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We extend Reiner's comparison of several separable approximations for the oft-energy-shell t-matrix
elements t (p, k; s) with those for a local, central square-well potential for negative energy s. We treat other
separable potentials besides the Noyes approximation considered. by Reiner, namely, the Weinberg series
terminated at one, two, or three terms, and the unitary-pole approximation. We also consider a larger range
of momenta and energy than treated by Reiner. We 6nd that the unitary-pole approximation is in general
the best of the four one-term separable approximations used. The o8-energy-shell values of t(p, k; s) have
an error of less than 5% of the value of t (0, 0; 0). The Weinberg series converges rapidly, two terms giving
in general an error of less than 1% of t(0, 0; 0) . We further compare phase shifts for positive energy and
the effective-range parameters. By definition, the Noyes prescription gives the exact value. The unitary-
pole approximation gives good results, and again the thoro-term Weinberg series is very satisfactory. We
discuss qualitatively problems arising in the more realistic case (for the two-nucleon potential) from the use
of other shapes for the attractive potential, of a strong short-range repulsion, and of tensor forces.

L INTRODUCTION
' '~IFFKRENT separable approximations are com-

&&pared with the exact value for the S-wave o6'-

energy-shell l matrix t(p, k; s) by Reiner' for a central,
attractive, local square-well potential. He considers
three separable approximations: (i) Noyes (specified
below as Noyes-Reiner to distinguish between two
di8erent interpretations of the Noyes approximation'
for negative energy s); (ii) a Lovelace approximation';
and (iii) the Guennegues approximation. s Reiner finds
that the Noyes-Reiner approximation is quite accurate
(roughly good to 1%) in the range of momenta 0&p &2,
0&k& 2 and energy —1&s&0. (Here and. throughout
this paper, momenta are given in units of fsjb, and
energy in units of fP/Mb' for a system of two nucleons
of mass M, attracting each other with a square well of
range b.) The Lovelace and Guennegues approxima-
tions are in general much less accurate than the Noyes-
Reiner approximation, and will not be considered fur-
ther in this paper. However, we shall treat another
Lovelace approximation, ' which we denote as the
unitary-pole approximation. ~

We shall extend Reiner's work by considering sev-
eral other separable approximations to the t matrix,
and by working with a larger range of momenta and
energy.

A separable t matrix can be written as the product
of functions of the two diferent momenta

ttt(p, k; s) =g(p, s) g(k, s). (1)
If the two-body potential ts(p, k) is itself separable, '
then the solution of the Lippmann-Schwinger equation
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gives a separable l matrix of the form of Eq. (1), with
the additional feature that the function g(p, s) can be
written as the product of a function of p and a difer-
ent function of s.

We shall also consider what Mitra' calls a rank-E
separable l matrix (X&2)

t~(p k; s) = Z g (P, s) g.(k, s) (2)

This form is used in phenomenological Gts' to phase
shifts, and also arises in truncating the expansions in
Sturmian functions, performed by Rotenberg, ' by Wein-
berg, "and by Sall and Wong. "

lt is well known that the use of a separable t matrix
greatly simplifies a number of nuclear physics calcula-
tions. For instance, the Faddeev equations for the
trinucleon" reduce from a two-dimensional integral
equation to a one-dimensional integral equation for
a central spin-independent separable t matrix. Even
rank-2 tensor t matrices give only six coupled one-
dimensional integral equations. "Also, the Bethe-Gold-
stone equation for nuclear matter is relatively easy to
solve" for a separable t matrix.

A completely phenomenological potential is deter-
mined to 6t values of the t matrix on the energy shell
(i.e., phase shifts), but does not give a unique pre-
scription for oG-energy-shell values of the t matrix
unless we are willing to make specilc assumptions
(e.g., locality, or separability) concerning the phenom-
enological potential. At present meson theory ~ provides
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only a little help in providing an unambiguous extrapo-
lation from on-shell to off-shell matrix elements.

A historical note seems in order. Some years ago one
of us (J.S.L.) argued" that nuclear physics was differ-
ent from atomic physics, since for the former we were
not able to establish the locality of the two-nucleon
potential by comparison of the phase shifts for states
of diferent angular momenta. This implied that "local
potential" meant a potential independent of the angu-
lar momentum. In this extreme sense a Majorana ex-
change potential or a quadratic spin-orbit potential
would be judged "nonlocal. " Currently the term "local
potential" includes a potential such as Reid's'~ which

explicitly depends on the orbital, spin, and total angu-
lar momentum of the system.

The current controversy" involves this question:
"Given on-sheO t-matrix elements for a state of speci-
6ed I., S, and J, should we fit these data with a local
potential, or with some speci6ed nonlocal formP" Alter-
natively, "How shall we extrapolate the t matrix o6
the energy shellP"" An epistemological question im-

mediately arises: Is there actually uey method of deter-
mination of the "correct" method of extrapolation of
the I, matrix?

We might try to solve the above epistemological
problem with any of three techniques: Occam's razor,
use of other experiments, or pragmatically. (i) The
assumption of a local potential does seem the simplest
assumption"; so if we make this assumption, calculate
various nuclear properties, and obtain good agreement
with experiment, then Occam's razor justi6es our ini-
tial assumption. But these "calculations giving good
agreement with experiment" are at present incomplete
for local potentials involving both repulsive cores and
tensor forces, so Occam's justification cannot be ap-
plied yet. (ii) We might appeal to other experiwsewts,

namely, those involving three or more particles, to
determine the values of the oG-energy-shell two-nucleon
5 matrix. But any particular method, such as the analy-
sis of elastic electron-deuteron scattering, su8ers from
the serious drawback of introducing meson-exchange
eQ'ects, which are only poorly known. ' In a similar
manner, the three-nucleon problem introduces poorly
known three-body forces." Careful consideration of
various experiments might lead to a method of sorting
out which e6ects were due to the extrapolation proce-
dure for the t matrix, which were due to meson-exchange
eGects, and which due to three-body forces. We believe
that this sorting out has not yet been accomplished.
(iii) We might dodge the unsolved epistemological

"M.Razavy, G. Field, and J.S.Levinger, Phys. Rev. 125, 269
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n R. Reid, Ann. Phys. (N.Y.) 50, 411 (1968)."Ngcleor Physt'ss: Att lttteraotsoaol Conference, edited by
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A115, 435 {1968).

problem in a prttgtwtttic (or even opportunistic) manner,
by using a separable l matrix as an ttPProxittsafsots to
the "true" t matrix, whatever that mysterious object
is. Suppose that a local and a separable t matrix agree
"well enough" with each other in a "specified region"
of p, Jt, and s space. It is then p/agsible to assume that
all extrapolation methods will agree well enough, since
locality and separability represent extreme assumptions.
Then the separable t matrix would be close enough to
the "true" f matrix.

The reader should be aware, from our chosen title,
that we are at present adopting the third pragmatic
viewpoint. We immediately face the problem of pro-
viding meaning for the vague terms used above: "well
enough" and "speci6ed region. "The most reliable way
to check our approximation is to solve a particular
problem (such as the binding energy of the trinucleon)
both with and without approximation, and see if they
agree "well enough. " This test has a discouraging fea-
ture: If we are able to solve the problem exactly, why
bother with the approximations Of course, we hope
that an approximation which is successful in one prob-
lem will then also be successful in a similar problem
which is too hard to solve exactly. (Thus we might
compare separable and local central potentials in the
trinucleon problem, and if they agree, gain con6dence
in the use of the separable approximation for a tensor
potential. ) But how do we know that the second prob-
lem is indeed similar'

Three such comparisons for the trinucleon use spin-'

independent central potentials. (i) Osborn" compares
trinucleon binding energies for a local Yukawa poten-
tial and a separable Yamaguchi' potential. He finds
that the binding energies agree within 10% if the
potentials have a strength similar to that of the nucleon-
nucleon singlet or triplet states. There is a serious dis-
agreement for much stronger potentials. (ii) Ball and
Wong" also use a Yukawa potential, and evaluate the
trinucleon binding energy by use of a Sturmian series. 9'0

They find that a single term gives less than half the
binding energy found for a four-term series LE=4 in

Eq. (2) j. Even a rank-2 separable potential misses
the rank-4 result by 30%. (iii) Finally, Fuda" uses a
separable approximation to Tabakin's' rank-2 separa-
ble potential. Fuda finds that the trinucleon binding
energies agree to within 0.15 MeV, which is only 2%
of Tabakin's value. We note the disagreement among
these workers concerning the validity of the separable
approximation.

Other workers have compared local and separable
potentials for calculations of nucleon-nucleon brems-

~' J. W. Humbertson, R. I. Hall, and T. A. Osborn, Phys.
Letters 27B, 195 (1968); T. A. Osborn, Ph.D. thesis, Stanford
University, 1967 (unpublished) .

» M. G. Fuda, Ph.D. thesis, Rensselaer Polytechnic Institute,
1967 (unpublished); J. S. Levinger and M. G. Fuda, Bull. Am.
Phys. Soc. 12, 10'74 (1967).
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strahlung, " for quasi-three-body reactions, '4 and for
residual reactions in nuclei. "The effects of separability
are in general only of order 10%.

While it may well be misleading to know the experi-
mental answer, we cannot help gaining a little con6-
dence in the use of a separable t matrix for the trinucleon
problem from the good agreement with experiment
found by several workers. ~ "'~ These workers use tensor
t matrices that give good values of the low-energy
parameters of the nucleon-nucleon system, and that
reproduce good agreement with the experimental bind-
ing energy for the trinucleon. They also" produce rea-
sonable agreement with the experimental trinucleon
form factors for elastic electron scattering.

The above calculations'6'~ show that the trinucleon
binding energy is sensitive both to the poorly known
singlet effective range and to the poorly known per-
centage of D state in the deuteron. Thus a change of

only 0.15 F in the singlet effective range changes the
trinucleon binding energy by 0.3 MeV. A change from
S.S to 7% D-state probability in the deuteron also
gives a 0.5-MeV change. Further, the binding energy
depends on the shape chosen" for the separable poten-
tial. These comparisons give us a criterion for how well
the separable and local t matrices should agree: There
is at present an appreciable experimental error in the
determination of the t matrix on the energy shell. An
extrapolation error, sr~all compared to the on-shell
error, can be neglected.

The "relevant region" for which the separable t ma-
trix needs to be a "good enough" approximation clearly
depends on the problem under consideration. For the
trinucleon ground state (central, spin-independent sepa-
rable case) the Faddeev equations reduce to a one-
dimensional integral equation for the spectator func-
tion g(q):

(3)

The energy s= —E&—43'' is more negative than the
trinucleon energy —E&. The relevant range of the
momentum variables

I q+-sk I
and

I
k+-,'q

I
is limited

by the sharp decrease of the spectator function with
increasing momentum, namely, '8 a factor of order 100
as momentum increases from 0 to 3 F '. We estimate
that the relevant momentum range is from 0 to 3 F ',
and the corresponding energy range —300&s& —8
MeV, where we have used experimental knowledge
for the upper limit of energy. For a square well of
range b about 2 F, this estimate gives momenta in the
range 0&p&6 and energy —30&s& —1. (Compare
the much smaller ranges given above for Reiner's
work. ')

Another way of estimating the validity of the sepa-
rable approximation for the trinucleon binding energy
is to use perturbation theory" expressed in terms of
the difference between the "true" and the approxi-
mate t matrix. Our estimates above, based on Eq. (3),
could be checked in detail by this procedure.

Of course, the "relevant region" depends on the cal-
culation attempted. Thus, if we are concerned with
form factors for electron-trinucleon scattering at high
momentum transfers, then we are sensitive to the (very
small) spectator function and t matrices at correspond-

'3 E. M. Nyman, Phys. Rev. 170, 1628 (1968);Virginia Brown,i'. 177, 1498 (1969); R. Wilson, Comment Nucl. Particle
Phys. 2, 103 (1968).

'4 P. A. Deutschmann and I. E. McCarthy, Nucl. Phys. A112,
399 (1968).

2~ E. Baranger, M. Baranger, and T. Kuo, Nucl. Phys. 81, 241
(1966).

~'V. F. Kharchenko, ¹ M. Petrov, and S. A. Storozhenko,
Nucl. Phys. A100, 464 (1968).'"A. C. Phillips, Nucl. Phys. A107, 209 (1968) .' V. K. Gupta, B. S. Bhakar, and A. ¹ Mitra, Phys. Rev.
153, 1114 (1967).

s9 M. G. Fuda, Phys. Rev. 166, 1064 (1968).

ing high values of momentum. Or if we treat continuum
states of the three-nucleon system, ~ we are concerned
also with positive values of the energy s.

Another satisfactory way of testing an approxima-
tion is to evaluate higher terms in a (hopefully rapidly
converging) series. We use the Weinberg series"s to
give us such a test, and find that the two-term Weinberg
series LE=2 in Eq. (2) j gives quite good accuracy for
a square well in the momentum and energy range given
above.

In our units, the depth Vp of the square well is a
pure number, with 41m' corresponding to an in6nite
scattering length. We cannot expect a separable ap-
proximation to work unless Vp is of order 4'm'. For if
Vp(&~m', then the Horn approximation will give us a
good solution t(p, k; s) =v(p, k) for the Lippmann-
Schwinger equation, and we know that v(p, k) is not
separable for a local potential. On the other hand, if
Vph)4' then the local potential would have more than
one bound state, and it is well known' that a separable
potential can have at most one bound state. We shall
emphasize two values of Vp in the neighborhood of
~m', namely, Vp=3.526 and Vp=1.960. These are in
the right region to correspond to experimental singlet
and triplet nucleon-nucleon potentials.

In Sec. II we quote Reiner's exact solution" for the
5-wave t matrix for a local central square weH. We also
present explicit forms for the t matrix, for the Wein-
berg series,"for the Noyes approximation, ' and for
the unitary-pole approximation. ' ' We follow Osborn's
discussion" of the ambiguity in the Noyes approxima-

"Lan Duck, in Advances ie Nuclear Physics, edited by M.
Baranger and E. Vogt (Plenum Press, Inc. , New York, 1968),
Vol. 1, pp. 343-409."J.M. J.Van Leeuwen and A. S.Reiner, Physica 27, 99 (1961).
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tion for negative energy, denoting Reiner's choice as
the Noyes-Reiner approximation, and Osborn's choice
as the Noyes-Osborn approximation. The unitary-pole
approximation uses a t matrix for a separable potential
that has the same eigenfunction and eigenvalue for the
bound state as those for a local square well.

In Sec. III we compare numerical values of the phase
shift for the exact solution, and for different separable
approximations. We also compare effective-range pa-
rameters. Here the Noyes "approximation" is exact,
since it is designed to give no error for on-energy-shell
matrix elements.

In Sec. IV we compare numerical results for our t
matrices for negative s, and the momentum range esti-
mated above for the trinucleon binding energy prob-
lem. This section is highly numerical, and clumsy, since
we 6nd it dificult to compare many functions of three
independent variables.

In Sec. V we draw conclusions concerning the accu-
racy of various separable approximations to the exact
t matrix in this particular example. We also make
qualitative remarks about the use of the separable ap-
proximation for t matrices for central potentials of
different shape, and for tensor potentials.

Note added ir2 proof Sitenko. , Kharchenko, and Petrov
LPhys. Letters 283, 308 (1968)7 study the convergence
of the Weinberg series for a local central Hulthen po-
tential, and find a rate of convergence similar to that for
a Yukawa potential. " One of us (A.H.L.) has inde-
pendently obtained similar results for a Hulthen po-
tential. E. Harms (unpublished) studies a new series
called the unitary-pole expansion, which has the UPA
as its 6rst term. Harms's series converges more rapidly
than the Weinberg expansion.

II. ANALYTIC EXPRESSIONS FOR THE t MATRIX

We 6rst present Reiner's" exact analytical expres-
sion for the o6'-energy-shell t matrix for S-wave scatter-
ing by an attractive central local square well. We then
present and discuss briefly four different separable ap-
proximations to this t matrix, which we designate as
(i) the Weinberg series, terminated at Jq terms, ~"
(ii) the Noyes-Reiner approximation, "(iii) the Noyes-
Osborn approximation, "' and (iv) the unitary-pole ap-
proximation. ' We also present effective-range param-
eters for the positive-energy on-shell t matrices.

As stated earlier, we measure lengths in terms of the
range b of the square well, where b is of order 2 F for
the nucleon-nucleon potential. Then momenta p and k
are measured in units of 5/b. We estimated above that,
for purposes of calculation of the binding energy of the
ground state of the trinucleon, we would be concerned
with the accuracy of our approximations in the range
0&p&6 and 0&k&6. Energy s is given in units of
f22/Mb2, for nucleon mass M, or roughly 10 MeV. We
shall treat the range —30&s&22. The depth VD of the
square well equals 4'x' for in6nite scattering length.

We now present the basic equations, and the nor-
malization used for the t matrix.

For a central force, the Lippmann-Schwinger equa-
tion separates into separate equations for each partial
wave. The S-wave equation reads, with our normali-
zation,

t(p, k; s) =2)(p, k)

+ f «(p, p)4~p'~p(« —p') '~(p p; «) (4)
0

The "S-wave potential in momentum space" uses inte-
grals with the spherical Bessel functions j()(pr) and
(j()kr):

«(p, p) =(2««) ' f j«(p«)«(«)j«((««)r««(r
0

In our normalization, there is a proportionality factor
of 2x' to get from the on-energy-shell t matrix to phase
shifts or scattering length u; e.g.,

22r2t(0, 0; 0) =a. (6)

We translate Reiner's' Eq. (4.3) into our normaliza-
tion and notation, writing the energy s as q'+ie for
positive s (later taking the limit as e goes to zero from
above), and as s = —q', for negative s:

t(p, k; s) = —(V,/22r2){y(p k)

+VoL o P 'qio(P)3 'x—.(p k'&)+'Pr(p k'(~t) ) (7)
where

4(p, k) =Ljo(p —k) —jo(p+k)]/2p» (8)

x(p, k; tt) =Le(p, k) cosa 4(P, k) co—sp]/(p' P') (9)—
4 (p, k; t3) = f4(P, k)j o(P) io(P)4 (P, k)—]/(P' tt'), —

P —( V +q2) 1/2 (11)
The %'einberg series~" expands the central poten-

tial V in energy-dependent orthogonal sets 1)Ip„(s)),
that obey the modified Schrodinger equation /for po-
tential V/)t„(s) ]:

4&o+v/n. ( )710"( ) &=
I f.( ) & (12)

The potential is expanded in terms of the set 1)Ip„&

(frequently called Sturmian functions), giving

+ vl~, ()&Q.(*)
I
v

Q.( *)
I
v I ~.( ) )

Using (13), the Lippmann-Schwinger equation (4) is
solved, giving the t matrix t~ expanded in terms of the
set 1)p„(s)):

" (p I vl0"()&9"(*) I vlk&
.=i L1—~.(s)](4.(s*)

I V14"(s) &

We note that Weinberg wrote this series explicitly
for the case of the t matrix on the energy shell for posi-
tive s, where the relevant quantity is the phase shift
b(q). For negative s, or off the energy shell, Weinberg
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sums the series (2.11) only for values of 4 such that
the Born approximation fails ( I 41„ I

larger than unity).
Rotenberg' and Wong" write the series (14) explicitly.
LNote that Ball's y„(p, s) =(p I V

I f„(s)).g Straight-
forward evaluation of the matrix elements in (14) gives
for our attractive square well of unit range and depth Vo

(E——',)'u' 4 ( Vo

Vo „3 &(E——,')'z' 4&

2 &7 Vo

(X——;)W L2 (X—,') W&
I

'

tu (p, k: s)

(P" s)—»n'P g.(P) g (k)
n" „g (P„'—s—Vo)L1+(—s)'"jo'(P„)] '

The Noyes approximation uses a separable form ad-

(15) justed to give the exact result for the t matrix on the
energy shell, i.e., for real p =k =q for positive s =q'+is,

b(q) = Z ~ (q)
v 1

where the "elemental phase shifts" b„(q) are

&.(q) =—argL1 —
m, (s) j.

(19)

Here g„(s) is found from Eqs. (17) and (18).
Ke can treat the Weinberg expansion for an infinite

repulsive core by taking the limit as Vo approaches
negative infinity in the above equations. This procedure
gives the convergent series obtained independently by
Fuda" and by Laroze (private communication). On
the other hand, if we put s=0 in (17), we obtain
P„=(4+-,')u. We can then sum the Weinberg series
(15) explicitly, obtaining agreement with Reiner s (7) .

The scattering length a~ and eGective range p~ for
the E-term %einberg series can be found from Eqs.
(15)-(20) by straightforward but lengthy manipula-
tion" of the expression k cot8 near k=0. The scattering
lengths add in the same manner as do Weinberg's ele-
mental phase shifts:

8+ Q App (21)

A„=—2Vo(v ——',) 4a=4L1 —Vo/(v ——',)'n-'j '.
The effective range p& is given by a recursion relation

~here

g (P) =LcosP+( s)'"jo(p) j& (O' P ) (16)

and p„(s) is a solution of the transcendental equation

tanp„(s) =-(-s)- p„(s). (17)

Also, the quantities P„(s) and 41„(s) are related as
follows:

P' =s+ Vo/rt. (s) (18)

The phase shifts il(q) are written following Weinberg's
Eqs. (97) and (98):

t~(p, k; s) =gs (p, s) @(k, s), (23)

g (P s) =t(P q's)/Lt(q q's)3"' (24)

By de6nition, the Noyes approximation gives exact
phase shifts. As Osborn" points out, there is an am-
biguity in the use of Eq. (24) for negative s, since one
cannot be on the energy shell with real momenta for
negative energies. The two possibilities discussed by
Osborn are (i) 6t at imaginary q=s'~' or (ii) 6t at real
iq = ( —s) 'I'. Reiner' uses positive imaginary q; we desig-
nate this the Noyes-Reiner (NR) approximation

gNn(p s) —t(p q. s)/Lt(q q s)71/s
or

»R(p k' s) = (Vo'/2&')@—(P P)4(k, P) exp( —iq)

XLcosq jo(P)-jo(q) cosP1-'I cosP-iq jo(P)j-'. (25)

The last expression on the right of course uses Eq. (7) .
The second alternative, of 6tting the t matrix at real

momentum by taking ( I s
I
)'", we designate as the

Noyes-Osborn (NO) approximation, since Osborn uses
it in his thesis. We merely replace q by iq in (24)

gNo(p, s) =t(p, iq; s)/Lt(iq, iq; s) )"' (26)

and use this function in (23) to obtain tNo(p, k; s).
Finally, we consider the unitary-pole approximation

(UPA) discussed by Lovelace' Lhis Eqs. (2.53) and
(2.54)g and generalized to tensor forces by Fuda. s"
For a central potential strong enough to give a bound
state at energy —B, with eigenfunction

I B), the prob-
lem reduces to that solved by Yamaguchi' in his
introduction of separable potentials. Namely, 6nd a
separable potential V= Xf„(p)f„(k)—with strength X

and form factor f (p) such that the Schrodinger equa-
tion has eigenvalue —B and eigenfunction

I B). Then
use this separable potential in the Lippmann-Schwinger
equation to 6nd the corresponding separable t matrix,
which we call t:

l p~ i+Re&
pN ~ a~,A~

&N-i+Ax «s -i+Ax& where
t (P»' s) = —f (P)f (k)/D(s), (27)

+ppr q44~ ~+R~A~, (22) *
f-(P) =(P I

V
I B)= (B+P') (P I B) —(28)

"M. G. Fuda, Phys. Rev. 174, 1134 (1968).
~R. Stagat, Ph.D. thesis, Rensselaer Polytechnic Institute,

1968 (unpublished) . We note the similarity to the first term in the Weinberg
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expansion (14), when s —8 and
~ f (s) ) ~

8). X is
adjusted so that D( —8) =0, i.e., so that the pole in
the t matrix has the right position.

The UPA has indeed been used extensively in the
trinucleon problem, since the Yamaguchi form for f(p)
is just the UPA for the ground-state eigenfunction of a
local Hulthen potential. For our attractive square well,
of unit range and depth Vo (larger than sos ), Kq. (28)
gives

f.(p) =p«sp+8"j'o(p) 7/(p+8 V,) —(30)

and (27) gives

D( ) =-'(8+ ) (V+8'")
X(Vo—8) '(Vo —8—~) '(Vo) '

+exp(2iq) (Vo 8—s) —'fi(s 8)/2q+—8't'j

EO

D

Q

40

Io.o—

1.0

so

.10—

.05—

3(l)ar

(l)
~etooeoors

V ~ ~~~
I) (2)

.O1 I ':1 i

0 IO RO

ENERGY S

FIG. 1. Phase shifts tt versus c.m. energy s, in units oi tis/3Ao.
The solid line shows the exact phase shift b for an attractive square
well; the dashed line shows the one-term Weinberg elemental
phase shift b(I),' the dot-dashed line shows the sum of the 6rst
two Weinberg phase shifts b(I)+b(2), the dotted line shows the
UPA b„. See Table I for numerical values, and references to the
text.

+,'i (8+s) (V,-—8—s)—'q '. (31)

For positive energy, s=q'+is, the UPA phase shift
b (q) is found from the value of the t matrix on the
energy shell Lsee Kqs. (27), (30), and (31)j:

q cotb„(q) =iq —LD(q'+zo) jL2ssf„'(q) j-'. (32)

The UPA effective-range parameters are found from
the expansion of this expression near q=0. The scatter-
ing length e„ is given by

need, therefore, only to consider the E-term Weinberg
approximations and the UPA. We shall treat phase
shifts for local square-well potentials of two different
depths: V0=3.526, giving a bound state at —0.214,
and V0=1.96, giving an antibound state at —0.076.
(Note that energies are given in units of fP/MP or
roughly 10 MeV in the c.m. system, if we choose the
nucleon-nucleon case with range b of roughly 2 F.)

Table I and Fig. 1 present phase shifts for the
deeper square well. The Weinberg "elemental phase
shifts" are found from Eqs. (17)-(20), while the UPA
phase shifts are found from Eq. (32). The figure illus-
trates two main results. First, the single-term Weinberg
elemental shift b(j) and the UPA shift b„agree well
with each other up to s of 7 (or some 150-MeV labora-
tory energy), but start disagreeing noticeably from the
exact phase shifts at s of about 2 (or only 40-MeV
laboratory energy). The UPA is slightly closer to the
exact results for s&5. That is, a single separable poten-
tial can fit both the bound-state energy and wave
function exactly, and give a good fit to the moderate-
energy phase shifts (up to 40-MeV laboratory), but
fa.ils at higher energies. However, the two-term Wein-
berg series gives excellent agreement with the exact
phase shifts (i.e., within 0.01 rad) up to s =8 (or about
160-MeV laboratory energy). The small disagreements
at still higher energies, but below s=22, are accounted
for by the third elemental phase shift: The plot of the
first three elemental phase shifts lies on top of the plot
of the exact shifts. We conclude that either a single-term
Weinberg, or UPA, t matrix gives a fair fit to the phase
shifts, but that the two-term Weinberg gives an excel-
lent fit, in this particular case.

u„= (1+8'I') '/P(Vs+8"') 8/2 Vs+8+8"'j. (33)

The effective range is

p~
——2(1/Bils) sL—(1~Bits) (1+ssBi&s)/g

—-', (Vs+8'I') (Vo—28) Vo '(Vo 8) '—
+1+ssB+28"j. (34)

III. NUMERICAL COMPARISONS FOR
POSITIVE ENERGIES

In this section we shall present results for t(p, k; s)
for positive energy s=q'+is, with a negligible positive
imaginary part e, for the special case where we stay
on the energy shell: p=k =q. (The formulas in Sec. II
could, of course, be evaluated also for use in the o6'-
energy-shell positive-energy region explored, for in-
stance, by nucleon-nucleon bremsstrahlung. ) By defi-
nition, the Noyes approximation agrees with the exact
t matrix on the energy shell, and we do not have the
ambiguity that occurs for negative energy and leads
to the NR and NO approximations, respectively. We

If Vo(4~', we have an antibound state, and we must
be careful in the sign of 8't' in Kqs. (30) and (31),
namely, we change all 8'I' to read —8'", since the
pole is on the other Riemann sheet. LFor any well
depth, 8 is found from simultaneous solutions of two
equations (compare (17) and (18)): (i) p'= Vo Band-
(ii) tanp =~pB 'I'. In the second equation we use the
negative sign for a bound state and positive sign for an
antibound state. 7
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TABLE I. Comparison of phase shifts, for well with bound state. For the nucleon-nucleon case, the laboratory energy is roughly
20s Mev. The Weinberg elemental phase shifts (in rad) are calculated from Eqs. (1T)-(20), and the UPA phase shifts from Eq. (32);
both use depth Vo 3=32.6hs/MP

Energy s UPA
Sums of Weinberg "elemental shifts"

~(~) &o)+&(2) &o)+&(~)+&&3) Exact

10

12

14

20

22

1.4S9

1.167

0.970

0.807

0.678

0.572

0.481

0.402

0.334

0.275

0.179

0.109

0.059

0.027

0.009

0.001

1.473

1.147

0.941

0.787

0.665

0.480

0.410

0.350

0.299

0.219

0.162

0.120

0.091

0.070

0.054

1.492

1.177

0.980

0.838

0.727

0.640

0.570

0.515

0.472

0.439

0.397

0.378

0.370

0.368

0.364

0.357

1.494

1.180

0.984

0.842

0.732

0.646

0.577

0.523

0.481

0.44S

0.408

0.391

0.386

0.385

0.384

0.380

1.495

1.181

0.986

0.844

0.735

0.648

0.580

0.526

0.484

0.452

0.412

0.395

0.390

0.390

0.390

0.386

Table II shows similar results for a shallower poten-
tial, Vt)=1.960. The region of validity of the different
approximations is very nearly the same as for a deeper
well.

We note that Weinberg' also 6nds a good, though
not as rapid, convergence for his numerical example
with a Hulthen local potential: See his Fig. 4, Eq.
(121), and numerical values below his Eq. (98). He
finds the 6rst four elemental phase shifts as 127', 13',
3', and 1', respectively, so that here four terms are
needed to obtain the phase shift accurate within 0.01
rad. Weinberg's numerical example is for a Hulthen
potential of magnitude twice that sufhcient to give a
bound state at zero energy, while we are here con-
cerned with the more favorable case of square wells of
depth within 40% of the critical srs' value.

We now consider the accuracy of the Weinberg and
UPA approximations for the scattering length a and the
e6'ective range p, as a function of the depth Vo of our
square well. The E-term Weinberg values of the effec-
tive-range parameters are found from Kqs. (21) and
(22), while the UPA values are given in Eqs. (33)
and (34). Table III gives the numerical results, which
we plot in Figs. 2 and 3, as percent errors from the
exact values. We see that both the one-term Weinberg
expansion and the UPA give scattering lengths correct
within 1% in the range of depths 0.8& Vs&3.8. In this
same region of well depth the one-term Weinberg ex-
pansion gives an effective range in error by 2 of 3%.
The UPA does extremely well near the center of this

interval, 2&Vs&3. (This comparison in accuracy of
effective-range parameters corresponds to the better
accuracy of UPA in the low-energy phase shifts, pre-
sented in Tables I and II and in Fig. 1.) The two-term
Weinberg expansion gives both scattering length and
effective range to an accuracy of better than 1% for
the very large range of well depths, 0.3& Vo&8.

IV. NUMERICAL COMPARISONS FOR
NEGATIVE ENERGY

For negative energy s, we are concerned in general
with off-diagonal elements of the t matrix t(p, k; s)
i.e., with a function of three independent variables.
The amount of numerical results becomes still larger,
since we wish to compare several different approxima-
tions to the t matrix with the exact result of Reiner's,
namely, the Weinberg series, using one, two, or three
terms, the NR approximation, the No approximation,
and the UPA. Thus we wish to compare seven difer-
ent functions of three independent variables. We shall
of necessity select a small fraction of our numerical
results; further numbers for the Weinberg series are
available. "

If we 6rst consider one-term separable approxima-
tions, we can reduce the number of independent vari-
ables from three to two, since we are concerned only
with the "form factor" g(p, s) of Kq. (1).This com-
parison of form factors will tell us how well the four
different separable approximations agree with each
other. We can compare them with the exact t matrix
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Tax II. Comparison of phase shifts, for well with antibound state. The quantities tabulated are explained in the caption of Table I;
these results are for a well of depth Vs ——1.960)ts/MfP.

Energy s UPA
Sums of Weinberg "elemental shifts"

~0) ~(i)+~(~) ~0)+~(~)+~(3) Exact

10

12

14

16

20

22

0.821

0.709

0.603

0.512

0.432

0.363

0.303

0.250

0.204

0.164

0.101

0.056

0.027

0.010

0.002

0.000

0.813

0.699

0.596

0.508

0.433

0.369

0.314

0.267

0.227

0.193

0.140

0.102

0.075

0.056

0.043

0.033

0.823

0.714

0.616

0.534

0.465

0.407

0.360

0.320

0.289

0.264

0,230

0.212

0.203

0.200

0.199

0.196

0.824

0.716

0.618

0.536

0,468

0.410

0.363

0.324

0.293

0.269

0.236

0.218

0.212

0.210

0.210

0.209

0.825

0.717

0.619

0.537

0.469

0.412

0.365

0.326

0.295

0.270

0.238

0.221

0.214

0.213

0.213

0.212

for the special case p=k by defining

g~(p r) =r~(p, p; r) j'". (35)

We therefore consider 6ve functions of momentum and
energy: (i) gr(p, s) from Eq. (35); (ii) grr(p, s),
using the term p=1 in Eqs. (15) and (16) for the
Weinberg series; (iii) the NR approximation gNE(p, s)
from Eq. (25); (iv) the NO approximation gNo(p s)
from Eq. (26); and, finally, (v) the UPA, where we

include the s dependence of Eqs. (27)—(29), using

g (p &) =f (p)l:D(&)j '" (36)

As discussed above, for application to the trinucleon
problem we are concerned with the behavior of these
five functions in the approximate range 0&p(7 and.
—30&s&—1. We shall also treat the case s= —0.25,
near the pole at —0.214 (for a well of depth Vs ——3.526),
to show how good the pole approximation is in this
case. Of course, all four separable approximations agree
with each other, and with gz if we are very close to the
bound-state pole.

Table IV gives these five "form factors" for p =0 (1) 6,
and for s= —~~, s= —1, s= —4, ands= —16. Two more
or less representative cases of s= —

~ and s= —4 are

TABLE IIL Eifective-range parameters. V& ——ls' gives a bound state at zero energy. a„and p„are the scattering length and effective
range for the UPA, Eqs. (33) and (34); ar and pr refer to one-term Weinberg and as and ps to two-term Weinberg, Eqs. (21) and (22).
The exact scattering lengths are a and p.

Well depth
V0

0.5

a2

—0.205 —0.206 —0.208 —0.208 3.072

p&

3.008 2.935 2.923

1.25 —0.837 —0.832 —0.838 —0.839 1.491 i.516 1.485 1.479

2.0 —3.477 —3.468 —3.477 —3.478 1.117 i.144 1.120 1 116

3.0
3.5
4 Q

6.0
8.0

10.0

12.0

4.552

2.730

1.348

2. 137

1.036

0.975

4.565

2.747

2.215

1.376

1.172

1.076

1.020

4.551

2.730

2.095

1.343

1.121

1.002

0.914

4.549

2.727

1.338

1.114

0.993

0.904

0.911

0.853

0.809

0.705

0.652

Q. 620

0.598

0.937

0.878

0.730

0.678

0.647

0.626

0.914

0.854

0.808

0.694

0.626

0.570

0.510

0.911

0.850

0.804

0.689

0.619

0.562

0.499
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Io.o

5.0—

K
lL

l.O-
4l

Reiner' compares, in his Fig. 3, the NR and the
exact values of f(1, k; s) in the range 0&k&2.0 and
energy values s= —1, 0, 2, and 4. We agree with
Reiner's conclusion that the NR approximation is very
accurate for s= —1 for his range of momentum; com-
pare our Table IV for s =—1 and p = 1.Note, however,
that the NR approximation becomes much less success-
ful as s becomes more negative.

We obtain similar results for the well depth t/'0=
1.960, and will not present them here.

We now face the problem of comparing seven differ-
ent functions of three independent variables for a depth

I s IO

O.l

WELL DEPTH Ya

FIG. 2. Percent error in the scattering length versus weB depth
Va in units of 7s'/brbs. o~ and os show percent errors for one-term
and two-term Weinberg series, respectively, while a„shows percent
error for the UPA. See Table III for numerical values, and refer-
ences to the text.

to=

presented graphically in Fig. 4. All four one-term sepa-
rable form factors agree well with each other, and with
the true form factor gz (p, s) for s= —0.25, up to p =4.
At higher momentum, aB four separable form factors
dip to 40% of the value of the true gs. At the more
relevant energy value of —4.0, in the range 0&p&4
the Weinberg one-term, the NO, and the unitary-pole
approximations agree fairly well with each other and
with gg, the NR approximation falls too rapidly. All
four approximations becomes quite bad at higher mo-
mentum. Note that from the definition, Eq. (25), of
the NO approximation, it is exact at p=L

~

s
(
j' ', or

at p=2.0 for this value of energy.

0.I—

IO.O-

Fio. 4. Form factors g(p, s) versus momentum p in units of
ft/b The ene.rgy s is 4'As/Mbs —drawn above (see ordinate scale
on right) and s is 47s'/Mbs (ordinat—e scale on left) below. See
Table IV for explanation of form factors, and their numerical
values.

K0
K
K

I.O—

0.5—

o.i—
0

\

\

2

I
I
I
I
I
I

,
I

WELL DEPTH Vp

Fee. 3. Percent error in the efkctive range versus well depth V0
in units of A~/t'Mb~. p1 and pg show percent errors for one-term and
two-term Weinberg series, respectively, while p„shows percent
error for the UPA. See Table III for numerical values, and refer-
ences to the text.

V0=3.526. The functions are the various t matrices:
(i) the exact f matrix t(p, k; s) from Eq. ('7); (ii) the
one-term Weinberg series fi(p, k; s), truncating Eq.
(15) at one term; (iii) the two-term Weinberg series
fs, truncating at two terms; (iv) the three-term Wein-
berg series fs, truncating at 3; (v) the NR approxima-
tloil fNit Eq. (25); (vi) the NO approximation fNo,
Eq (26); and. , 6nally, (vii) the UPA f„ from Eq. (2'7) .

In Tables V, VI, and VII we select three representa-
tive points in the momentum (p, k) plane, namely,
(1, 1), (1, 4), and (4, 4), respectively. For each (p, k)
value we present the values of the seven t matrices iv„
terms of the energy s. Our NR results, for —1&s&0,
agree with Reiner's' Fig. 1.

We plot our results (Tables V, VI, and VII) in
Figs. 5, 6, and 7, respectively. Instead of plotting the
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TAnr. n IV. ComParison of different form factors. The 6ve form factors tabulated are given in Eqs. (35) and (36) and the inter-
vening paragraph, for a square well of range b and depth VO=3.526 with a bound state at —0.214. These energies, and s, are given in
units of 5 /MP. The momentum p is given in units of 5/b

Energy

—0.25

—0.25

—0.25

—0.25

—0.25

—0.25

—0.25

—1.0
—1.0
—1.0
-1.0
-1.0
—1.0
—1.0
—4.0
—4.0
—4.0

4 Q

—4.0
4 0

—4.0
—16.0
—16.0
—16.0
—16.0
—16.0

-16.0
—16.0

Momentum
p

0.0
1.0
2.0

3.0
4.0
5.0
6.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.0
1.0
2.0

3.0
4.0
5.0
6.0
0.0
1.0
2.0

3.0
4.0

5.0
6.0

gT
(p, s)

6.528

5.944

4.419

2.528

0.920

0.321

1.915

1.742

1.299

0.776

0.4G1

0.294

0.258

1.361

1.235

0.920

0.568

0.352

0.290

0.242

i.172

1.061

0.787

0.492

0.329

0.284

0.235

gw'

(p, s)

6.528

5.942

4.419

2.520

0.869

0.127

0.421

1.899

1.733

0.754

0.277

0.017

0.112

1.448

1.209

0.918

0.549

0.221

0.012

0.065

1.225

1.003

0.775

0.483

0.216

0.038

0.038

gNR
(p, s)

6.528

5.943

4.416

2.512

Q. 860

0.136

0.426

1.915

1.284

0.717

0.230

0.058

0.135

1.350

1.218

0.878 .

0.460

O. iio
0.083

0.116

1.084

0.655

0.287

0.003

0.137

0.124

gNO

(p, s)

S.943

2.513

O. 861

0.135

0.426

1.915

1.742

1.292

0.732

0.247

0.045

0.128

1.224

0.920

0.538

0.202

0.007

0.076

O. 400

Q. 404

0.408

0.388

0.329

0.233

Q. 122

gvpx
(p, s)

6.512

5.929

4.412

2.510

0.861

0.133

0.423

1.914

1.743

1.297

Q. 738

0.253

0.039

0.124

1.356

1.235

0.919

0.523

0.179

0.028

0.088

1.163

0.788

0.448

0.154

0.024

0.076

relative error as done by Reiner, we plot instead the
absolute error divided by t(0, 0; 0),
7»(p, k; s) =Lt»(p, k; s) t(p, k; s)$/—t(0, 0; 0). (37)

The absolute error is used instead of the relative error,
since a perturbation calculation" gives the energy shift
of the trinucleon as proportion. "..1 to the small change
in the t matrix. Also, in future work with strong short-
range repulsion, we shall investigate cases where the
true t matrix'4 goes through zero, and the relative error
is therefore meaningless at that point. We divide by
the on-shell t matrix at zero energy to remove ambigu-
ities between diGerent normalizations, e.g., the factor
of 2m' between Reiner's choice and our choice.

r4 R. Laughlin and B. L. Scott, Phys. Rev. 171, 1196 (1968).

We see from Fig. 5 that the one-term Weinberg has
an error y(1, 1; s) that varies from 1 to about 5%.
The error does not get much above 1% for a two-term
Weinberg series, and stays below —',% for a three-term
series. The error in the NR approximation is similar
to that in the one-term Weinberg. While the NO ap-
proximation is exact for s= —1 )since p = ( ~

s
~ )"' in

this event), it fails seriously at more negative energies.
By contrast, the UPA is by far the best of the one-
term approximations, and in fact is better than the
three-term Weinberg series.

The remarks above about Weinberg series and the
NR approximation apply fairly weB to Fig. 6 for
y(1, 4; s); the over-all errors tend to be somewhat
larger in this case. The NO approximation is exact
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TABLE V. t matrices t(1, 1; s) . Values of the t matrix t(P, b; s) for P =4 = 1 in units of fs/b, for a square well of range b and depth
Vs=3.526. Both Vz and energy s are in units of fs /Mbs T.he exact t matrix is given in Eq. (7), the N-term Weinberg series results
t&, ts, and ts in Eq. (15), the NR approximation tNn in Eqs. (23) and (25), the NO approximation tNo in (23) and (26), and the UPA
in (27) .

Exact f2 4R tNO

—10

—12

—14

—20

—22

—24

—26

—30

—2.013

—1.526

—1.357

—1.268

—1.213

—1.175

—i.148

—1.127

—1.120

—1.096

—1.085

—1.076

—1.068

—1.061

—1.055

—1.968

—1.462

—1.2/9

—1.179

—i.115

—i.069

—1.034

—1.00/

—0.985

—0.966

—0.950

—0.936

—0.924

—0.914
—0.904

—2.005

—2.514

—1.342

—i.249

—i.291

—i.250

—1.120

—2.097

—2.078

—i.062

—i.049

—1.037

—1.028

—i.019

—1.012

—2.Qii

—i.522

—1.352

—1.262

—2.205

—1.166

—l.138

—1.116
—1.098

—1.084

—1.072

—2.061

—i.052

—1.045

—1.038

—1.995

—1.485

—1.288

—1.172

—1.089

—1.025

—0.973

—0.929

—0.892

—0.858

—0.828

—0.802

—0.777

—0.755

—0.735

—2.010
—1.497

—1.263

—1.057

—0.829

—0.580

—0.344

—0.163

—0.054

—0.007

—0.002

—0.020

—0.048

—0.078

—Q. 205

—2.014

—1.525

—1.354

—i.265

—1.209

—i.172

—1.143

—1.122

—1.104

—1.091

—1.079

—1.070

—1.061

—1.054

—2.048

both for s= —1 and s= —16, and in other regions of s
has an accuracy about that of the NR approximation.
The UPA is again the most accurate one-term separa-
ble approximation, but it is an order of magnitude
vrorse than in Fig. 5, and here is not as good as the
two-term steinberg series.

Figure 7 shows similar features for y (4, 4; s) . No one-
term separable approximation stays below 1% error;

but this time the NO approximation is particularly
accurate, since it is exact at s= —16. The two-term
Weinberg series has an accuracy of better than st%
for all s treated, and the three-term %einberg series
is more accurate by a factor of at least 3.

These three 6gures give the over-all impression that
while it is hard to make a firm choice among the four
one-term separable t matrices, the UPA tends to be

TABLE VI. t matrices t (1,4; s) . See caption to Table V for explanation of notation.

Exact &NR

—14

—20

—22

—24

—28

—30

—0.276

—0.200

—0.172

—0.157

—0.248

—0.242

—0.137

—0.233

—0.130

—0.128

—0.126

—0.224

—0.223

—0.122

—0.120

—0.335

—0.267

—0.245

—0.234

—Q. 227

—0.223

—Q. 219
—0.217

—0.225

—0.214

—0.213

—0.212

—Q. 212

—0.210

—0.220

—O. 281

—0.207

—0.182

—0.167

—0.159

—0.253

—0.149

—0.146

—0.144

—0.142

—0.141

—0.240

—0.139

—0.238

—0.138

—0.277

—0.202

—0.275

—Q. 260

—0.152

—0.245

—0.141

—0.137

—0.235

—0.133

—0.131

—0.129

—0.128

—0.12/

—0.127

—0.233

—0.135

—0.088

—0.059

—0.037

—0.021

—0.008

—0.003

—0.012

—0.018
—0.024

—0.029

—0.033

—0.037

—0.040

—0.292

—0.248

—Q. 252

—0.259

—0.258

—0.235

—0.191

—0.133

—0.075

—0.026

—Q.012

—0.039

—0.056

—0.067

—0.072

—0.293

—0.222

—0.197

—0.184

—0.176

—0.170

—0.166

—0.163

—0.160

—0.158

—0.157

—0.155

—0.254

—0.153

—0.252
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Exact t2 tNR tNo

—10

—12

—14

—16

—20

-22
—24

-26

—30

—0.137

—0.124

—0.118

—0.115

—0.113

—0.111
—0.110

—0.109

—0.108

—0.107

-0.106

—0.106

—0.105

—0.105

—0.104

—0.057

—0.049

—0.047

—0.046

—0.046

—0.046

—0.047

—0.047

—0.047

—0.047

—0.048

—0.048

—0.048

—0.048

—0.049

—0.134

—0.120

—0.114

—0.110

—0.108

—0.106

-0.104

—O. 103

—0.102

—0.101

—0.100

—0.099

—0.099

—0.098

—0.097

—0.137

—0.123

—0.117

—0.114

—0.111

—0.109

—0.108

—0.107

—0.106

—0.105

—0.104

—0.104

—0.103

—0.102

—0.102

—0.027

—0.012

—0.006

—0.003

—0.001

—0.001

0

—0.001

—0.001

—0.001

—0.001

—0.002

—0.042

—0.041

—0.050

-0.064

-0.080

—0.096

—O. 106

—O. 109

-0.105

—0,096

-0.086

—0.076

—0.067

—0.058

—0.050

—0.043

—0.032

—0.029

—0.027

—0.026

—0.025

—0.024

—0.024

-0.023

—0.023

—0.023

-0.023

—0.023

—0.022

—0.022

either the best, or one of the better, approximations.
On the other hand, the two-term Weinberg series has
an accuracy of better than 1% for all cases plotted, and
the three-term Weinberg series is still more accurate.
As discussed in the Introduction, the validity of a

I I I I I I I I I

speciied approximation must be judged for the result-

ing accuracy in a particular calculation. We gain the
qualitative impression that the UPA may be accurate
enough for calculation of the binding energy of the
trinucleon with a local square well, and that the two-

term Weinberg series should certainly be accurate
enough.

I I I I I I I I I
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FIG. 5. Relative error y(1, 1; s) for six different separable ap-
~ ~

roximations to the t matrix, plotted versus energy s in units of
s/Mb'. The momenta p=k=h/b. See Eq. (37) for delmition of

y., see Table V for numerical values and explanations of the
different approximate t matrices used.
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FIG. 6. Relative error v (1, 4; s) versus energy s. The moments
are P 1I/b and b==4h/b. See captions to Fig. 5 and Table V for
explanation of notation; see Table VI for numerical values.
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recent work of Ball and Wong" indicates moderately
slow convergence for the Weinberg expansion as ap-
plied to a local Yukawa potential, for calculation of
the binding energy of the trinucleon.

Of course, the separable approximation may be much
worse for I', or higher angular momentum states, than
it is for S states. Recently Fuda" at the State Univer-
sity of New York, BuQ'alo, and Laroze at Rensselaer
have developed the Weinberg series for a hard-core
potential. This amounts to putting the well depth Vo
as —ae in Eq. (15). Fuda considers the special case
p=k=s=O, and finds that successive terms in the
Weinberg expansion go as the inverse squares of suc-
cessive odd integers: This convergence is less rapid
than the inverse fourth power found above for an
attractive square well or the inverse cube for the ele-
mental phase shifts for the Hulthen potential. The
more realistic case of a hard core combined with an
attractive short-range potential is now being studied
by Fuda.

Laughlin and Scott'4 have recently shown that a local
potential with a core and an attractive region gives
oG-energy-shell values for the t matrix that cannot be
6tted with a one-term separable potential. It has been
argued for some time that the change of sign of the
phase shift for such a local potential cannot be 6tted
by a one-term separable approximation. Tabakin, there-
fore, used two terms for his central" and tensor' poten-
tial 6ts to phase parameters. Very recently, Tabakine'
has shown that he can 6t a phase shift with changes
sign, using a single separable potential, with the form
factor containing a node. We believe that there are
serious physical objections to this 6t, namely, that
Tabakin has a node in his ground-state wave function.
We shall shortly present these objections in detail. It
seems clear to us that a really good separable 6t to a
local potential with a core and attraction must use at
least two terms in the separable expansion. However,
as stated in the Introduction, Fuda's work" shows that
in the case" treated, a one-term separable approxima-
tion works mell enolgh for purposes of calculation of
the ground. -state energy of the trinucleon.

ss F. Tabakin, Phys. Rev. 177, 1443 (1969).

Finally, any realistic nuclear potential V includes a
strong tensor force. Of course, the Weinberg expansion
(13) still applies. Now the ket

i f„(s)) would contain
both S and D waves. The rapidity of convergence of
the Weinberg series in this case or the validity of the
UPAS clearly deserves further study. We note that
with a tensor force there is a special difhculty with
the use of a one-term separable potential, as noted by
Yamaguchi. ' Namely, a one-term separable potential
in the spin triplet, including a tensor force, will give
a zero phase shift for the 'Di state. If we want to
match the observed 'Si phase shift, the mixing param-
eter e, and also the 'Dj phase shift, we must include
two or more terms in the spin triplet potential. This
argument indicates the need to include at least two
terms in the Weinberg series for the triplet system.

All our remarks above apply to off-shell matrix ele-
ments at negative energy and to on-shell at positive
energy. The area of oE shell at positive energy clearly
deserves further investigation.

In conclusion, we have extended Reiner's work on
the accuracy of diferent one-term separable t matrices
as an approximation to the exact t matrix for a local
central attractive square-well potential. The UPA is
particularly convenient, and among the most accurate;
it is good to roughly 1% for a range of mornenta and
energies expected to be of signi6cance for a calculation
of the ground state of the trinucleon. The Weinberg
series converges rapidly for this case, the two-term
Weinberg series having an accuracy of better than 1%
in the relevant region.
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