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changes in interplanar spacings calculated with vibra-
tional effects taken into account) increase rapidly with
temperature; equivalently, one can say that thermal
expansion is greater near the surface than in the bulk.
Second, anharmonicity already causes a substantial
increase in the surface mean-square amplitudes at about
half the melting temperature.

Since both of these e6ects should be observable by
means of LEED, it would be interesting if LEED
experiments (on metals or other monatomic materials)
could be carried out over a wide range of temperatures
to determine the importance of anharrnonicity and the
dependence of the mean atomic displacements upon
temperature.

The method of molecular dynamics used here has
two important advantages for surface calculations at
temperatures above the Debye temperature, in that
both anharmonic sects and mean displacements are

taken into account completely. Below the Debye tem-
perature zero-point vibrations become important, and
the classical approximation consequently breaks down.
But the method described in I is most applicable at
low temperatures, since this method involves the
quasiharmonic approximation and the approximation
of using the static, rather than dynamic, displacements.
In this sense, therefore, molecular dynamics and lattice
dynamics are complementary methods of investigation.
Both methods have considerable potential for theo-
retical studies of the structure and dynamics of crystal
surfaces.
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A wave-number —and frequency-dependent dielectric function has been calculated for a model insulator
using the random-phase approximation. The model insulator consists of a free-electron conduction band
represented by a single orthogonalized plane wave (OPW) and a valence band represented by linear com-
binations of ionic wave functions. All energy bands are assumed parabolic and isotropic. Numerical results
are obtained for Ar, KCl, CsCl, MnS, and Si, in reasonable agreement with previous calculations. Screened
exchange potentials have been obtained by using an interpolation formula, and evaluated for the chlorine
ion in CsCl.

I. INTRODUCTION

HE dielectric formulation" of the many-body
problem has been found especially attractive in

solid-state physics, since it uses mathematical and
physical concepts known to most solid-state physicists,
and interprets solid-state systems in terms of familiar
quantities which are accessible through experiment.
Aside from its use in various schemes for calculating
correlation contributions to ground-state energies, ' the
dielectric formulation has been used to understand
energy loss by fast electrons in solids, 4 plasma energies, '
and optical properties~' of solids. In addition, the

* Work supported by the U. S. Air Force Ofhce of Scienti6c
Research.
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dielectric formalism has been used extensively to study
properties of the electron gas, ' and quasiparticle9 and
collective" excitations of an electron gas containing a
single point-charge impurity. Recent calculations have
considered more carefully sects of the Pauli exclusion
principle. ""The formalism has also been used in band
theory to develop a theory of self-consistent screened
pseudopotentials for semiconductors" and more recently
to develop a theory of the covalent bond in crystals. '4

Application of the theory centers around calculation
of the dielectric constant tensor e(q, cv) as a function of
frequency and wave vector for the many-body system
under consideration. Longitudinal or transverse compo-
nents of ~(q,co) have been calculated in various approx-

' F. M. Mueller and J. C. Phillips, Phys. Rev. 157, 600 (1967).
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imations for the uniform electron gas,"uniform electron

gas with a point impurity charge, " superconducting
electron gas," an isotropic model semiconductor, " a
model insulator" and a few real solids. ' ' "

An exact expression for the dielectric response func-
tion of an electron system exists, but it relies upon
knowledge of exact many-electron wave functions. On
the other hand, useful approximate expressions have
been developed requiring knowledge of only single-

electron wave functions.
The purpose of this paper is to report a random-phase-

approximation (RPA) calculation of the wave number
and frequency dependence of the complex longitudinal
dielectric constant for a model insulator. The model
used is di8erent from the one used by Hermanson in

calculating exciton levels of argon, " but similar in

some respects to the model semiconductor of Penn. '"
The model insulator is discussed in Sec. II.

The RPA for the longitudinal dielectric function of a
solid is given by"

4se' ((k/(e "')k+q& P))'(nk+~p —
nkvd)

Vg k~~ + +qk, l' + lk(~+&b)

where l' is the band index for Bloch state with momen-
tum k+g, energy E&+~,&, and occupation number
nj,+~,&, and similarly for l. The quantity 8 is an in6nites-
imal positive real number, arising from adiabatic
boundary conditions used to derive (1), which specifies
how to handle singularities of the denominator. V is
the volume of the crystal. This divers from the corre-
sponding expression for the uniform gas in two respects:
the presence of Bloch matrix elements in the numerator,
and occurance of energy bands in the denominator, as
indicated by the band indices l, l'.

The reduced zone scheme is used, in which all wave
vectors are referred to equivalent vectors in the irst
zone. The sum on h is over all vectors of the Grst zone,
and the vector k+q must be reduced by a vector of the
reciprocal lattice if it falls outside the first zone. In this
paper, terms of this type in the sum are referred to as
umklapp contributions.

At zero temperature the occupation numbers n~, ~ are
zero for conduction states and 1 for valence and core
states. In what follow's, only frequencies small compared
to typical core-conduction —band transition frequencies
will be considered; in this region of frequencies the
contributions to e(q, &o) involving core states will be
constant, so that attention will be focused only upon
valence contributions to (1).

"J.Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, 8 (1954)."R.E. Prange, Phys. Rev. 129, 2495 (1962).' D. R. Penn, Phys. Rev. 128, 2093 (1962)."J.Hermanson, Phys. Rev. 150, 660 (1966).

'9 M. Azuma, J. Phys. Soc. Japan 19, 198 (1964)."H. Xara, J. Phys. Soc. Japan 20, 778 (1.965).' H. Ehrenreich and M. Cohen, Phys. Rev. 115, 786 {1959).
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FIG. 1. (a) Energy bands of CsBr inferred by Phillips (Ref. 28),
and (b) approximate energy bands used in this model. Eg is
the radius of the spherical zone.

II. MODEL INSULATOR

It has been noticed" " that e(q, a&) is not especially
sensitive to the particular form of matrix elements used
to evaluate Eq. (1). In addition, since behavior of all

electrons in a band determine e(q,&o), one might hope
that some simple model such as the one used by Penn'~

could be successful in predicting the general structure.
However, the model used by Penn for semiconductors
contains an unphysical density of states at the Fermi
energy, and, in addition, the wave functions are plane-
wave —like throughout most of the Brillouin zone. Thus,
another model is sought for insulators which has a
more physical density of states and has wave functions
for electrons in the valence band more appropriate to
an insulator.

Real solids which motivate this study are alkali
halides and solid rare gases. Few complete band-
structure calculations have been performed for these
solids; some of the better calculations in this group are
for KC1,22" KI,"Ar,"'e and CsI.'~ Phillips has deduced
band structures for a number of these insulators from
optical data, and, roughly speaking, they are typi6ed
by narrow valence bands and broad conduction bands
separated by energy gaps of 6 to 10 eV. The top valence
bands are derived from n p states of the halide ions, while
the lowest conduction bands are composed mainly of
ns states of the alkali ions. The halide ns bands usually
lie several volts lower than the np bands. Valence band
widths as a rule are much less than the minimum gap.
This situation is illustrated in Fig. 1(a), which is the
band structure of CsBr deduced by Phillips. "Although
recent calculations'4'~ indicate that d bands may lie
lower in the conduction bands of the alkali halides than
was presumed by Phillips, this considerable complica-
tion will not be included here. Kith the other features
in mind, however, the following model insulator is

~ L. P. Howland, Phys. Rev. 109, 1927 (1958).
~ P. D. DeCicco, Phys. Rev. 153, 931 (1967).
~ Y. Onodera, M. Okazaki, and T. Inui, J. Phys. Soc. Japan

21, 2229 (1966).
~ R. S. Knox and F. Bassani, Phys. Rev. 124, 652 (1961).
'6 L. F. Mattheiss, Phys. Rev. 133, A1399 (1964)."Y. Onodera, J. Phys. Soc. Japan 25, 469 (1968)."J.C. Phillips, Phys. Rev. f36, A1705 (1964); 136, A1714

(1964); 136, A1721 (1964); Solid State Phys. 18, 55 (1966).
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proposed:

(1) a single conduction band composed of electrons
represented by single OP%'s occupying a broad para-
bolic energy band;

(2) a valence band composed of tightly bound
electrons represented by linear combinations of esp„
np„, and Np„and ns atomic orbitals occupying narrow

energy bands;
(3) with ep and ns valence bands separated from each

other and from the conduction band by Gnite energy
gaps.

A sketch of the energy bands of this model is shown in

Fig. 1(b). Although a model is sought for cubic crystals,
it is necessary even in this case to make simplifying
approximations to energy bands and wave functions in

order to keep calculations within reason for a model.
Absorption spectra of alkali halides show much stronger
exciton structure than do semiconductors, so that the
RPA may not be as accurate in the former case as it
is in the latter. However, the RPA for this model is
sufBciently difBcult so that no corrections to it will be
considered here. The difhculties lie in the complicated
three-dimensional principal-value integrals which occur.
These difEculties can be overcome by making the
ansatz of spherical isotropy for all the energy bands,
in which case all integrals may be reduced to one-
dimensional integrals without principal-value restric-
tions. On the other hand the p-like character of the
valence bands can be retained in matrix elements with
only moderate de.culty in what follows.

Wave functions for valence bands in the tight-binding

scheme are given by the Bloch sums

1
P, (k) = P e'"'R"V, (r—R„),

(2 1)

where f~, (k) are Bloch functions for the valence and
core states, and p~ (k) are the usual orthogonalization
coeScients, given by

x ~~

p(„(k)= — e'~'P(„*(r)dV.
V

Taking isotropic energy bands of the form

E,(k) =alki',

E.(k)=E"—E lkl',

(2 3)

converting the sum on k to an integral over the Brillouin
zone, and writing out the sums on l and f', (1) becomes

where the sum is over all lV lattice vectors E, at which
wave function U, and V„, for the s and p ionic states,
respectively, are located; m is the azimuthal quantum
number for the free-ion p state. The single OPW for
the conduction band is obtained by orthogonalizing a
plane wave to all the lower valence and core states

4.(k)=e"'/v'i'-2 pi, -(k)4l-(k) (2 2)
l, m

4se' 2 x IQ~~(k) le '&'ltk, (k+q)) I'd'k
e(Q, a)) =1+

q' (27r)' ~—&- s. (a+E„.)k'+2kqncos8+aq'+E, —(&o+ib)

IQ.(k) le "'lO:(k+~)) I'd'k

s, (n+E„)k'+2kqE„cos8+E„„q'+E,+~ ib—IQ.(k) le "'lk. (k+a))l'd"k

s. (n+E,)k'+2kq cos8+aq'+E„—(co+ib)

l&4.(k) le *"lk.(k+a)) I'd'k

), (n+E, )k2+2kqF. , cos8+F,q'+E„+co ib—
Here E, and E„are minimum band gaps between p-
valence bands E„(k) and conduction band E,(k), and
s-valence band E,(k) and conduction band E,(k),
respectively, and 8 is the angle between k and q.

At this point one is faced with the necessity of finding
an appropriate set of wave functions for core and
valence electrons in order to evaluate matrix elements of
e '&'. A straightforward but laborious way is the
numerical method of Azuma. '" However, since interest
here is in a model which hopefully will give results for
a class of insulators, wave functions with adjustable
parameters are chosen in order to reduce the amount of
labor involved in the integrations. A form is chosen
which yields analytic expressions for matrix elements.

In this same spirit a further simpli6cation of the calcu-
lation will be made. Instead of the actual Brillouin zone,
a spherical zone with the same volume is employed:

-', vrke'= (2m)'/0,

where 0 is the volume of the signer-Seitz cell, and k~
is the radius of the spherical zone.

III. MATRIX ELEMENTS

In this section, matrix elements of e '&' are worked
out for arbitrary OPW and tight-binding wave func-
tions. Parametric wave functions are introduced to
evaluate the final results. Proper normalization factors
are included after the matrix elements are obtained.
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l&A, (k)le "'leak (k+q)&l'
Ss'q 127r= IQ,-,(k)le *"I4.(k+q)&I'= a) 2

00 2ll I

j&(kr) U& (r)r'dr j~( I
k+ q I r) U~ (r)r'«
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jo(qr) I U~(r) I
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'r'«+ jl(lk+ql r) Ul(r)r2«
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X j g(kr) Ug(r)r'dr

For the p, and p„bands, the result is simpler, since the s-valence states drop out

X j«(qr) I U&(r) I'r'dr+ jm(qr) I U&(r) I'r'dr . (3.12)
0

f, *fr dV

vv'
e '~' "U,~*(r—R„)e'"'""'U, ~ (r—R,)dV

Similar expressions obtain for matrix elements

&4.(k) I
e "'I1ix-(k+q)&.

These matrix elements are taken with wave functions
which have not been normalized explicitly, so normaliza-

tionn

must be obtained. For the val ence tight-binding
wave functions

and the matrix elements approach a constant times
I ql, as q approaches zero, and «(q, «e) obtains a finite
value, as it should for an insulator.

There remains only the choice of wave functions for
the valence bands. Two parametric radial wave func-
tions are chosen:

U.( )= Ll (2v)9"e-"" (3.15)

for the s band, and

U, (r) = L(26)'/24]'~«re «' (3.16)

for the p states. These wave functions represent the

=P e'~ R U, „*(r)U~. .(r R„)dV—
k+q

=1++ e'~' "'
U& *(r)U~ „(r R„)d—V (3.13)

Neglecting overlap integrals, the tight-binding 8loch
functions are normalized if the atomic wave functions
are normalized. The OP%'s are normalized by the
condition

which leads to

As Ifopw(k) I
«dV=1,

1/~ = (1—2 ~« *u»)"'. (3.14)

FIG. 2. Angular relationships between k, k+q, q and r.
Orthogonality of conduction and valence-band wave

functions is also important in the present calculation.
If they are not orthogonal, an incorrect long-wavelength
limit is found for «(q, ««). If the orthogonality integral
is not zero, matrix elements of e '~ ' approach a constant
as q approaches zero, and (1) diverges like

I ql
indicating metallic behavior. However, choice of an
OPK for the conduction band assures orthogonality,

radial part of the atomic wave functions which compose
the Bloch sums, and are properly normalized. Methods
of determining the parameters 8 and y will be discussed
later. Kith these wave functions, integrals needed for
the matrix elements of e '& ' can be obtained and are
tabulated in the Appendix.

Inserting these integrals in (3.11) and (3.12) gives

I &pu(k) I
e '«' If, (k+q)& I'

4~iV Ss') '
= IQf—$(k)le ~«'lg, (k+q)&l'= —

I
sin'8 (28) k'((b'+k') ' 2[(8'+k'+q—'+2kqcos&)'(k'-«+k')'7'

v n)
X (2g) L(2g)'+q' j—+ (P+k'+ q +2kq cosg) '(2h) "I (2g) +q«] «) (3 17)
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1(A6(k) I
e "'l4"(k+q)) I'

X Svrv ' 2(28)'k'cos'8 (28)'(28)'k cosg [3(y+b)2—q'] k cosg(q+kcos8)
= 4m.— +

p' Q (82+k2)6 (8 2+k 2+q 2+2kq cpsg)2(82+k2)3 [(y+b)2+q2]3 (8 2+k 2+q 2+2kq cpsg)3(82+k2)3

[(2b)'—5q'] (2b)'(28)' 1 [3(&+8)'—q']'
X 4(2b)'(2h)' +

[(2h)'+q']' (8'+k'+q'+2kq cosg)' S [(y+b)'+qv]

(q+k cosg) [(»)*-5q'] [3(v+8)'-q ]
(b'yk'+q'+2kq cosg)'(8 +k +q2+2kq cosg)3 [(28)2+q2] [(&+b)2+q2]3

(q'+2qk cosg+ k' cos'g) 2(28)"[(28)—5q']'
+ (3.1S)

(b'+k'+2kq cos8+q')' [(2h)'+q']'

&n alkali halides and rare-gas solids the Ns bands are well separated from vvp bands, so they will not be included

in the numerical calculations which follow, in order that a substantial simplification of angular integrals can be
made. Neglect of ns valence bands will be felt most strongly in the OPW normalization factors and in the OP% s
themselves through effects of orthogonalization.

Neglecting s-band effects and normalizing, the result for the p. band is

1V Svr ' X (28)'k ' (k' cos'8 —2kq cosg+q2) 2[(28)2—5q2]

I g o(k—q) Ie *'2'lg. (k)) I'=4~— 2(2b)' 1—s~—
0 — lr (b +k ) — (b +k +q 2kq cpsg)6 (82+k2)3

(k' cos'8 —kq cos8) (28)' [(28)2 5q2]2 k2 cps2g
X + (28)12 (3.19)

(b'+k'+q —2kq cosg)[(28)'+q'7 [(28)2+q2]3 (82+k2)6

.V Svrv E (2b)vk ' k cos 8+2kq cpsg+q2
I Q, (k) Ie '&'I1p16(k+q))l'=4vr — 2(28)v 1—Svr-

& (b'+k')' (b'+k'+q'+2kq cos8)'

2(2b)'L(2b)' —5q'] (k' c»'8+kq cpsg) [(28)2—5q']'k'cos'8
+ (2b)12 (3.2O)

(82+k2)3[(28)2+q2]4 (82+k2+2kq cpsg)3 [(28)2+q2]3(82+k2)6

Matrix elements needed for p, and p„bands are

X Svrv ' E (2h)'k' ——' 1

I (vp11(k —q) I
e
—'& '

I 1p.(k)) I

'= 4vr— (2b)'k' sin'8 1—Svr-
Q lr (82+k2)6 (82+k2+q2 2kq cpsg)6

and

(2h)' 2 1 (28)"
+

[(2b)'+q']' (b'+k'+q' 2kq cosg)—'(h'+k')' (h'+k')' [(28)2+q2]6
(3.21)

(28)' 1 (28)"
+ (3.22)

[(2b)'+q']' (b'+k'+q'+2kq cos8)'(b'+k')' (b'+k')' [(2b)2+q2]6

Pr Svrv 2 —,V (2b)vk 1

l(1P, (k)le '2'I1P11(k+q))l =4vr— (28)vk' sin'g 1—Svr—
V 0 lr (8 +k ) (b +k 2+q 2+2k2q cpsg)6

A transformation has been anticipated in (3.19) and

(3.21) to remove angular dependences from the OPW
normalization factors. This transformation makes it
possible to do principal-value integrals over angles

exactly and avoid the difficulty of numerical principal-
value integrals. A corresponding transformation must
be made in energy denominators when using trans-

formed matrix elements.

IV. SUMMATIONS

Necessary ingredients for computing the RPA
dielectric function have now been obtained, so there
remains only the sum over states in the first Brillouin
zone to be performed. This sum has been changed to
an integral using the spherical-zone approximation.
It is further assumed that the p, and p„bands are
degenerate throughout the zone with reciprocal effective
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k'= k+ q. (4 l)

mass 2E~i, while the p, band has reciprocal effective
mass 2E~o. No splitting of the P, band at k= 0 has been
introduced, although it is a simple tt d

e sma spin-orbit splittings for insulators under
consideration here do not merit i t d Tin ro uction of yet
another parameter into the»iodcl.

In or er to remove complicated an ular de
rom e OP% normalization factors in matrix elements

of the type Q„(k) I
e '&'lg, (k+q)), the following trans-

formation is made on k:

=Ni
0

, u
I k'. k+q
I

Itc)
I

ks+q

=I
I

ksq ks

ke

cose q& "e

=- . :II]fu i
i)I I

l

-I -
I

ks-q ks ke+q coe eq

Xzcos9
+I

C0Se q&Ite

UI
1

I

I

I ~W I fbi
-I - I,~N

/q-ke ks ks~q&

Xz
cos eq

I~Ng U I

l0 I k'~ k+q
l I I

I

I I

q-ks ks ks+ q

q&ke

Limits of integration are then determined hy the
conditions

0& lkl'&k~, ', Ik' —ql'&k '

0& lk'I'+
I q I'—2 k'I

I ql cos8&k ' (4.2)

where cos8 is the angle between k and q. Thus

Ik'I'+lql' —k '
Xg=

ll I2+q2
&cosH& =X2)

—1&cos8&1 (4.3)

k'—k =k~+q, for cosg= 1

k'=k- for cos8= —1 .

Thhis region of integration is shown in Fi . 3 a .
theotherhand, for &k thq &, the only possibility is cos8= 1,
an k =q+kg or k'=q —k~. This re ion of ina k= '— . '

gi o mtg tio

is the requirement on cos8 s l' 't, so imits on the angular
integrals must be determined from simultaneous re-
quirements (4.2) and (4.3): cos8 must lie
~1, Xi, and X2. For the case q&k~

I.'zG. 3. informal (iX) and umklapp (U) re
'

f
'

regions o integration
'or 'i erent values of g.

~ ~

ti
It is interesting to determine separatel thy econtri u-

ions to e(q,&o) from normal and umklum app processes.
Umklapp terms arise for Ik+ql)ks, in which case it
is necessary to subtract a reciprocal-1 tt'

nng +q=k' back into the 6rst zone. In terms of
the variable k', normal processes occur for k' (
while umkla pp processes come from integrals 1' &k~.
These regions are indicated in Figs. 3(a) and 3(b). For
integrals over untransformed matrix elementsemen s, norma

app contributions may be separated b
defining

ara e y

«sII.—= (k -'—
1k I'—I ql')/2 lk I I ql (4 5

Normal processes occur when lk+q '&k ' u
when k+ &k '.

q~ ~, umklapp

are
q ~ . Thus, the two regions of int tin egration

—1&cos8& cos8, & 1, for normal
—1 & cos8~& cos8& 1, for umklapp.

This is illustrated in Figs. 3(c) and 3(d).
For the purpose of numerical calculations it is

convenient to separate real a d
'

an imaginary parts of
e(q,co). including transformation ~4 i~ hn . w ere needed

477'e 2
Ree(q, co)—= ~, (q,a) =1+

q' (2s.)'

+2P

P

Bz'

I Q xo(k —q) I
e-"'IP, (k)) I

'd'k

s E (k) EM(k q)

i&A, (k-q) I.-'~'IP. (k)&l d k

E,(k)—Ei, (k—q) —(o
+2

I &Ik (k) le "'IIk»(k+q)) I'd'k

s. E,(k) —Ego(k —q)+s)

1&Ip. (k& I
e *~'III»(k+0)) I'd'k

E.(k)-E„(k+,)p.
8~'e'

Im~(qp)) =—e, (qp) =
(2s)'q'

I &&~0(k—q) I
~ *'"III.(k)) I'hLE. (k) —E o(k—q—

» k—« "'IIp (k» I'~LE. (k) —E (k—q) —~jd'k, 4.V
Bz

where P indicates principal value of the
'

e o e integral is to be taken.

(b2+k2) 8

V. LONG-WAVELENGTH LIMITS
Expanding matrix elements in powers of q, the ion -wav

»m —,I &II»(k—q) le "'IIP (k» I'=
q2
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and
1 6k'cos'8 '

lim —](lay«(k —q) )e ' '[lP, (k))[ = 1—
QM q2 (62+k«)«(g«+k9)

(5.2)

' 48 X'dX 1 1
«g*(0,(o)+ «p(O, a)) =AP +

5 (LP+X2)s (6 +g )X'+1—W (g.+g )X2+1+W

4X'2X'dX 36 X4
«g'(0, (u) =AP 1— +

«(2, '+X')' (5'+X') 5 (6'+X')

Inserting (5.1) and (5.2) into (4.6) and separating the different band contributions,

(5.3)

where the following transformations have been made:

X + , (5 4)
(6,+6*)X'+1—W (6 +h*)X'+1+W

Here

X—=k/ke, 6,=akim /E«, —6,=6„=E„ks'—/E«,
W= (u/E«, iL.—=Eg«ks'/—E«, b, =—b/ks.

32 (2x)'
A =— (2~)'.

Eg 03

(5 5)

The physical meaning of these new parameters is clear from the defining equations: X, and 6are momenta relative
to the momentum at the Brillouin-zone boundary; 6, is the ratio of conduction-band width to the band gap;
b„, d„, and 6, are ratios of valence-band widths to band gap; and 8' is the frequency measured in units of the
gap frequency.

At zero frequency the principal-value restriction may be relaxed, and the integrals for the real part of the static
dielectric constant are simple:

48 ' x'dx 2
«g*(0)+ «p(0) =A—

5 p (5'+x')' (6,+h, )x'+1
(5 6)

«g*(0) = 2 A
4x' 36 x4+—«(5'+x')' 5 (dP+x')'

2x'dx (LV+x')'[(5,+h))x'+1) (5.7)

Similarly evaluating integrals for «2(q,co) by using properties of the Dirac 8 function,

A (W—1)(h,+A.)' S (2h)'(W —1)(h.+6 )'
«2*(0,(a) = 1—Sx—

(6 +6 )"' LlV(h +6 )+W 13'- V EcV(~~+EL )+W 13«-

and

4(W—1) 36 lV—1
X 1— +— g(W —1)g(h.+6 +1—W) (5.8)5'(6,+6,)+W—1 5 5'(h.+h.)+W 1—

A 48 (W—1)(6,+6,)' — X (2A)" (W—1)(6,+6,)'
«g*(O,co)+ «p(0)&o) = 1—8x—

(6,+5,)"' 5 Ph'(6, +6 )+W—1]' V Ph'(h. +6 )+W—1]'

X~(W—1)q(~,+~.+1—W), (5.9)

where
~(x) =0, x&0
g(x) =1, x&0.

These limits are useful in helping to determine param-
eters of the model and in checking calculations with the
more complicated expressions.

VI. NUMERICAL RESULTS

In this section parameters for the model are obtained
for several insulators as well as one semiconductor.
Numerical results for the dielectric function of this
model are then compared with previous calculations,
where available.
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TABLE I. Band parameters used for calculation
of e(q,au) with this model.

Cell
volume
(a.u.)

CsCl
KCl
Ar
Si

Gap
(eV)

386 7 0.60
418.3 9.40 0.70
250 13.3 0.20
275 (1.0)

(4.0)
MnS 237.5 6.2 1.0

1.5 2.70 1.637
4.10 2.13 1.609
2.70 1.70 1.820
1.4 11.0 1.595

1.575
1.613

0.60
2.00
0.60

10.0

1.0 3.0 6.8

Bandwidths (eV)
P, Conduction e(0) 8/kg' 2.0

I. 5

KGI
PENN S MODEL

A S CALCULATION
MODEL

& ka is the radius of the spherica1 zone.

Motivation for this model has been the alkali halides,
for which a typical band structure is given in Fig. 1,
along with the present model approximation to it. The
final model may best be described by its parameters:
~, kg, n, E~o, E», E„and b. 0 is the unit cell volume,
which is related simply to the lattice constant through
the crystal structure. k& is the radius of the spherical
zone, which is determined by Q. n, Ej0, and E» are twice
the reciprocal effective masses for conduction and
valence energy bands, which are assumed parabolic
and isotropic throughout the zone. E, is the minimum

gap, assumed to lie at k=0, and 8 is a parameter in
the valence-electron wave function which, roughly
speaking, indicates the degree to which electrons are
bound to individual ions. Thus, in this simplified model
with seven parameters, there are six independent
parameters which must be determined. Of these six
parameters, five are found from experiment: a/E„
Eio/E„Eii/E„E„and Q. 0 has been calculated using
lattice constants derived from x-ray analysis, while
the others have been obtained from optical measure-
ments. There remains one parameter not readily access-
ible to experiment, the valence wave-function param-
eter b.

This parameter could be obtained by a best fit to the
appropriate free-ion wave function; by a variational
calculation using a pseudopotential for the free ion;
by requiring that the longitudinal sum rule be satisfied

I.O I I

.5 I 0 I 5 2 0 2 5 ~.P

q/kB

Fxa. 5. Zero-frequency dielectric function for KCl.

TABLE II. Normal and umklapp contributions to e{q) for solid
argon. The total e(q) is 1+eN(q)+eU(g).

using only the p bands and one conduction band; or by
requiring that e(q,co) obtain the measured static dielec-
tric constant in the appropriate limits. The latter
method has been chosen for these calculations.

The following insulators were examined with this
model: CsC1, KCI, Ar, and MnS. En addition, the model
was tested for one semiconductor, silicon. All necessary
parameters were obtained from Phillips's analysis of
ultraviolet absorption of insulators, '8 or from band-
structure calculations. ~ Characteristic parameters for
these solids are listed in Table l.

Argon, the insulator which is probably best described
by this model, is discussed first. The static dielectric
constant was obtained from Kqs. (5.6) and (5.7) by
iterating until 6 yielded the proper result for e(0).
This result should be the optical dielectric constant,
n'=1.70, since the model describes only electronic
contributions to e(q,co). For the parameters listed in
Table I, 6= 1.82 gave this value. Numerical calculations
of e(q) with the full set of parameters produced results
shown in Fig. 4. Hermanson's" dielectric function for

I.7 q/kz Normal Umklapp Total

l.6

l. 5

f.4

N'S MODEI
ODEL
EL

I. 0
.5 I 0 l5 20 2 5 50 35

q/kp

Fn. 4. Zero-frequency dielectric function for solid argon.

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
1.00
1.50
2.00
2.50
3.00

0.700
0.690
0.675
0.656
0.635
0.610
O.S84
0.555
0.524
0.490
0.457
0.155
0.019
0.0
0.0
0.0

0.0
0.009
'0.020
0.031
0.041
0.051
0.062
0.071
0.080
0.088
0.096
0.071
0.088
0.042
0.016
0.010

1.700
1.699
1.695
1.688
1.677
1.661
1.644
1.625
1.602
1.578
1.553
1.227
1 ~ 108
1.042
1.016
1.010

'0 J. Callaway, Eriergy Bend Theory (Academic Press Inc.,New York, 1964).
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7.0-

6.0

5.0

S MODEL
MODEL

D'

4.0
4)

3.0

2.0

I.O I I

I.O I.5 2.0 2.5 3.0
/ke

Fro. 6. Zero-frequency dielectric function for MnS and CsC1.

argon is shown on the same graph, and, although the
static limit for this model was adjusted to be slightly
different from Hermanson's value, agreement is fair
except for large q, where «(q) —1 has a q

' dependence
for Hermanson's model and q

' for this model. Penn's"
interpolation formula for the two-parameter-model
semiconductor is also plotted for comparison with the
two model insulators, taking values of his parameters
suitable for argon. It is seen that his interpolation
formula compares quite well with this model insulator
in the case of argon.

A question of interest which can be answered by
this calculation is the magnitude of umklapp contribu-
tions to the dielectric function. Table II show's contribu-
tions to «(q) for argon from normal and umklapp
processes separately. The signi6cant result for this
model is that for small q&k~ umklapp terms are almost
negligible, while for q k~ they begin to dominate.
Since «(q) falls sharply at ks, strong screening is
dominated by normal processes, which implies that
average screened exchanged potentials, such as the
ones discussed in Sec. VI, will be affected only slightly
by umklapp processes. This result is found generally in
all solids studied here and at all frequencies except near
a plasma frequency of the p bands.

Dielectric functions for the other solids listed in
Table I are shown in Figs. 5, 6, and 7. Figure 5 shows
Azuma's'9 calculation for KC1 compared to Penn's
model and this model. awhile the two models agree
quite well, Azuma's calculation deviates from them both
substantially. This discrepancy is likely due to the
limited number of terms which he included in his sum
in the Brillouin zone: only 14 points. He found that
1500 points were required to give «(0) correctly, so
his 14-term sum, which overestimates «(0), possibly
overestimates «(q) at other q also. Agreement between
Penn's interpolation formula and this model is even
closer for KC1 than for Ar. The same is true for CsCl,
but MnS shows substantial differences between the
models for q &2k'. In the latter two insulators there are
presently no other calculations available for comparison.

I3 0-

I I.O

9.0

CT
7. 0

&ENN S MODEL
NARA S CALCULATION
THIS MODEL

A Eg=4eV
8 Eg= I eV

5.0

3 0

I.O
I, O I5 20 25 30

q /k&

Fro. 7. Zero-frequency dielectric function for silicon.

In the case of silicon it might be presumed that this
inodel would be a poor one, since valence bands are
more free-electron-like. The energy bands in this model
are parabolic, however, so the principal difference will be
in matrix elements of the valence and conduction wave
functions. Figure 7 shows «(q) for silicon. At first E,
was taken as 1 eV, but, since agreement with Nara's"
calculation for silicon was poor, «(q) was also obtained
for E,=4 eV, which is a reasonable value for the
average band gap, in an attempt to make the true band
structure better approximated by the present one. In
neither case does the result produce Nara's detailed
structure, although the latter case does agree better
with Penn's result. For large q this model underestimates
«(q), probably because of the method of adjusting «(q)
at q=0.

The wave number and frequency dependence of the
dielectric function has been obtained for argon and is
displayed in Fig. 8. Only a few values of q were used due
to the amount of computer time required. For fre-
quencies less than E„«(q,ra) is almost independent of
co, justifying the common use of static screening in this
frequency range. Band transition frequencies are
1 = s&/E, (1.3 for argon, and it is in this region that
«~(q, co) passes through maximum, zero, and minimum
values. At frequencies greater than 2.5E„effects of 3p
bands diminish, and «(q,~)=1. Since the lower-lying
bands are even narrower than the 3p bands and lie
about 2—3 E, below the 3p bands, their effects should
not begin until effects of 3p bands have died out. The
3p and 3p, bands are not identical, however, and the
detailed structure in the interband transition frequency
range may be traced to this difference. Near a zero of
«~*(q,&o), p and p„bands will not give zero, and will
dominate the structure. Furthermore, normal and um-
klapp contributions to «~'(q, ce) pass through zero at
different frequencies, so that umklapp effects may
become strong, especially for large q, as shown for
q = 1.5k'. The oscillations are due to competition
between p and p. bands, as well as between normal
and umklapp parts. For q=0.25k' the undamped
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6. -
q = .25 its

——-q = .5kB
q" i 5ks

et cl.,33 who screened the Coulomb interaction with the
Thomas-Fermi dielectric function before performing
the Slater average. The Slater average may be simpli6ed
to33

4-

CF

I.='

-2I

ARGON

I, '! i
LO!

! ( 1.5 2.0
J

'J
u/Eg

t

2.5 5.0 Robinson obtained

'(0) = 1+0»'/0' ~ (6 2)

Vasxs= —6L(3/8x) p]"'(1——,'a tan '(2/a)
+-',a' ln(1+4a ')—-'a'$1 —-'a' In(2+4a-') j}, (6.3)

2k'
V. = — (2k')'D(2kpx)L1 —s8x+-,'x'jdx, (6.1)

0
where

'U(2k') = 04)= V(e)/~(C)

is the Fourier transform of the screened interaction.
Inserting the Thomas-Fermi dielectric function,

FIG. 8. Real part of the dielectric function for solid argon.

plasma frequency is 1.4E,= 18.5 eV, while for q =0.5k&,
~„=17.9 eV. These may be compared to the free-
electron value of a&~= (4vrXe'/m)'12= 16.6 eV.

The imaginary part of e(q, ru) is shown in Fig. 9. The
dominant features are the two strong peaks which are
maxima of the p and p, band contributions, respec-
tively. The zeros of e~(q,ca) which occur there correspond
to strongly damped plasmons. Comparing curves for
q=0.25k& and q=0.5k&, it is clear that this model
containing the three p valence bands and one conduction
band do not satisfy the longitudinal sum rule for
q&0.5k'. To do this it would be necessary to include
more valence and conduction bands in the model, or to
relax the restriction on wave functions that the mea-
sured static limit be obtained. The present approach
contrasts with Hermanson's approach, which was to
eliminate wave functions (matrix elements) by forcing
the sum rule to hold for a two-band model. The
approach in this calculation has been: Given energy
bands and wave functions, 6nd their contribution
independent of any remaining ones (the ones needed
to complete the sum rule), but otherwise make as few
approximations as possible.

I2."
ARGON

IO.
q z 25kB
q* 50ks

where a=qTF/kg=—0.646p 'I'.
This approach to an exchange potential could be

improved in two respects. First, if the exchange poten-
tial is to be used in atoms or in insulating or semi-
conducting solids, a correction to the small q screening
should be made. Instead of approaching an appropriate
finite e(0), the Thomas-Fermi function diverges in this
limit, indicative of a free gas of electrons instead of
bound electrons, and greatly overestimates screening for
small q. A second factor related to this is the absence of
any treatment of covalency or solid-state effects in the
Thomas-Fermi dielectric function.

The dielectric function of the model insulator
developed in this paper does not suffer from these
deiciencies, but on the other hand, calculations using
it in (6.1) would necessitate numerical work, while an
analytic expression like (6.3) would be much more
convenient. In view of close agreement obtained
between this model and Penn's interpolation formula, "
substitution of the interpolation formula should not
cause serious error in a screening calculation.

VII. SCREENED EXCHANGE POTENTIAI S

Since Slater's original proposal" of the p"3 exchange
potential, there have been a number of modi6cations or
alternatives suggested" for it. Some of the proposals
are intended to improve the exchange approximation,
while others attempt to incorporate correlation effects
as well. One of the latter ei7ects was made by Robinson

I' J. C. Slater, Phys. Rev. 81, 385 (1951).~ A recent paper containing most of the references is D. A.
Liberman, Phys. Rev. 171, 1 (1968).

0.
I.O I.05 Il0 I.I5 120 I.25 I.30 I.55

cu/E g

Fso. 9. Imaginary part of the dielectric function for solid argon.

~ J. E. Robinson, F. Bassani, R. S. Knox, and J. SchrieGer
Phys. Rev. Letters 9, 215 (1962), hereafter referred to as RBKS.
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Penn's formula is

e(q) =1+(Pea /E )'FL1+ (Ep/E, ) (q/k p)2F"'] ' (6.4)

where F= 1——Eg/4E p+ 3 (Eg/4Ep)2

and ar„ is the usual plasma frequency. Dining
A = (K„/Eg)F"', 8=4(Ep/Eg)F"',

the Penn screened exchange potential is

6 ' L1—asx+-', x']
~penn= k p dx. (6.5)

0 L1+A'/(1+Bx')')

The integral is not simple, but can be worked out exactly
to give

(1+A')

4 A L28((A'+1) '/' —1)]"'
L(A2+1)1/2 1]1/2 ~n—1

3 L28(1+A')]"' (A'+1) '/' —8
(A'+ 1)"'+8+L28((A'+1)"' 1)]"'—

+lL(A +1)'/'+1]'/' ln (6.6)
(A'+ 1)'/'+ 8—(28((A'+1)"'—1)]"'

3 "' 4 A 1 / 8+1 1 A' 8(8+2)+(1+A')
Vpen. ——6 —p 1+— 3+—

~

tan ' —tan '———ln
Sm. 3 28 8 ~ A A 48'

It should be noted that all the covalent and solid-state
effects of this calculation are brought into this screened
exchange potential explicitly with one additional
parameter E„although these effects enter implicitly
through the procedure used to obtain the interpolation
formula.

One remaining question is the application of (6.6)
to a specific solid. Slater's exchange potential or (6.3)
can be made local in the usual way by letting n be a
function of r. fn the case of (6.6) there are two adjust-
able parameters to deal with: n and E,.The former could
be treated as before, while the latter parameter could
be determined from experimental observations of the
minimum or average gap characterizing the solid.
However, the important point for the screening calcula-

3.0-

SLAYER

2.0 .

l.5

tion is that e(0) be reasonable. Since e(0) is determined
in Penn's model by both n(r) and E„as e varies, e(0)
will also vary, with the result that at some 6nite
densities there turns out to be no screening at all.
This unphysical result can be avoided if n and E, are
both taken as functions of r, E,(r) being determined
by the condition that the correct e(0) always be
obtained for a given m(r). This approximation, which
is analogous to Phillips's treatment of n and E, on an
equivalent basis, might be described as a local semi-
conducting electron-gas approximation.

A comparison of Slater's exchange, the RBKS
exchange, and exchange calculated with Penn's formula
is shown in Fig. 10, as calculated for parameters
appropriate to the chlorine ion in a cesium chloride
crystal. The effect of screening is evidently strong;
Thomas-Fermi screening, as expected, produces the
greatest reduction in the exchange potential. Both
screening methods reduce the Slater exchange potential
everywhere, but especially important is the reduction
in the tail of the chlorine exchange potential. While
Penn s dielectric screening is more moderate at inter-
mediate distances from the chlorine nucleus, choice of
one of these local exchange potentials over another
must await numerical calculations in a full band calcula-
tion. Whether a clear choice can be made even then is
not certain.

t.o

0
0

r (a.u. )

I

8.
I

IO.

PIG. 10.Screened exchange potentials for the chlorine ion in CsCL

VIII. CONCLUSIONS

The model insulator proposed in this paper has
proved capable of yielding the static dielectric constant
of real insulators when band parameters are properly
chosen. Results for the dielectric function at 6nite q
and cu appear to be reasonable and, at zero frequency,
are in essential agreement with the interpolation formula
proposed by Penn to ht his numerical results for semi-
conductors. In evaluating the dielectric function for



179 D I ELECTRIC FUNCTION OF MODEL I NSULATOR 905

the model insulator it was found that for q) k~ umklapp
contributions, as defined here, were more important
than normal, while for q&kg the reverse is true.

Dielectric screening using this model produced
screened exchange potentials which were intermediate
to the completely screened results of RBKS and the
completely unscreened exchange potential of Slater.
However, it is very diScult to select one exchange
potential over another, since this choice may be decided
only after a complete band-structure calculation.

The model could be improved in several respects,
especially by including higher conduction bands. In
this way the longitudinal sum rule could be satis6ed.
At present the limited knowledge of conduction bands
in insulators does not warrant the added complexity in
this simple model, although free-electron bands could
probably serve as a simple approximation to the higher
bands for this purpose in many cases.

APPENDIX

The integrals needed for evaluating matrix elements
with the wave functions Uo and U& de6ned by Kqs.
(3.15) and (3.16) may be worked out exactly to give

27
jp(&r) Up(r)r'«= Lp (2v)'j"'

(~p+ p 2) 2

f jp(qr) Up(r) Ug(r)r'dr
0

(2v)' (26)' "'2L3(v+6)'—q'j

2 24 t (y+5)'+q')'

(»)'L(»)'-q'j
jo(q )I U ( )I' 'd =

0 L(2h)'+q'1'

ACKNOWLEDGMENTS

The author wishes to thank Professor J. Callaway
for suggesting this problem and for his advice and
support during the course of the calculations. The
author also benefited from conversations with R. K. M.
Chow and A. K. Rajagopal.

j ~(kr) U, (r)r'dr=
(25)'- "' 8bk

24 (P+P&) P

2 (28)Pq'j p(qr)
~
Uq(r) ~

'r'dr=
L(2g) PyqP]4


