F +1.The branching ratio is just the fraction of tran-
sitions which lead to a specified final state. For the
principal lines we include only n=n' —1, l=l' —1 and
neglect transitions to states with other values of nl.
The population of the final state e/Fk must be propor-
tional to the sum of the intensities reaching it from
higher states. For the purposes of the present work it
is a good approximation to consider that only states
with n'=n+1, P =l+1 feed the states with nl Cross-.
over transitions such as 4d-+2p do occur, but with
intensities small compared with 3d-+2p.

The 4f level is assumed to be statistically fed. from
above, from states which have no quadrupole inter-
action and in which the nucleus is in its ground state.
The dipole transitions leave the nuclear state un-

changed, so that the promotion to states of higher
nuclear spin comes initially in the f level due to quad-
rupole mixing there. In practice there is very little
mixing in the f level. The population of the F'=s2.
and -', levels differ from 2F'+1 by less than 1%, see
Fig. 10. The quadrupole mixing is much larger in the
lower atomic states, with the result that an appreciable
fraction of the nuclei find themselves in the higher
rotational states by the time the 1s muonic level is
reached.

IV. MEASUREMENTS

Measurements were made using a large (1&-cm')
Ge(Li) detector of coaxial design. Such a large detec-
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cerenkov
Counter

Polyethylene moderotors--
ource

FIG. 1. Muon telescope. The muon beam came from the left.
Counters 1-3 dehned the beam. Counters 3a and 3b indicated
which target the muon struck. Counter 4, in anticoincidence,
indicated the stopping of the muon in the targets. Counter 5
vetoed charged particles that stopped in the Ge counter. The
Cerenkov counter was used to veto electrons in the beam. The
polyethylene was used as absorber to remove pions and slow
down the muons.

tor offers greater data collection eKciency at some loss
of resolution and with some asymmetry in the line
shape.

Pulse-height analysis was done with a 4096-channel
analog-to-digital converter of high stability in conjunc-
tion with a PDP-8 computer. This combination made
it possible to provide a number of functions which
served to extend the dynamic range of the pulse-height
measurement and to provide a high degree of stability,
so that data could be collected for many days without
appreciable broadening of the x-ray peaks. Moreover,
a variety of spectra could be recorded simultaneously.

Measurements were always made with two targets.
One of these was a standard Pb"' sample, the other
was a sample of either Th'" or U"'. The Pb'" data
were recorded simultaneously with the Th'" or U"'
data, through the same detector and analysis system.
The Pb'" data provided the standard line shapes used
in peak fitting, and an absolute energy scale. It also
served as a means of checking drifts and other mal-
functions.

Muons from the muon channel of the University of
Chicago synchrocyclotron were stopped and identified
by the telescope in one of two targets as shown in
Fig. 1. The muonic x rays were measured by a Ge(Li)
coaxial diode located at 90 from the axis of the muon
beam. Surrounding the diode was a split annulus of
NaI with each half optically isolated. The x-ray data
(prompt events) from the germanium detector were
run in three modes: (i) all diode events, (ii) diode in
anticoincidence with the annulus in order to reduce
the Compton background, and (iii) a triple coincidence
between the diode and both halves of the annulus in
order to isolate double-escape peaks with greatly re-
duced background.

After being suitable ampli6ed, the diode pulse was
analyzed by a 4096-channel (12-bit) analog-to-digital
converter (ADC) whose gain was automatically sta-

I I I I I I I I I I I I I I I I I J

It I-
~~~~~~~~~~~ OWI ~~K 0 4

el

g Qs yama

4- PULSFR PKAK POSITIONS

I I I I I I I I I I I I I I I I I I I

0 I000 ' OOOO 3000 1000
AQC CHANNKL

FIG. 2. Deviation from linearity of the ADC and linear amplifier
using the 20 pulser peaks and their DVM readings. The standard
channel that corresponds to the ADC channel is really the DVM
reading of the ADC channel scaled by the factor C&p/Vgp=0. 4012
channels/mV, where C&p is the ADC channel position of the 10th
pulser peak and t/'ie is its DVM voltage reading.

bilized by two independent precision pulsers. Each
digitized event was stored in an on-line computer sys-
tem by taking the digitized event, treating it as an
address, and adding 1 to the contents of the appropri-
ate memory location. Tag logics determined which

target and which mode the event belonged to. Further-
more, the time of each diode event relative to the
muon stop was digitized and used by the on-line com-

puter to separate prompt from delayed events. Events
of mode (i) were stored for all 4096 channels of the
ADC. With the gain of the system set at 1.6 channels/
keV, the spectra of mode (i), called the X spectra,
had a range from about 150 keV, the noise threshold,
to 6.4 MeV.

Energy calibration lines using several standard
p-ray sources were simultaneously fed into the system.
Also fed in simultaneously was the output of a variable-
amplitude precision pulser which automatically stepped
through 20 voltage settings every 10 min or so. Each
pulser setting was monitored by a digital voltmeter
whose voltage readings were also fed into the computer
system. Thus, the linearity and stability of the system
were constantly being checked. The sources and pulser
data were brought into the system under conditions
similar to those of the x-ray data by employing a beam
monitor which limited data collection to beam burst
times. This was done to limit the possibility of a sys-
tematic shift between x-ray data and the source and
pulser data. A pile-up gate was incorporated to assure
ample time in the measurement of each pulse height
free from the tail of a preceding pulse. A more complete
description of the apparatus is found in Ref. 15.

V. DATA REDUCTION

A. Peak Fitting

The positions and intensities of the peaks in a spec-
trum were found by 6tting to the data an empirical
line shape whose mathematical form was suggested by
the following line-shape characteristic: The line shape
generally showed a low-energy tail at higher energies,
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while at energies below 500 keV the peaks were fairly
Gaussian. Thus, in the mathematical form it has been
assumed that the basic response of the apparatus was
Gaussian, but that regions of the Ge detector were
less efFicient in charge collection, and hence threw counts
from the Gaussian into a low-energy tail.

The line shape was taken to be made up of two parts:
a fraction 1—fq having the Gaussian form and a frac-
tion ft having an exponential tail folded into the same

Gaussian. In these terms the number of counts in the
peak at channel C may be written

Ã„(C) =ms
t (1—ft) exp[—)i(C—Cs) sg

CD

+fg exp/ —X(C'—Cs) s—P(C' —C) fdC'
~

(34)
)
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where CD is the central channel of the undistributed
peak and where E0 is its amplitude.

The channel position of the Gaussian C0 was not
used to define the peak position; rather, the position
of the top of the fitted line shape, the channel where
dlV„(C)/dC=O, was chosen. This was done since, for
a well-fitted asymmetric peak, the ht at the top of the
peak is an invariant property of the data, no matter
what reasonable functional form X~(C) is assumed,
whereas CD is a parameter for a specihc function, Eq.
(34), and thus may not be well defined by the data.
The line shape chosen here is a reasonable description,
not an exact one. But the top of the line position should
be insensitive to this choice. However, the statistical
error in the peak position was taken to be the same as
the statistical error in determining Cp.

The automatic 20-step pulser together with digital-
voltmeter readings (DVM) for the amplitude of each
pulser peak were used to correct any nonlinearity in
the electronics. Between channels 300 and 4000 this
nonlinearity amounted to one part in 1000. With pulser
peaks taken in continuous succession while the data
were being gathered it was possible to convert any set
of observed channels to a standard linearized set by
referring to the DVM readings. Thus, the channels C;
at which the pulser peaks appear are converted into a
standard channel using the relation

C;&'= (Cip/Vip) V;, p=1, 20. (35)

Other channels are made standard by interpolation.
Figure 2 shows a plot of the deviation from linearity
for a series of runs during the experiment.

B.Energy Calibration

Throughout most of the experiment the second target
consisted of an almost isotopically pure sample of Pb' '.

E=ap+aiC+apC', (36)

where E is the energy in keV and C now stands for the
standard channel. For a given spectrum the E-C co-
efFicients a0, a&, and a2 were found by a least-squares
fit using several peaks whose standard channels have
been found by line-shape fitting and whose absolute
energies or energy diGerences are known. Once the
E-C coefBcients were known, the absolute energies of
other fitted peaks of the same spectrum were calculated.

The E-C coefFicients of each Pb"' spectrum were
found by the least-squares Qt to Eq. (36), using five
p-ray source peaks, whose peaks were also line-shape-
6tted and whose energies are well known, and using

A large amount of Pb'~ data were accumulated to deter-
mine the energies of the principal transitions accu-
rately. Once this was done, the Pb'" lines served to
energy calibrate the U"' and Th'" spectra. Figures
3—5 show part of the Pb"' spectrum used for the cali-
bration.

Nine Pb'~ spectra were obtained throughout the ex-
periment. Each spectrum consisted of from 2 to 10
individual runs. One Pb'~ spectrum had as the second
target U"'; another had Th'". For each spectrum the
E, L, and M lines of Pb"' were fitted with the line
shape described in Sec.V A. All the fitting was done in
the X spectrum. The Pb"' target used was not quite
isotopically pure. It had 8.48% of Pbmi and 2.73% of
Pb"' as the principal contaminations. Correction for
these impurities was made by 6tting each of the E and
L lines with three peaks with the intensity of each
peak made proportional to the isotopic abundance and
the spacings set equal to the measured" isotope shifts.

The Ge detector and DVM itself were nonlinear to
some extent. For the conversion from standard channel
to energy it was suKcient to use a quadratic form:
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FIG. 4. The 3d~2p full-energy spectra of Pb"', U"', and Th"' showing the best fit to the data. Many of the 66 lines predicted b the
hfs formalism are shown below the U"8 and Th~'~ spectra. Only lines intense enough to be above the horizontal dashed line were used
in the fit. The remaining lines constituted 6.8% for Us" and 4.5% for Th@' of the total intensity. The y' values for the fitted regions of
the spectra are x =1.62 with 205 degrees of freedom for U"' and g~= 1.89 with 179 degrees of freedom for Thm'~. The Pb' ' 3d31&—+2pg2
transition was not 6tted with the two extra satellite peaks corresponding to the two isotopic impurities since this peak is so weak. All
three spectra were Gtted with the same line-shape parameters.

the precisely known energy diGerences between the
double-escape, single-escape, and full-energy peaks in
the E and L lines. The double-escape peak L lines of
the Pb"' lines were not used because of a local non-
linearity in the system that shifted these peaks by
about 1 keV.

The Pb'~ energies of each summed spectrum were
calculated from the E-C coefBcients and all the ener-
gies of a given line were averaged. For the average,

m,c'=511.01 keV was added to single-escape peaks
and 2m, c'=1022.02 keV added to double-escape peaks.
The Pb"' energies found by this analysis were then
used in the U"' and Th"' energy calibrations.

VI. ANALYSIS

The E- and L-line spectra of the deformed nuclei
Th'" and U"' are strikingly more complex than those
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of a spherical nucleus like Pb"'. This is apparent from
Fig. 3, which shows the 2p-+is transitions (in double
escape) for Pb'~, Th'" and Us". The complexity is
due to the large hfs splitting in the 2p state. Appreci-
able hfs splitting occurs also in the 3d state, which
makes the 3d~2p transitions even more complicated.
The splitting in the 3d state has an appreciable eGect
on the M lines (4f +3d). Wh-at normally appears like
a doublet in spherical nuclei shows up here as a triplet.

The 2~fs, 3d-+2P, and 4f +3d spe-ctra of U~s and
Th"' consisted of groups of lines which were 6tted
using for each line the empirical line shape described
by Eq. (34). The channel position Cs and the ampli-
tude Ne of each line of appreciable intensity in the
group was calculated using the hfs formalism described
in Sec. III. The fine-structure splittings and the quad-
rupole energies (and background levels) were used. as
parameters and varied until a best Gt to the spectra was
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Fro. S. The 4f~3d full-energy spectra of pb"', Uses and Th'~ showing the best Gt to the data. Many of the 42 lines predicted by the
hfs f0~all~ are shownbelow the URN and The82spectra. Only lines intense enough to be above the horizontal dashed line were used in
the fit. The remaining lines constituted 1.8'% for Usss and 1 2% for Th» of the total intensity. z'=9.98 with 92 degrees of freedom for
U'38 and g~=9.03 with 92 degrees of freedom for Th"'. No satellite peaks were used in the Pb"' fit since the isotope shift was ignored.
The three spectra were fitted using difterent line-shape parameters.
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275 keV. The 2p hfs quadrupole energy and the unperturbed
2p1je-+is1~2 absolute energy were chosen for each 2p fine-structure
splitting to give the best fit to the data. The x' is the chi squared
per degree of freedom with 234 degrees of freedom.

obtained (Fig. 6). The rotational energies of the
nucleus were fixed at values determined by other
work".

Not all the lines obtained from the hfs formalism
were used in making the fits. The lines whose cumula-
tive contribution to the total intensity came to not
more than about 5% were treated as part of the back-
ground. The fits obtained used about a dozen lines in
each E and I spectrum and six lines in each M spec-
trum.

In calculating the hfs splitting, nuclear states up to
I=4 were included for the 2p level (Figs. 7 and S).
Because of the small amount of mixing of I=4 in the
3d level, it was not necessary to go higher than I=4 for
the 2P level, or higher than I= 2 for the 3d and 4f levels
(Figs. 9 and 10) .

For each muon state of given l)0 there is a fine-
structure splitting and three quadrupole energies [ex-
cept that the quadrupole energy E(pi~/s, pt/s) does not
enter). Only one of the quadrupole energies was varied
in searching for the best fit to the data. The other

"The rotational levels actually used in the analysis were the
calculated ones of Ref. 26. These calculated values are Es=44.7
keV and E4=147.6 keV for U'~, and E~=50.1 keV and E4=
163.7 keV for Theism. These values are not more than about 1
standard deviation from the experiment values shown in Table I
and introduce no appreciable error in the analysis.

TABLE II. Ratios of the quadrupole energies and transition
matrix elements that were Gxed in the Gts to the spectra. The
numbers in parentheses are the ratios found by solving the Dirac
equation, using the nuclear parameters that give the best fit to
the data. The (sstj I

r
I

ssTj') are in F.

Quantity U23s ThsaR

ns(2P)

e(3d)

ns(3d)

ns(4f)

ns(4f)

(1ss/s I
r

I 2ps/s)

(1ss/s I
r

I 2Ps/s)

(2pus I
r

I Ms/s)

(2ps/s I
r

I 3ds/s)

(2ps/s I
r

I 3&s/s)

(3ds/s I
r

I 4fr/s)

(3dsis I
r

I 4fs/s)

(3ds/s I
r

I 4fs/s)

1.011(1.011)

1.143(1.142)

0.985(0.985)

1.076(1.077)

0.994(0.995)

8.28

8.57

13.88

14.30

14.55

26.87

27.67

27.97

1.009(1.009)

1.140(1.141)

0.984(0.984)

1.073(1.073)

0.995(0.995)

8.33

8.61

14.07

14.51

14.75

27.51

28.30

28.60

quadrupole energies were kept in constant ratio to
this one. These ratios, defined by Eq. (30), are listed
in Table II. They were determined by calculation using
wave functions obtained from a solution of the Dirac
equation with a preliminary set of nuclear parameters.
This method serves because the ratios are close to
unity and nearly constant over a wide range of nu-
clear shape parameters. The transition matrix elements
(rsjlI r

I r/Vj ') used in calculating the relative intensi-
ties of the hfs components were handled in a similar
way, since the calculated intensities depend very weakly
on these matrix elements.

For a given n'1'~nl transition, the relative positions
of the hfs peaks are determined by the fine-structure
splittings and the quadrupole energies of both n'l' and
e/ levels, as well as the nuclear rotational energies.
One more energy was used to define the absolute posi-
tion of the group. These were chosen to be the unper-
turbed 2pi/s~ist/s 3ds/2~2pi/» and 4f»&~3ds/s energies
for the E, L, and M transitions, respectively.

On the other hand, the intensities are determined
not only by the properties of the levels between which
the transition takes place, but also by the way in
which the upper level is filled. In practice, the cascade
is followed down from the 4f level. However, the initial
population of the upper states is kept fixed at a value
determined by a preliminary analysis of what happened
in the earlier part of the cascade.

We have already pointed out that the intensities
were calculated assuming a statistically populated 4f
level and that the transition followed the cascade
4f +3d~2p-&1s Bo—th a.ssumptions are only approxi-
mately true. In particular, for example, the higher d
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The intensity discrepancy could also be removed by
lowering the first nuclear rotational energy level by
2 keV in U23' and 3 keV in Th"'. But this seems unduly
large if it is supposed to be due to an isomer shift in
the M lines. It seems unlikely that the direct measure-

Fxo. 8. Muonic 2p-level scheme for U~ and Th"'. Both the
unperturbed and perturbed level schemes are shown for compari-
son. The populations are calculated from the best Gt.

FIG. 7. Muonic 1s-level scheme for U"8 and Th"~. The energy
levels shown are the total energies of the muon with respect to
the is1p muon state and the nucleus with respect to the I=o
ground state. The muon, nuclear, and total angular momentum
numbers of each state are represented by j, I, and F, respectively.
The populations of each level were calculated using the best 6t
to the data. Note that there is a larger than 50% probability
that the nucleus will be left in an excited state by the time the
muon reaches the 1s level.

ence. Nor can the discrepancy be due to a departure
from statistical population of the 4f level, since both
this peak and the larger middle peak came from the
same 4f(F= sr) initial level.

We have no uniquely satisfactory explanation of this
discrepancy. It can be removed by manipulating cer-
tain energy parameters. For example, a good fit can
be obtained by taking the 4f fine-struct'ure splitting,
hf, 3 keV higher than that calculated for a point-nucleus
model. However, the value of hf must be close to the
point-nucleus value because of the very small overlap
of the 4f wave functions with the nucleus. In the re-
sults presented here the value of Af was 6xed at the
point-nucleus value.
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FIG. 9. Muonic 3d-level scheme for U'~ and Th~~.
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made in the intensity calculations, the assumption of
the rigid-rotator model, and the fixing of the ratios of
quadrupole energies whose values depend upon a spe-
cific charge distribution.

VII. NUCLEAR SIZE AND SHAPE PARAMETERS

The muonic x-ray spectra of U"' and Th'" are rea-
sonably well described by the hfs formalism of Sec. III
without reference to any specific charge distribution
except weakly through the rt(nl) parameters and the
transition matrix elements (Njl~ r

~
ri'Ij''). In this sec-

tion we relate the experimental energies, presented in
Table III, to a specific charge distribution.

In the analysis of recent data on spherical nuclei'~ ""
the two-parameter Fermi-type charge distribution was
used. We write it here in the form

7/2 {56.8) 0 (57.0) p(tv) =ps f 1+expt'N(tv/R —1)gI-', (37)

O--'4 O (47.R)

~~~ UNPOPULATED LEVELS

where R=c, the half-density radius. The skin thick-
ness t, the radial distance between the 90 and 10%
densities, is related to the skin-thickness parameter e
and the half-density radius by

Pro. 10.Muonic 4f-level scheme for U»' and Th"'. The calculated
populations are statistical.

t =P(4 in3) /ssgR. (38)

ments of the nuclear rotational energies could be off by
this amount.

Finally, the intensity discrepancy could be removed

by lowering gt(3d) and rts(3d) by about 10-15%.This
has the consequence that the quadrupole energies
E(3dst)s, 3ds/s) =E(3ds~s, 3dst&), while a calculation using
a reasonable charge distribution would have the first
energy appreciably larger than the second. On the
other hand, the fact that rti(3d) and rts(3d) can be
adjusted to bring the intensities into agreement sug-
gests that an adjustment of the dynamic quadrupole
coeKcients t02 and 622 could have the same effect. This
would imply a departure from the rigid-rotator model.
No attempt was made here to explore the consequences
of this further. However, when the first rotational-level
energy was allowed to vary in E- and L-line fits, the
result was a decreuse in energy by 1-2 keV, without
much change in the goodness of the fit.

The results from the fitting of the E, I., and M lines
are summarized in Table III. In making the I.-line
fits, the 2p fs splitting and 2p hfs splitting were fixed
to those values found in the E-line fits. In the M-line
fits, the 4f 6ne structure and hfs were fixed. The 3d
fine-structure and hfs energy parameters determined
from both the I- and M-line fits were averaged. The
errors presented in Table III are three times the stand-
ard deviations (they also include the much smaller
errors from the energy calibration) . The tripling of the
standard deviations was done because of the theoretical
uncertainties in the hfs formalism such as the ignoring
of the nuclear-level isomer shift, the simplifications

For e=ao, the charge distribution is uniform up to
radius R and zero beyond.

For the deformed nuclei we keep the basic Fermi
model described by Kq. (37) and introduce a third
parameter. There are many ways of doing this. We
have chosen a model such that the shells of constant
density are concentric ellipsoids of revolution with the
same eccentricity. By letting 6 be the half-density
radius of the ellipsoid's semiaxis along the axis of
revolution and u the half-density radius of the ellip-
soid s other semiaxis, the half-density ellipsoid is de-
scribed by

R —g I ] L(gs gs) /gs] cosseiv}
—I/2 (39)

"H. L. Anderson, R. J. McKee, C. K. Hargrove, and E. P.
Hincks, Phys. Rev. Letters 16, 434 (1966).

"H.L. Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A.
De Wit, Nucl. Phys. 87, 1 (1966).

34 H. L. Acker, Nucl. Phys. 87, 153 (1966).
a H. L. Acker and H. Marschall, Phys. Letters 19, 127 (1965).

with 8& the polar angle. Since the constant-density
ellipsoids have the same eccentricity, e is a fixed pa-
rameter, and e, u, and b constitute the three param-
eters. Note, too, that the skin thickness t, by Eq. (38),
is not constant around the nucleus for our model. For
a discussion of other three-parameter charge distribu-
tions, see De Wit et u/. ,'4 Acker, '4 and Acker and
Marshall. "

It is more convenient to use two other nuclear pa-
rameters related to u and b instead of u and b them-
selves. One of these is the intrinsic quadrupole moment

Qs of the charge distribution. The second parameter is
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TABLE III. Unperturbed absolute energies, unperturbed fine-structure splittings, and quadrupole energies obtained by the X8 fits
to the E, I., and M lines of Uz" and Thzz'. The 4f 6ne-structure and quadrupole energies were held constant at these values in the
M-line fits. The numbers in parentheses are the theoretical energies calculated from the ellipsoidal Fermi charge distribution.

Energy (keV) U238

2PIy~&sue

3Alu 2'.fu
4fziz~3&atz

2p fine structure

3d fine structure

4f 6ne structure

2p quad. energy

3d quad. energy

4f quad. energy

6212.8+2.5(6212.3)

3182.4+0.7(3182.8)

1235.4+0.6(1234.8)

226.8+4.1(228.8)

68.9+1.9(66.0)

14.7

95.5+0.9(95.0)

17.5w0. 7(18.8)

3.0

6124.8+2.3(6124.3)

3074.3+0.7(3074.4)

1280.6+0,6(1179.7)

217.8+3.9(219.9)

60.2+1.8(60.9)

13.4

81.3+1.1(80.7)

13.9+0.7(15.2)

2.4

the equivalent radius defined by

5( 1tr'2

R~= —
~

rtvsp(rtr)dzrN p(tv)dere . (40)

R~ is the radius of the equivalent uniformly charged
spherical nucleus. That is, if e=~ and a=b, then
R~=tt. The quantity R~ is a convenient parameter
since, to first order, the muonic energy levels found by
solving the Dirac equation are more sensitive to R~
than to the other parameters. In what follows, ro ——

R~/A"z is used instead of R~. Fairly simple relation-
ships connecting Qe and re to a and b can be found.
From the functional form of the Fermi distribution,

rs ——ft(N) [jst(bs/2tt') ys/A"'

Qo =g~fs(rt) (b'—tts), (41)

where fi(oo ) =fs(ee ) = 1. The functional forms of fi(rt)
and fs(rt) are found by numerical integration of Eqs.
(40) and (19).

For both U"' and Th'" a set of three parameters,
rt, ro, and Qs, was found which best fit the energies
given in Table III, excluding the 4f fine-structure and
quadrupole energies to which they are insensitive. The
procedure for doing this was as follows.

A three-dimensional rectangular mesh was chosen in
which each point in the mesh represented a set of the
three parameters, tt, re, and Qs. At each mesh point the
seven energies corresponding to the experimental ones
of Table III, excluding the two mentioned above, were
calculated by means of the numerical integration of
the Dirac equation. The corrections discussed in Sec. II
were also included. The quadrupole energies were cal-
culated by Eq. (27). Using a three-dimensional La-
grangian interpolation, a least-squares fit was done to
the seven energies by varying the set of three param-
eters throughout the range of the three-dimensional
mesh until the best fit was reached. The mesh was
chosen fine enough so that no significant interpolation

error resulted. The approximate location of the mesh
was dictated by an earlier result in which a much
coarser mesh was used.

The results of the parameter fits are shown in Table
IV. In Table V are shown the various calculated radia-
tive corrections (including the small quadrupole vac-
uum polarization correction) made to the unperturbed
muonic levels of both nuclei. These were calculated
using the set of parameters in Table IV.

VIII. COMPARISON %'ITH OTHER y,-ATOMIC
X-RAY RESULTS

%hat one measures in the quadrupole hfs of muonic
atoms is not Qs by itself, but the product of the quad-
rupole moment and the quadrupole distribution Qsf(r) .
Its matrix elements define the quadrupole energy (ex-
cept for a constant factor) and were found by fitting
the spectra as discussed earlier without reference to
any specific charge distribution. Wuee has suggested
that one could constrain Qs to the "proper" value found
in model-independent methods, such as in Coulomb
excitation experiments, and this constraint could lead
to knowledge of the distribution through f(r). On the
other hand, since the 3d state samples the charge dis-
tribution in a different fashion than the 2p state, the
additional information of the 3d quadrupole energy
can, in principle, help to determine Qe and f(r) sepa-
rately. Since we have measured the 3d quadrupole

"D. Hitlin, S. Bernow, S. Devons, I. Duerdoth, J. W. Kast,
E. R. Macagno, J. Rainwater, K. Runge, C. S. Wu, and R. C.
Barrett, in Proceeds'ngs of the international Conference on Electro
magnetic Sizes of 1glclei, Ottawa, 1967, edited by D. J. Brown,
M. K. Sundareson, and R. D. Barton (Carleton University De-
partment of Physics, Ottawa, 1967), p. 254; K. Runge, T. T.
Bardin, R. Barrett, S. Devons, D. Hitlin, E. R. Macagno, C.
Nissim-Sabat, J. Rainwater, and C. S. Wu, in ProceeChngs o
the $Vil/iamsburg Conference on Internsediate Energy Physics, 1N,
edited by D. J. Brown, M. K. Sundareson, and R. D. Barton
(Carleton University Department of Physics, Ottawa, 1967),
p. 13S; C. S. Wu, in Proceedings of the Internatzonal Confer
ence on Nuclear Physics, Gatlinburg, Tenn. , I%6, edited by R. L.
Becker (Academic Press Inc. , New York, 1967), p. 409.
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Quantity U238 Th"'

14.9~0.6 14.9w0. 7

r, (F)

Qo (b)

o (F)
b (F)

t. (F)

tg (F)

ps (F ')

1.2186&0.0007 1.2160&0.0008

11.47~0. 13

6.501&0.024

9.83&0.16

6.506&0.28

8.396&0.033 8.189+0.038

1.92%0.07

2.48~0.09

1.92+0.08

2.42%0.10

0.153~0.002 0.153&0.003

TABLE IV. Results of the least-squares 6t to the seven energies
of Table III, using the three parameter ellipsoid Fermi charge
distribution. to and tq are the 90—10% skin thickness along the
a and b semiaxes, respectively. p~ is the central nucleon density
in nucleons per cubic fermi. The p' is the chi squared per degree
of freedom with four degrees of freedom.

The dimensionless quantity p describes the deforma-
tion. The parameters c and t are a type of average
half-density radius and skin thickness.

In order to make any kind of comparison between
the two models it is necessary to find the three param-
eters of the deformed model, p, c, and t, in terms of
the three parameters of the ellipsoid model, a, b, and n.
Since the functional forms of the two models are not
identical, there is no unique way of defining P, c, and 1

in terms of a, b, and n.
However, if the following definitions are made:

f 16~)1/2 b2 gs f 1 bs gs)-t

c=aI 1—-'[.(b'—a')/b'g) ' '

1= L(4 ln3)/njc,
1.27 1.57 then the ellipsoid model can be rewritten as

p(»)
energy, we have chosen the latter course. But, although
we have obtained good fits to our elliptical model, our
result for Qp and f(r) still depends on the choice of the
Fermi shape.

Therefore, direct comparisons of our nuclear param-
eters with the results of other investigators'42636'~ is
not possible because of the different nuclear models
used, although most use the Fermi shape. The Colum-
bia group" uses a four-parameter model in which the
half-density radius and skin thickness have a different
angular dependence, In their fits to the isotopes of
tungsten, they find a preference for a constant skin
thickness, although the resulting Qs disagrees with
Coulomb excitation results. The Carnegie" and CERN"
groups use a model similar to ours, that is, a model
deformed all the way to the core. Pieper and Greiner"
have used a dynamic rotational vibration model de-
scribed by two parameters in which the skin thickness
is generated by the rotation vibration Quctuations of
the surface. They have shown that this model fits the
CERN'4 data for U"'.

A reasonable comparison can be made with the re-
sults of De Wit et a/. ,

" who have also used a three-
parameter Fermi distribution whose shells of constant
density are concentric and have equal eccentricity also,
but are described by a spheroidal function somewhat
different from the ellipsoid of revolution. Their model
(following them, we shall call it the deformed model
to distinguish from our model, the ellipsoid model) is
written

=ps[1+expI (4 ln3) Lr~(1—2PFM(8~))'"—cj/tI] '.

(44)

Unperturbed
level of U"'

Vacuum
polarization

Lamb
shift

Anomalous
magnetic
moment

1'/g

2pl/9

2P8/2

4fsIs

4fvls

Unperturbed
level of Th"'

2P3/2

3d3/g

74.6

39.9

37.0

13.3

5.1

Vacuum
polarization

73.0

38 ' 4

35.6

13.5

12.6

5.0

2 ~ 3

—0.8
—0.6
—0.04

—0.02

& —0.001

&—0.001

Lamb
shift

—2.3
—0.7

—0.6
—0.04

—0.02

&—0.001

&—0.001

—0.48

0.28

—0.27

0.10

—0.06

0.02

0.01

Anomalous
magnetic
moment

—0.47

0.27

—0.25

0.09

—0.06

0.02

—0.01

TABLE V. Radiative corrections calculated for the unperturbed
energy levels of U'" and Th"', Energies are in keV.

p(t~) =ps[1+expI (4 ln3)Lr~(1 —pFss(8~) )—cg/tl] '.
(42)

"R. E. Cote, W. V. Prestwich, A. K. Gaigalas, S. Raboy, C. C.
Trail, R. A. Carrigan, Jr., P. D. Gupta, R. B.Sutton, and M. N.
Suzuki, in I'roceedings of the International Conference on Electro-
magnetic Six'es of NNclei, Ottava, 1967 (the College of William
and Mary, Williamsburg, 1966), p. 35.

Vacuum
polarization
correction to

quadrupole energy

&(2pua 2plls)

E 1,3d3/2, 3/js/~)

U23s

0.04

Th3'

0.29

0.03
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TABLE VI. Comparison between the CERN work and the present work. All energies are given in keV. Columns 3 and 5 are the diHer-
ences between the present work and the CERN work. The parameters c, t, and P found by De Wit et al.' describe the deformed model
Eq. (42). These same parameters, found in the present work, have been calculated by Eq. (43) using the ellipsoid model parameters
of Table IV.

Quantity
U238

De Wit et al. Di8erence
Th'"

De Wit et u/. Di8erence

2pl/2~1~1/2

3~8/2~2p1/2

4fst 3&sis

2p fine structure

3d fine structure

4f fine structure

E(2PI/s, 2psls)

E(2Psis, 2Pgs)

&(3&sts, 3dsls)

E(3sfsis, 3&sts)

E(3dsis, 3sfsts)

c (F)

t(F)
p

Qs (b)

er (F ')

6213.6

3186.7

1233.8

228.8

65.9

14.6

94.7

95.8

21.1

18.5

18.2

7.15&0.03

1.46~0.12

0.253&0.003

11.25+0.15

0.147&0.003

1 0

—4.3
1.6
2.3

0.0
0.1

0.8
0.8
1 ~ 1

—1.0
—1.0
—0.17

0.60

—0.009

0.22

0.006

6125.0

3077.4

1178.6

219.9

13.4

81.6

82.3

17.3

15.2

14.9

7.10~0.04

1.49+0.14

0.23+0.01

9.8+0.3
0.147+0.003

—0.5
3 ~ 1

2.0

201

—0.5
0.0

—0.3
—0.3
—1.5
—1.3

1 ~ 2

—0.15

0.56

—0.008

0.03

0.006

Reference 14.

0.200—

O. I 75—'j '
p(r) ~

+ Intr) sa
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O.I25

I O.IOO—
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0.050
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5 6 7' I I IO
formic RI&

—o.o45

—0.040

0.035
—0.050 i
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—0.020

O.ol 5
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—O.OIO

—0.005
I

Ia

FxG. 11. Monopole and angular-averaged dipole charge dis-
tributions calculated for U''8 using the ellipsoid Fermi model
defined by Eqs. (37) and (39). The nuclear shape parameters
used were the ones that best fit the data as shown in Table IV.

For small P, the two models become identical, since
(1 2/fI' o) "—=1 PI'o+o—(P')

The comparison is shown in Table VI. The agree-
ment in the quadrupole moments is excellent. Note,
however, that De Wit et al. 6nd a larger c and con-
siderably smaller t than the present results. Part of
this may be due to the slight diGerence in the two
models. Part of it may also be due to the inclusion of
three additional, although rather small, radiative cor-
rections in the present work: the Lamb shift, anoma-
lous magnetic moment, and the quadrupole vacuum
polarization.

IX. QUADRUPOLE MOMENT

In addition to muonic x rays, there are several other
experimental techniques that have been used. to meas-
ure the nuclear electric quadrupole moment. These
techniques include spectroscopic measurements, Cou-
lomb excitation, and giant dipole resonances. Since
these other techniques are model-independent, a direct
comparison with the results of muonic x rays is not
possible. The value of Qs that is determined in the
present work is really a parameter of a speci6c charge
distribution and can be quite different for different
charge distributions. Nevertheless, it is instructive to
make the comparison, since an agreement of Qs deter-
mined by muonic x-ray experiments with the "proper"
value of Qs determined by the model-independent meth-
ods would show that the chosen charge distribution is
reasonably correct (Fig. 11).

The spectroscopic hfs is described by a theory which
is essentially identical with the p-atomic hfs theory
presented in this paper; but the electric quadrupole
interaction between the nucleus and the electrons found
in the atom, while formally the same, leads to quite
different results due to the large number of electrons
in the atom and the smaller electronic mass. In the
first place, the orbit of the electron, even for the inner-
most E shell, is much larger than the size of the nucleus.
Thus, except for a small Gnite nuclear size correction,
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the electronic hyperfine interaction is independent of
the detailed shape of the nucleus. This is in sharp
contrast to the muonic case.

In addition, the electronic wave functions needed to
relate the spectroscopic measurement to the quadru-
pole moment are not as well known due to the many-
electron character in the atom. This difficulty is not
present in the muonic case where only the uncertainty
in the nuclear size and shape makes the muonic wave
functions uncertain (Figs. 12 and 13) .

Finally, for both spectroscopic and muonic eases, no
static hfs occurs for nuclei of ground. -state spins 0 or -', .
For the muonic case, a dynamic hfs can occur that
involves the excited states of the nucleus. For the
spectroscopic case, no dynamic hfs occurs, because the
quadrupole interaction energy is orders of magnitude
less than the first nuclear excited state. Thus, no spec-
troscopic data exist for U"' and Th"'.

In Coulomb excitation experiments, one bombards
the nucleus with low-energy protons or heavier ions,
such as 0, particles, and studies the inelastic scattering
events in which the nucleus is excited to one of the
rotational levels. One measures from such experiments
the electric quadrupole reduced transition probability
B(E2, I;~Ir) between the initial state of spin I; and
6nal state of spin I~. If the rigid-rotator model with
the symmetry axis is assumed, the transition prob-
ability is related to the quadrupole moment by

B(E2) I'~Ir) = (5/16pr) e Qp C(I 2Ir, EOE) ~ (45')

FIG. 12. Monopole potential energy and penetration factor
calculated for U'Nl using the charge distribution shown in Fig, 11.

I I l I I I I I I

238

rP+ Gtt)1
~$

the ground state and Iy the excited state. The other
methods study the decay of the excited nucleus back
to the ground state (or some other intermediate state) .
In this second group of methods, one way is to measure
the lifetime of the excited state which is proportional
to B(E2, I,~Ig) with I; the excited state the Iy the
ground state (or intermediate state). Another is to
measure the yield of conversion electrons and the third
way is to measure the yield of the deexcitation y rays.

In order to relate the reduced transition probability
to the experimentally observed quantities in the second
group of methods, the conversion coeKcient of the con-
version electrons must be used. It is the common prac-
tice to use the theoretically derived conversion coeK-
cients. These depend upon a knowledge of the electronic
wave functions which are uncertain to some extent.
Thus, the transition probability, and hence the quad-
rupole moment, measured by one of the methods in
the second group has an uncertainty due to the conver-
sion coefBcient. For a detailed discussion of Coulomb
excitation, including the theory and experimental difE-
culties, see the review paper by Alder et ul.38

In giant dipole resonance experiments using a highly
deformed nucleus, two closely spaced resonances occur
corresponding to the major and minor axes of the de-
formed. nucleus. The spacing of the two resonances is
proportional to the quadrupole moment. However,
since the resonances take place at high energies (on
the order of 10 MeV), the dynamic quadrupole moment
associated with highly excited nuclear states is the
quantity that is really measured. Since the nucleus
probably does not have the same shape in a very high
excited state, only qualitative agreement between the
quadrupole measurements in muonic atoms and giant
dipole resonances can be expected.

This result is model-dependent in so far as it depends
on the Bohr-Mottelson model, but it is independent
of the choice of the cylindrically symmetric charge dis-
tribution. Note, too, that the Coulomb excitation ex-
periments do not determine the sign of the quadrupole
moment.

There are several independent ways of ending the
reduced transition probability in a Coulomb excitation
experiment. One way is to measure the inelastic cross
section which is proportional to B(E2, I;~Ir) with I;

I

4 2 4 6,8 lO I2 l4 IQ Ie gj 22 24
Re~ feria

FIG. 13.Unperturbed muon 1s, 2p, and 3d wave functions calcu-
lated for Up" by solving numerically the Dirac equation (9) . The
monopole potential energy used is shown in Fig. 12.

38 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 432 (1956) .
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TABLE VII. Comparison of the quadrupole moment Qo and deformation parameter p with other methods. Quadrupole moment is
in b. Reference a uses Qo

——
,3 (5or) 'I'ZRo'P (1+0 16P) with Ro = 1 2A'I' F to define P; Ref. b uses Qo

——r'ZRo'P (1+050P) with Ro ——1.2A'I' F
to define P. Reference 14and the present work define P in Sec.VIII.

Umss

Qo

Th"'

Coulomb excitation:
half-life'

Coulomb excitation:
cross section'

Coulomb excitation:
conversion electronsb

Coulomb excitation:
deexcitation y'

10.52&0.48

11.25+0.25

$1.5+0.9

0.268

0.251

9.25+0.23

9.87a0.25

10.8+0.8

8.0+0.6

0.243

0.245

Muonic x rays&

Present work

11.25+0.15

11.47+0.13

0.253+0.003

0.244&0.002

9.8+0.3 0.23+0.01

9.83&0.16 0.222&0.003

~ R. E. Bell, S. Bjornholm, and J. C. Severiens, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Medd. 32, 12 (1960).

D. H. Rester, M, S. Moore, F. E. Durham, and C. M, Class, Nucl.

Phys. 22, 104 (1961).
o F. K. McGowan and P. H. Stelson, Phys. Rev. 120, 1803 (1960) .
~ Reference 14.

Qp =3(Sor) "ZR P(p1+0.36P) . (47)

The values of Qp found in the present work, 11.47+
0.13 and 9.83+0.16 b for U"' and Th~s, respectively,
are in good accord with other measurements as shown
in Table VII. Only the experimental errors on Qp found

by the half-life. measurements are given; they do not
include the uncertainties in the conversion coefEcients.

X. CONCLUSIONS

The principal purpose of this experiment was to
determine the quadrupole moments as well as the radial
and skin-thickness parameters of two highly deformed
spin-zero nuclei, U"' and Th"'. To do this, we have
assumed the Bohr-Mottelson axially symmetric rigid-
rotator model for the dynamic quadrupole hyperfine
interaction and have fitted the hfs of the E, I., and M
lines by adjusting certain energy parameters (unper-
turbed absolute energies, fine-structure splittings, and
hfs energies) until good fits were obtained to the U'ss

Along with the quadrupole moment, quite frequently
the deformation parameter is shown in the literature.
Usually, p is defined proportional to the difference
between the major and minor axes. But to relate p
to Qp a specific charge distribution is needed. For the
three-parameter Fermi-type charge distribution used
in the present work, p is defined in Eq. (43) and re-
lated to Qp by Eq. (41) . For the three-parameter charge
distribution used by De Wit et cl.'4 discussed in Sec.
VIII, P is defined in Eq. (42). For the Coulomb excita-
tion work, it is a common practice to assume a uniform
charge distribution with a spheroidal surface given by

R(e, p) =RpL1+pFsp(8, p).7, (46)

with Re=1.2A'" F. Then, to order P',

and Th'" spectra. The anomalies that occurred in the
fits—principally, the poor fit to the intensity of one of
the M lines for both nuclei and the poor fit to the
position of one of the upper group E lines in U" —ca,n
possibly be explained by discarding the assumption of
rigidity in the nucleus, but this idea was not pursued
in the present work.

The energy parameters were related to a specific
deformed nuclear charge distribution by a numerical
solution of the Dirac equation. The assumed charge
distribution was of the Fermi type whose shells of con-
stant density are concentric ellipsoids of revolution all
with the same eccentricity; thus, for this model the
deformation is not merely skin deep but goes to the
center of the nucleus. The CERN group" have tried
fitting their data obtained from several deformed nu-
clei with a Fermi-type "hard-core" model, a charge
distribution in which the deformation is concentrated
near the surface, but they found better results by using
the "deformed model" with its deformation extending
throughout the nucleus. They also point out that this
preference of deformed over hard core depends on the
use of the Fermi form and thus may not be necessarily
extended to other types of charge distributions. In any
case, for a thin skin in the Fermi model, all the inner
shells of constant density have almost the same den-

sity, so that the inner regions of both types of models
are "hard-core. "Figures 11-13shows this for the ellip-
soid model. In the present work, we have made no
attempt to fit our data with the hard-core model; we

get reasonably good its with our own deformed model.
The value of the deformation parameter of p for the

present work, 0.244+0.002 and 0.222+0.003 for U'"
and Th"', respectively, shows how large the deforma-
tions are in these nuclei. On the other hand, the central
density, 0.153&0.002 and 0.153+0.003 nucleons per
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cubic fermi, respectively, is only slightly below the
value of 0.158 nucleons per cubic fermi which charac-
terizes most spherical nuclei. ""Thus, nuclear matter
elongates but does not change in central density as it
departs from the closed-shell structure.

The intrinsic quadrupole moments were found to be
(11.47+0.13) X10 " cm' for U'" and (9.83&0 16) X
10 "cm' for Th"' and agree very well with the results
of De Wit et al. '4 as shown in Table VI.
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Studies of Os "s:Gamma Rays, Lifetimes, and Mossbauer Effect*

M. C. GREGoRY) t B. L. RoBINsoN, AND S. JHA

Case 5'estern Reserve University, Cleveland, Ohio 44106

(Received 21 October 1968)

The y-ray energies and intensities in the decay of iridium-189 have been measured with Ge(Li) and
Si(Li) detectors, and the internal-conversion coefficients of 15 lines have been estimated. The mean life
of the 276-keV state was found to be less than 0.4 nsec by electronic means. Limits were established for
the mean life of the 95.3-keV state by the Mossbauer effect (greater than 0.2 nsec) and by electronic means
(less than 0.4 nsec). The mean life of the 69.6-keV level was found to be 2.35+0.06 nsec, and a single
line of corresponding width was observed in the Mossbauer effect. The nuclear Zeeman effect gave the
magnetic moment of the 69.6-keV state as 0.965+0.020 ps, with E2/%1=0.57+0.21 and an internal
magnetic 6eld of 1.085~0.052 MG acting on the osmium nucleus in a dilute iron alloy. The electromagnetic
properties of the 69.6-keV level are completely consistent with its pure rotational character.

I. INTRODUCTION

r 1HZ level structure of osmium-189 and the proper-..ties of its excited states have not been well studied.
The level structure is inferred from the studies of the
radioactive decay of 24-h rhenium-189 "and 13.3-day
iridium-189. ' Although transition energies have been
measured accurately by P-ray spectroscopy and in-
ternal-conversion ratios have been estimated, high-
resolution y-ray studies have not been carried out.
From Coulomb excitation work~s the B(E2) values

*From the Ph.D. thesis of M. C. Gregory, Case western Re-
serve University, 1968.

f Present address: Lawrence Radiation Laboratory, Livermore,
Calif.' A. Artna, Nucl. Data 1B,8$ (1966).

~ B.Craseman, G. T. Emery, %'. R. Kane, and M. L. Perlman,
Phys. Rev. 132, 1681 (1963).' B.Harmatz, T. H. Handley, and J. W. Mihelich, Phys. Rev.
128, 1186 (1962).

4 D. H. Rester, M. S. Moore, F. E. Durham, and C. M. Class,
Nucl. Phys. 22, 104 (1961).

~ F, K. McGowan, P. H. Stelson, R. L. Robinson, and J.L. C.
Ford, Oak Ridge National Laboratory Report No. ORNL-3425,
1963, p. 26 (unpublished) .

6 A. Z. Hrynkiewicz, B.Sawicka, J. Styczen, S. Szymczyk, and
M. Szawlowski, Acta Phys. Polon. 31, 437 (1967).

for the 69.6-, 95.3-, 219.4-, and 233.6-keV levels have
been extracted.

The partial level scheme of osmium-189 is shown in
Fig. 1. The ground state of osmium-189 is -', —,its
magnetic dipole moment is +0.6566 fIN, and its elec-
tric quadrupole moment is +0.91+0.10 b.' The 69.6-
keV level (—', —) is interpreted to be the first rotational
state built on the ground state. Its mean life has not
been directly measured but it is estimated to be 2.4
nsec, based upon the B(E2) value extracted from Cou-
lomb excitation and the multipolarity mixture ratio
extracted from internal-conversion data. The 36.3-keV
state (tz—) is supposed to be an intrinsic state. r' No
measurement of its lifetime has been made, but the
36.3-keV transition to the ground state is an almost
pure M1 transition. The 95.3-keV state has been inter-
preted as the first rotational state built on the 36.3-keV
intrinsic state. Its lifetime is inferred to be 0.86 nsec,

r G. Himmel, Z. Physik 211, 68 (1968).
7'Note added in the proof. P. Kienle et al. have studied the

Mossbauer effect with the 36.3-keV y ray. The mean life and the
magnetic moment of the 36.3-keV state are (0.72&0.04) nsec
and + (0,226~0.029) pN, respectively (private communication) .


