94 B. K. THOMAS
_ —- -1 2
Tn—l"(\l’n—l’\lln—l)_ Tn-2 (\I/n—Z’pl)
__ -1 ’ 2
==T (\I/n_2 ,pl) . (95)

We may introduce a second spurious constant
if 7,,_ 9 is small, But at most a finite number of
interchanges will eliminate the spurious constants
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as there is only one wave function.
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The classical binary-encounter model for ionization by charged-particle impact is modi-
fied to permit evaluation of the cross section for ionization of positive ions by electron im-

pact.
data and quantum-theoretical approximations.
and a simple physical interpretation emerges.

General scalable expressions are obtained and compared with available experimental
The dependence on ionic charge is discussed,
Our results indicate that this model is nearly

as reliable as the Born approximation for this process; i.e., they agree well with existing
experimental data for energies much larger than threshold and are everywhere within a factor

of two.

I. INTRODUCTION

The lack of solutions to the three-body problem
presents a distinctly larger handicap in consider-
ing the ionization of ions by charged-particle im-
pact than in ionization of neutrals because of the
effects of the residual ionic field. For the neu-

trals, the binary-encounter approximation has
been found to provide a reasonable description of
the phenomena. Furthermore, recent work!'™3
has indicated the utility of even a classical binary-
encounter approximation for charged-particle ion-
ization of neutrals.

For ionization, the primary motivation for the
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use of a classical binary-encounter model is that
it provides a simple framework for estimates,
which turn out to be quite reliable at high energy
and within a factor of about 2 everywhere.!™ 1In
addition, the model has been shown® to be related
to a quantum treatment, Its practical significance
is greatest for multi-electron atoms (and diatomic
molecules), where even the Born approximation
becomes difficult because of the numerical inte-
grations involved. We have thus deemed it appro-
priate to provide a modification of the model to
make it applicable to the reactions

(n) m+1)+

LA rete, (1)

)+ _ 1)+

e +A

p+A p+e. (2)

In Sec. II we evaluate the effects of the residual
ion field on the cross section within the binary-
encounter framework, Section III contains a com-
parison of our results with the available experi-
mental data and with quantum treatments extant,
We discuss only reaction (1); the changes required
for reaction (2) are straight forward. Our results
agree well with experiment for energies much
larger than threshold, and are everywhere within
a factor of 2. They are nearly as reliable as the
Coulomb-Born approximation. Our formulation
also provides some interpretational advantages.
For very large energies,our model yields a 1/E
dependence, while the Born and Born-Coulomb
approximations both yield an (InE)/E dependence
for low-lying states. This matter has been dis-
cussed in Ref, 5; in practice the differences are
small.

II. MODEL FOR ION IONIZATION

The binary-encounter approximation consists of the assumption that the significant interaction is the
energy exchange between the incident charged particle, of velocity V,, and an atomic electron of velocity
V,. Thus the cross section for ionization of a neutral atom is

) E,  eff v
% on =2 fUi Tpp (Vg M(AE), ®)

where O'AEeff is the cross section for exchange of energy AE, in the laboratory frame, averaged over all
orientations of ‘721' , and n; is the number of equivalent electrons whose energy is U;. The result (3) is to
be averaged over the speed distributions of the bound electrons.

In this section we present a model for calculating the cross sections for reaction (1), taking into account
the effects of the residual field of the ion. Atomic units are used throughout.

Our model can be simply stated as follows: we consider an electron with kinetic energy E, incident on
a fixed positive ion with net charge Z’, At a distance £ from the nucleus, the incident electron undergoes
an essentially binary collision with a bound electron, of binding energy U, resulting in an energy transfer
AE > U, At the distance & the incoming electron has a kinetic energy

E/'=E,+Z'/¢>E,, )
so that the total cross section for the energy exchange collision is given by

o' (B EL D=0, M, v )a(am) (5)
where ( ) ,,, denotes an averaging over the speed distribution f(v,) of the bound electron. In Eq. (5), the
upper limit of the integral must be E,, not E,’, since for ionization, both electrons are to be in positive
energy states after collision. The total cross section for ionization will be related to ¢’ as indicated in
Fig. 1. We assume that o’ determines an average off-axis distance p from the relation o’=mp?, The
parameters £ and p then determine a trajectory for the incident electron in the presence of the asymptotic

charge Z' prior to the binary encounter. This trajectory in turn specifies the initial impact parameter b

FIG. 1. Geometry for electron-ion collision.

N
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for the incident electron. The total cross section for ionization is then o =7b2. Our final result is pre-
sented in the form of a correction factor to an appropriate result for neutrals.

The collision radius £ depends on both the distance of the bound electron from the nucleus fA and an
electron-electron separation § such that an energy exchange AE = U can occur. We use an average over
relative orientations,

E=|F, +5] =(1/37 )87 2 +0%),  if7,>0;

A av A

:(1/35)(352*’,42)' if 7, <6. (6)

Classically, an average 74 can be determined from the virial theorem result (Z'+ 1)/27A =U, where U is
the binding energy, at least for hydrogenic ions. We adopt this result for all cases.

6 is related only to an energy exchange collision between the two electrons. Consider the simpler case
of an isolated two-electron system in which one electron is initially at rest and the other is incident with
energy Eq;. For this situation, the minimum laboratory scattering angle 6,,, such that a minimum ener-
gy transfer AE =U may occur is given by®

ey
sin Gm—D/Eld, (7)

corresponding to a maximum (center of mass) impact parameter,

s =FE
a

” "cot(em/z), (8)

1d

where ©,, =26, is the center of mass scattering angle. Using the center of mass orbit equation,® together
with (7) and (8), we find that the largest distance of closest approach d, such that an energy transfer of at
least U can occur, is

d:Eld"[(Eld/U)”z +1] . (9)

This result was derived for one electron initially at rest; if both electrons have nonzero laboratory frame
velocities, Eq; is the relative kinetic energy. But if we average over a spherically symmetric distribu-
tion of velocities for one electron, the resultant relative energy is the total laboratory frame energy. Thus
we set E17=E{ - U in (9) and adopt this as the value of 6:

5=(E,~U)Y(E,/U=-1)"24+1]. (10)
Equations (10), (6), and (4) complete our specification of E,”:
’_ Ry 2, g2 . - ’ . 2 2 .
E\'=E +32%, /(7 *+6%), 7r,>0; E '=E +3Z'5/(r ®+38"), 7,<0;

with 4 =(Z'+1)/2U and 6 as defined in (10).

We now need to find the impact parameter b, such that the incident electron intercepts the “collision
sphere” at an angle defined by sinf=p/&, where p=(c’/m)"/2, as shown in Fig. 1.7 Considering the ion as
fixed, the trajectory of the electron is given by®

1/r=(Z'/2Ep*{1 +[1+4E 2b%/(Z")?] cos(6 - 6")} , (1)
where cos@’-[1+4E 22%/(Z' )] -2 .

Using » =& and 6=sin"'p/¢, together with the requirement that if Z’=0, b=p (i.e., no correction for the
neutral case), we can solve (11) for b:

b=z (p+{p®+(2Z"/E )& - (2~ p*)'/*]}'72)
The total ionization cross section, remembering the definition of p, is then

Oion(El)Eﬂbz =30’ (1+{1 +(2Z'1/E 0")& - (82— o'/m)¥2] }1r2)2
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or finally, using (4) to eliminate ¢ and taking advantage of the fact® that o’ (hence o) is a scalable function
of E,/U,

=42 (1+[1+QZ27/B,2HZ"/(B,"-B) - [Z '/ (B, =B =Z//m] W2} ]V2)2 (12)
where Z=U20, '=U?%’, B,=E,/U, and
B, =E,/U=B,+3Z"(Z'+1)/[HZ'+1)*+ 4%, (Z'+1)/2>4;
=B,+3Z'A/[342+4(Z7+1)7] . (Z'+1)/2<8; (13)
with A=Ub=(8,-1)"[(B,- 1)/? +1] .

Equation (12) is the desired result for the cross section for removal of an electron of binding energy U
from the ion whose residual charge is Z’. The total cross section for ionization of an ion is obtained by
summing over all electrons in the ion. We need still specify the function defined by Eq. (5).

A few remarks about the nature of our result are in order. The factor in curly brackets in (12) repre-
sents the effect of magnification of the cross section due to the curvature of the electron’s path in the
residual field. The magnificationis 1 when Z’=0, as appropriate. The other difference from the model
for ionization of neutrals is in requiring an increase in the incident particle energy at which the energy
exchange takes place, reflected in E,’. Thus, the result incorporates the major features of the effect of
the ion field. Both of these effects are expected to be very small for reaction (2) because of the large
mass differences.

We now return to the evaluation of £’ or ¢’ from Eq. (5). The required expressions for oag eff(z'l',zvz)
have been given by Gerjuoy,* among others. It already involves a spherical averaging over all orientations
of ¥, with respect to ¥,’. We evaluate the integral over (AE) by imposing the condition U<E, <E,’ and tak-
ing E, fixed but arbitrary. We have, then, the following three possibilities* (when E, # E,’):

0UE,"\E,.U)= [Fr o ()" 0,)d(AE), if USE <E '~E <E '; (14a)
E,/-E E
= fU P o d(AE) + fE ' p o.(v,"v,)d(AE), if USE '-E,<E <E; (14b)
1 2
El ’ : ’ 7
= fU oi(vl ,0,)d(AE), ifE '-E,<U<E <E/; (14c)

where fAE 0;(v1',v9)d(AE) == §7(vy "/v9)(1/E1")?(1 - AE/E1'}/? (AE/E1')2,

and fAE Oul ('Ul ,’ Uz)d(AE) o (,”/El ’)[é.v22(AE)—2 +(AE)~ 1] .

with E, = 30,2, etc. Equation (14a) does not appear if E,=E,’. Inthat case, Eqs. (14) reduce to Stabler’s®
result (with the appropriate changes in notation), as expected. Inserting the results of the integrations in-
to Egs. (14) and introducing the scaled quantities of Eqs. (12) and (13), we have

Zion By ByiBy)= (/B 5By (1-1/8,%)+ (1= 1/8))], if 0<B,<B,'-B,; (15a)
T 3 .2 (B'—B)3/2> £ B-B <B <B -1:
a2 G-B) BT B ) MAASRSRTL (150)
or 1 1 ) _ gy o
= 3—1T l/ 621/2 <(B1 - 1)3/2 _ (Bl—l—‘ﬁlzﬁ ) > , if Bl -1 SBz; (15C)

where we have expressed the inequalities in (14) as inequalities on B,=E,/U. For ionization 8,>1.

Equation (15) is required to calculate £’(B,’;8,). If we adopt hydrogenic speed distributions for the
bound electrons

flk)=(32/m)k2/(1 + k2, k2=, (16)
we have T ‘(8,:8,)=[ “zion'wl',k;slv(k)dk. (17)
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The integral (17), using (15) and (16), results in the following expression:

21(311; Bl): (32/381,)<[(Bl'_ 1)1/2/261,] [% - 1/481/_ 1/(81')2]

+[(8," = B)Y2/28,(c = B)][(c = B,)™2 + (2 = B,)/4B,(c - B,) - (2 +3B,)/8B,]

+15 tan™}(B, "= 1)"/% - [(3B, +2)/16B,%] tan='(B," - B,)/*

- [3(8, )%/ c*]in{B, 72 [(B, )2 + (B, = 1) ] /[(B,")/2 + (B," - B,)* ]}
+38,"{[(8," - ¢)/68,c] [(8," - B2 /(c - B, - (B," - 1)*/2 /(8,"F]
+[3 (B, = c)/B,'c +1/4c?] [(B," = B2 /(c - B, - (B, - 1)/2 /(B,")?]

+['1% (BII—C)/BI,C +3/802+ 1/2c3] [(31”' 31)1/2/(0 - ﬁl)" (Bl,_ 1)1/2/181,]

-[&B,"-c)/B,'c +3/8c?+1/2¢% +1/c* ] [tan"*(8," - 1)/ —tan~1(B,’ - B,)”"’]}) , (18)

where c=8,"=1,

We note that by setting B,’=8,, we can obtain the averaged ionization cross section for neutral hydrogen

in the binary-encounter model from (18):

oion;H(E1)=Z'(Bl'zﬁl)/Uﬂz’

where E1 = UHB1 .

The numerical calculations of Kingston® are in agreement with the results obtained from the exact expres-
sion (18) with B8,"=B,. It should be noted that this exact result is proportional to 1/8, as E, - e ; this is not

in agreement with the Coulomb-Born (InE)/E behavior.5

III. RESULTS AND COMPARISONS

Since both (12) and (18) are already in scaled
form, the application of these results to the ion-
ization of any ion merely requires a sum of ex-
pressions (12) for each bound electron:

Oi0n=2i [nz Ui Tz (ﬁli ,ﬁli )], (19)

where n; is the number of equivalent electrons
having binding energy U;, B1;=E1/U; and By;’ is
given by (13). Since we are using atomic units,

o will be given in units of Bohr radii squared (r?);
note that the U; are in a.u. (27.2 eV), and Z has
dimensions (a.u. ?(72).

One test of our model is provided by a compari-
son with existing quantum treatments for He™,
Figure 2 shows such a comparison with two first-
Born calculations: the Coulomb-Born [CB(i)] ap-
proximation of Burgess and Rudge,'® and the Cou-
lomb-Born [CB(ii)] calculations of Rudge and
Schwartz.'! The figure shows only the values ex-
plicitly calculated, not including their extrapola-
tion to higher energies. Also shown are the ex-
perimental values of Dolder et al.'? The Coulomb-
Born-exchange (CBE) calculations of Rudge and
Schwartz!! lie very close to the experimental
values, while the close coupling approximation
values of Burke and Taylor® lie close to the CB(ii)

curve, neither of these is shown. It can be seen
that our model gives results consistent with the
CB(i) approximation, but not as close to the ex-
perimental values as the CB(ii) or CBE approxi-
mations. We point out that all of these CB approx-
imations require extensive numerical integration,
expecially at higher energies.

It should be apparent that while the magnifica-
tion factor in Eq. (12) was obtained in a rather
direct fashion and is relatively insensitive to the
parameters used in the model, the interaction
energy E,’ is considerably more model dependent.
Since the model only attempts plausible approxi-
mations to the exact three-body effects, we have

He*(1s)+e — He?" + 2¢

o expt.

400 600 800 1000
Electron Energy (eV)

FIG. 2. Ionization of helium ions by electron impact.
Solid curve, present results; broken curves, Coulomb-
Born approximations (Ref. 10 and 11); circles, experi-
mental results (Ref. 12).
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examined various schemes for varying B,’. The
solid curve in Fig. 3 is our “best” result for He*,
obtained by using B,’=8,+2 in (18) and using this
value of =/ in (12). The explicit B, dependence

of (12) is still determined by (13). (The dashed
curve in this figure is a semi-empirical cross-
section discussed below.) We note that this result
lies everywhere below the CB(ii) curve of Fig. 2,
except in the region from threshold to 100 eV,

<z~-a__ i
~~~~~~

He*(is)+e — He“* +2¢ ~|
N o expt. \
400 600 800 1000

Electron Energy (eV)

FIG. 3.
results. Solid curve, result using Z’p;; dashed curve,

Comparison of modified binary-encounter

result using =’ ; circles, experiment (Ref. 12).

H, exp

We denote the result obtained by using 8,’=8, +2
in (18) by ='y. Table Igives the value of =’y
for the range of values of 8, of any practical sig-
nificance.

It is apparent that this choice of the energy de-
pendence of ' improves agreement with experi-
ment near threshold, and goes smoothly to the

TABLE I. Scaled Cross Sections Z’p.

mE (B =By +2)

B[=E1/U (a.u.)
1.25 0.1137
1.50 0.1720
1.75 0.2033
2.00 0.2202
2.50 0.2320
3.00 0.2304
5.0 0.1955
7.0 0.1623

10.0 0.1274
20.0 0.0729
30.0 0.0508

unmodified result at higher energies. (As the inci-
dent energy is increased, the effects of the residu-
al field become less important.) The effect of
using £’y simulates in some fashion exchange
effects. On this basis, we suggest that the total
cross section for ionization of ions can be well
approximated by (19), with the use of T’y in (12).

The dependence on residual charge Z’ is illus-
trated in Fig. 4. There the reduced cross-section
Qr=(Ug)™%z, where Uy is the ionization energy
of hydrogen, is plotted for various values of Z'.
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1
200 300

ll!l] 1

1 1 -
1.0 20 30 5.0
E,

B= v

10.0

FIG. 4. Z’ dependence of reduced cross sections.
Solid curves, reduced cross sections for various Z’
dashed curve, “unmagnified” reduced cross section,
E'N/UHZ', broken curve; reduced semi-empirical cross

. 2
section, Ty exp/UH .

(Z'y has been used.) It can be seen that at high
energies T becomes independent of Z’, a result
which can also be obtained directly from (12) and
(13). The dashed curve in Fig. 4 is the “unmag-
nified” result; that is, it is just the reduced cross-
section Z'y/Ug?. The broken curve is the semi-
empirical reduced cross-section discussed below.

The usefulness of a classical formulation is
made evident here. Quantum treatments!®!! ob-
tain the same general features displayed in Fig.

4, but their interpretation is not evident. From
(12) we see that the Z’ dependence of the reduced
cross-section is primarily due to the curvature
of the electron in the residual field of the ion.

As Z' increases, the actual curvature produced
by the residual field increases, but the mean dis-
tance of the bound electron from the nucleus de-
creases. These two effects eventually compensate
each other, so that the reduced cross-section ap-
proaches a limiting curve as Z’—~«, The cross-
section itself, of course, has additional Z’ de-
pendence in that it is proportional to U -2,

Further comparisons with experiment are pre-
sented in Figs. 5 and 6. The experimental re-
sults are from Refs. 14 through 17, In each case,
the upper solid curve is the direct evaluation of
(19) with B, as given by (13), and the lower curve
the result of using =’y in (12), then using (13) in
(12) to determine (19). The required inner-shell
ionization energies were taken to be Clementi’s
Hartree-Fock values.!® Agreement with experi-
ment is gratifying, considering the simplicity of
the model, especially for the calculations involving
E'N. Even the direct model results, however, are
seen to be everywhere within a factor of about 2,
and much better at high energies.
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o
29.6 200 400 600 800 1000

Electron Energy (eV)

FIG. 5. Electron impact ionization cross sections.
In each case, the upper solid curve is the direct model
result, the lower curve is the values using Z'y. (a)
Neon ions; circles, experimental results (Ref. 14). (b)
Nitrogen ions; circles, experimental results (Ref. 15).

Finally, we observe that an alternative choice
for the electron-electron interaction cross-section,
%', can be based upon experiment. The dashed
curve in Fig. 3 is the result of using T’y ¢y, (81)
for =’ in (12), where ElH,exp(ﬁl) has been :)(E-
tained from the fit to the experimental electron-
hydrogen ionization cross-sections given in Ref.
11. Similarly, the broken curve in Fig. 4 is
QR(EH, exp(Bl))' Agreement with experiment is
slightly improved at high energies, as expected
from the results for ionization of neutrals.®

It appears that Eq. (19) with the reduced cross
section T specified by (12) includes the major
physical effects involved. We have demonstrated
three different ways of specifying the intermediate
cross section =’ needed in (12): (1) using our Eq.
(18); (2) using Z"N from Table I; (3) a semi-em-
pirical method using Z)'H, exp- Allyield estimates
which differ no more than a factor of 2 from ex-
perimental values, and are much better at higher
energies. It is hoped that this will provide a use-
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o(mad)

0.8 (b) }
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No'+e — No*"+2e
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o (7o,

Electron Energy (eV)

FIG. 6. Electron impact ionization of alkali ions.
In each case the upper solid curve is the direct model
result, the lower curve is the values using T’y . (a)
Lithium ions; circles, experiment (Ref. 16). (b) Sodium
ions; circles, experiment (Ref. 16). (c) Potassium
ions; circles, experiment (Ref. 17).

ful guide to future experiments, especially those
involving many-electron ions, where the simpler
semi-empirical schemes fail and the simplest
quantum estimates are difficult.

We conclude that the binary encounter model,
as modified, is as reliablefor predicting ionization
of ions as for neutrals. Evidently, energy ex-
change between the incident and bound electrons is
the dominant interaction occurring in this process.
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Asymptotic Form of the Total Wave Function for Electron-Impact
Excitation of Hydrogen Atoms
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An asymptotic form of the total wave function for electron-impact excitation of hydrogen

atoms is obtained by the use of the Coulomb Green function.
corresponding usual form, obtained through the free-particle Green function.

The result is compared with the
The validity of

the Coulomb wave formulation is upheld in view of the physical quantities being finite definite.

I. INTRODUCTION

In describing inelastic electron-atom collisions,
the outgoing boundary conditions on the total wave
function of a system of an electron and an atom
are important. From the boundary conditions, one
finds the scattering amplitudes for the processes;
and from the amplitudes one can predict various
physical properties, such as the probability of
having a specific process, or specific energy and
angular dependences. This asymptotic form of the
wave function can be, in principle, derived from
the Schrdinger equation with the use of either a
plane wave or a Coulomb wave to represent a
positive energy electron. These correspond to
employing either a free-particle Green function
or a Coulomb Green function.

In the literature, the former method of a free-
particle Green function has been carried out!; 2
while the latter has not. However, when the meth-
od of a free-particle Green function is applied to
the Coulomb potential scattering of a charged par-

ticle, the apparent asymptotic form of the wave
function differs from that of the known exact Cou-
lomb wave function by an indefinite phase factor
whose argument diverges. Thus one is left with
an inconsistency.

In this paper, the asymptotic form of the total
wave function for the electron-atom inelastic colli-
sion process is obtained via the Coulomb Green
function and compared with that of a free-particle
Green function method. It is pointed out that the
two forms of the same total wave functions are the
same and unique, though they appear differently.
It is also found that the scattering amplitudes for
both electron-atom collisions and the Coulomb
potential scattering in the plane wave formulation
contain the undesirable indefinite phase factor,
while those in the Coulomb wave formulation are
finite and definite. Thus some doubts which were
raised by some authors® % about the validity of the
Coulomb wave formulation by Kang and Foland®
for the electron-atom collision process, are dis-
pelled.



