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changes in interplanar spacings calculated with vibra-
tional effects taken into account) increase rapidly with
temperature; equivalently, one can say that thermal
expansion is greater near the surface than in the bulk.
Second, anharmonicity already causes a substantial
increase in the surface mean-square amplitudes at about
half the melting temperature.

Since both of these effects should be observable by
means of LEED, it would be interesting if LEED
experiments (on metals or other monatomic materials)
could be carried out over a wide range of temperatures
to determine the importance of anharmonicity and the
dependence of the mean atomic displacements upon
temperature.

The method of molecular dynamics used here has
two important advantages for surface calculations at
temperatures above the Debye temperature, in that
both anharmonic effects and mean displacements are
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taken into account completely. Below the Debye tem-
perature zero-point vibrations become important, and
the classical approximation consequently breaks down.
But the method described in I is most applicable at
low temperatures, since this method involves the
quasiharmonic approximation and the approximation
of using the static, rather than dynamic, displacements.
In this sense, therefore, molecular dynamics and lattice
dynamics are complementary methods of investigation.
Both methods have considerable potential for theo-
retical studies of the structure and dynamics of crystal
surfaces.
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A wave-number- and frequency-dependent dielectric function has been calculated for a model insulator
using the random-phase approximation. The model insulator consists of a free-electron conduction band
represented by a single orthogonalized plane wave (OPW) and a valence band represented by linear com-
binations of ionic wave functions. All energy bands are assumed parabolic and isotropic. Numerical results
are obtained for Ar, KCl, CsCl, MnS, and Si, in reasonable agreement with previous calculations. Screened
exchange potentials have been obtained by using an interpolation formula, and evaluated for the chlorine

ion in CsCl.

I. INTRODUCTION

HE dielectric formulation!? of the many-body

problem has been found especially attractive in
solid-state physics, since it uses mathematical and
physical concepts known to most solid-state physicists,
and interprets solid-state systems in terms of familiar
quantities which are accessible through experiment.
Aside from its use in various schemes for calculating
correlation contributions to ground-state energies,® the
dielectric formulation has been used to understand
energy loss by fast electrons in solids,* plasma energies,
and optical properties®® of solids. In addition, the
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dielectric formalism has been used extensively to study
properties of the electron gas,! and quasiparticle® and
collective!® excitations of an electron gas containing a
single point-charge impurity. Recent calculations have
considered more carefully effects of the Pauli exclusion
principle.’'? The formalism has also been used in band
theory to develop a theory of self-consistent screened
pseudopotentials for semiconductors!® and more recently
to develop a theory of the covalent bond in crystals.!*

Application of the theory centers around calculation
of the dielectric constant tensor ¢(q,w) as a function of
frequency and wave vector for the many-body system
under consideration. Longitudinal or transverse compo-
nents of e(q,w) have been calculated in various approx-
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imations for the uniform electron gas,® uniform electron
gas with a point impurity charge,®!! superconducting
electron gas,”® an isotropic model semiconductor,” a
model insulator,!8 and a few real solids.®:7:1%%

An exact expression for the dielectric response func-
tion of an electron system exists, but it relies upon
knowledge of exact many-electron wave functions. On
the other hand, useful approximate expressions have
been developed requiring knowledge of only single-
electron wave functions.

The purpose of this paper is to report a random-phase-
approximation (RPA) calculation of the wave number
and frequency dependence of the complex longitudinal
dielectric constant for a model insulator. The model
used is different from the one used by Hermanson in
calculating exciton levels of argon,'® but similar in
some respects to the model semiconductor of Penn.!”
The model insulator is discussed in Sec. II.

The RPA for the longitudinal dielectric function of a
solid is given by*

47e?

Vg? xiv

|(kZ| =507 | k+q, )| 2 (et q —1ct)
Eiqv— Ey,— ("-"‘I"ia)

¢y

where /' is the band index for Bloch state with momen-
tum k+gq, energy Fiiqr, and occupation number
x4 q,1, and similarly for . The quantity & is an infinites-
imal positive real number, arising from adiabatic
boundary conditions used to derive (1), which specifies
how to handle singularities of the denominator. V is
the volume of the crystal. This differs from the corre-
sponding expression for the uniform gas in two respects:
the presence of Bloch matrix elements in the numerator,
and occurance of energy bands in the denominator, as
indicated by the band indices Z, /'.

The reduced zone scheme is used, in which all wave
vectors are referred to equivalent vectors in the first
zone. The sum on k is over all vectors of the first zone,
and the vector k+q must be reduced by a vector of the
reciprocal lattice if it falls outside the first zone. In this
paper, terms of this type in the sum are referred to as
umklapp contributions.

At zero temperature the occupation numbers 7y,; are
zero for conduction states and 1 for valence and core
states. In what follows, only frequencies small compared
to typical core-conduction-band transition frequencies
will be considered; in this region of frequencies the
contributions to e(q,w) involving core states will be
constant, so that attention will be focused only upon
valence contributions to (1).
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F16. 1. (a) Energy bands of CsBr inferred by Phillips (Ref. 28),

and (b) approximate energy bands used in this model. Kp is
the radius of the spherical zone.

II. MODEL INSULATOR

It has been noticed™® that e(q,w) is not especially
sensitive to the particular form of matrix elements used
to evaluate Eq. (1). In addition, since behavior of all
electrons in a band determine e(q,w), one might hope
that some simple model such as the one used by Penn!”
could be successful in predicting the general structure.
However, the model used by Penn for semiconductors
contains an unphysical density of states at the Fermi
energy, and, in addition, the wave functions are plane-
wave-like throughout most of the Brillouin zone. Thus,
another model is sought for insulators which has a
more physical density of states and has wave functions
for electrons in the valence band more appropriate to
an insulator.

Real solids which motivate this study are alkali
halides and solid rare gases. Few complete band-
structure calculations have been performed for these
solids; some of the better calculations in this group are
for KC1,22:23 K1,24 Ar,25:26 and CsI.?” Phillips has deduced
band structures for a number of these insulators from
optical data, and, roughly speaking, they are typified
by narrow valence bands and broad conduction bands
separated by energy gaps of 6 to 10 eV. The top valence
bands are derived from 7 states of the halide ions, while
the lowest conduction bands are composed mainly of
ns states of the alkali ions. The halide #s bands usually
lie several volts lower than the #p bands. Valence band
widths as a rule are much less than the minimum gap.
This situation is illustrated in Fig. 1(a), which is the
band structure of CsBr deduced by Phillips.?® Although
recent calculations?4?’ indicate that d bands may lie
lower in the conduction bands of the alkali halides than
was presumed by Phillips, this considerable complica-
tion will not be included here. With the other features
in mind, however, the following model insulator is
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proposed :

(1) a single conduction band composed of electrons
represented by single OPW’s occupying a broad para-
bolic energy band;

(2) a valence band composed of tightly bound
electrons represented by linear combinations of #pa,
np,, and np,, and ns atomic orbitals occupying narrow
energy bands;

(3) with np and s valence bands separated from each
other and from the conduction band by finite energy
gaps.

A sketch of the energy bands of this model is shown in
Fig. 1(b). Although a model is sought for cubic crystals,
it is necessary even in this case to make simplifying
approximations to energy bands and wave functions in
order to keep calculations within reason for a model.
Absorption spectra of alkali halides show much stronger
exciton structure than do semiconductors, so that the
RPA may not be as accurate in the former case as it
is in the latter. However, the RPA for this model is
sufficiently difficult so that no corrections to it will be
considered here. The difficulties lie in the complicated
three-dimensional principal-value integrals which occur.
These difficulties can be overcome by making the
ansatz of spherical isotropy for all the energy bands,
in which case all integrals may be reduced to one-
dimensional integrals without principal-value restric-
tions. On the other hand the p-like character of the
valence bands can be retained in matrix elements with
only moderate difficulty in what follows.

Wave functions for valence bands in the tight-binding
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scheme are given by the Bloch sums

1
¢s(k) =W Z, eik'R’Ua(r— Rv) 3
. (2.1)
Vomll)=—2 2 X MU n(r= Ry,

where the sum is over all V lattice vectors R, at which
wave function U, and U,,» for the s and p ionic states,
respectively, are located; m is the azimuthal quantum
number for the free-ion p state. The single OPW for
the conduction band is obtained by orthogonalizing a
plane wave to all the lower valence and core states

¢c(k)=e"‘"/\/V—lZ pn(Kin k),  (2.2)

where ¥, (k) are Bloch functions for the valence and
core states, and ui»(k) are the usual orthogonalization
coefficients, given by

N\ 1/2
uim (k)= <—> /eﬂ"'ll/lm*(r)dv-
V

Taking isotropic energy bands of the form
E.(k)=alk[?,
Ly (k)= Epn’ — Epn| k|2,
E,(k)=E"—E,|k|?,

converting the sum on k to an integral over the Brillouin
zone, and writing out the sums on / and /', (1) becomes

(2.3)

|Wom (k)| e e (k+q)) | 2d%

4re: 2 1
e(40) = 14— ‘z[

¢ (2n)3 lm=—1LJ g, (a+ E pm)k?+2kga cosf+ag?+ E,— (w475)
+/ [@We(k) e " [Ypm(k+q))| 2 d% ] / [@as(k)[e 0 v |y (k+aq))|* d%
Bz (@t Epm)k2+2kqE 5 c0S0+E pmg?+ Ej+w—18 Bs (0t E.)k2+2kg cosb+ag?+E,s— (w+-16)

Here E, and E,, are minimum band gaps between p-
valence bands E,.»(k) and conduction band E.(k), and
s-valence band E,(k) and conduction band E.(k),
respectively, and 6 is the angle between k and q.

At this point one is faced with the necessity of finding
an appropriate set of wave functions for core and
valence electrons in order to evaluate matrix elements of
e~" 7 A straightforward but laborious way is the
numerical method of Azuma.” However, since interest
here is in a model which hopefully will give results for
a class of insulators, wave functions with adjustable
parameters are chosen in order to reduce the amount of
labor involved in the integrations. A form is chosen
which yields analytic expressions for matrix elements.

[(@e(k) [e~i0 7|y, (k+q))|* d%
s (@t E)k242kqE, cosb+ E g+ E ys+w—16

In thissame spirit a further simplification of the calcu-
lation will be made. Instead of the actual Brillouin zone,
a spherical zone with the same volume is employed:

$mhyt= (2m)°/Q,

where Q is the volume of the Wigner-Seitz cell, and k5
is the radius of the spherical zone.

III. MATRIX ELEMENTS

In this section, matrix elements of ¢~%'F are worked
out for arbitrary OPW and tight-binding wave func-
tions. Parametric wave functions are introduced to
evaluate the final results. Proper normalization factors
are included after the matrix elements are obtained.
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The result for matrix elements of e=%'* using a single OPW and a tight-binding function is

1 ‘,\,7 1/2 .
Yimliolemsrtlyeler= (NV)2 zy: /e—ik'x' Un*(r—R,)e 0 e 1aV— lzm<—l;> [/e'k Ui (Y :I

1
X—3 [e %Rl (r—R,)e 0™ Ry, (r—R)AV.  (3.1)
N w

Retaining only one center integrals, this simplifies to
8m3 N\ V2
@l v =(5) stramiof [errvnon
- ei(kﬂ)"U*p,,,:(r)dee—"q"l/’;,,.*(r)Uz',,,;(r)dV] . 3.2

Um’

Introducing the notation

Ly (q)= /e’i‘l"b'lm* (D) Uy (1)dV, 3.3)

[@im(K) [0 7 [Ye (k@) | 2= (8°/Q) [ ptrm* (K) 1 (K) —m*(k)lz prrme (k@) v me (@) — 1m (k)

" m!

X Z l‘*l'm' (k+ q)I*lm,l’m' (q)+ Z E ﬂ*l’m’ (k+ q)

Um’ Um’ U'm’

Xparrrmee (k@I *im, 10 me (@ 1,0 (@) ] (3.4)
A similar calculation gives

[ (¥ (k) l et [P (k4 q))! 2= (87 /D) uim* (k+ Q) ptrm (k4 @) — p1m (k+ Q)llz:’l‘*l’m’ ()1 me,1m(q)

-,Ulm* (k+ Q)IZ M m? (k)I*l’m’,lm(q)+ Z Z l‘*l’m' (k)
Tt )

‘m! U m!!

Xﬂl"m”(k)ll'm’,lm(q)I*l”m”.lm(q)]' (35)

The integrals for uim(k) and Iym,ivm (q) may be simplified by using the spherical harmonic expansion of e
thus,

N 1/2 © 1 0 T 27
m'm'(k)=(*l;> Xdm 22 i 2 Vin*(Or,e) / Jikr)Un*(r)r*dr f / Vin(8,0)Y 1 m (6,6) sinbdbde,
0 0 0

=0 m=—1

where U*(r) .is the normalized radial part of the atomic orbital with angular momentum /; 6, and ¢; are the
zenith and azimuthal angles of the wave vector %, and 7;(kr) is a spherical Bessel function of order /. Simplifying,

N
P

1/2 0
m,m/(k)=47r(;) Y 1 (0o / Je U (. (3.6)
Similarly, ‘

1

Izm,um'=4vrl§0(—i)"’ Py Y*wm"(f)q,qsq)f Je (@)U U (r)r*dr
0

mtr—l
T 27
X / / Yt mir 08V e (0.8)Y 1n* (0,6) sin0dds, (3.7)
0 0

w.here 0, .and. ¢, are the zenith and azimuthal angles for wave vector q. The various angular relationships are
pictured in Fig. 2. The angular integral is given by

2"+1)(2r+1)

L 27
/ / Yl" m'’ (0;¢) Yl’m’ (0:¢) Ylm* (0)¢) 51n9d0d¢ = [
o Jo 4w (204-1)

1/2
] Um"'m’ | lm) X (1'100]10),  (3.8)

where the last two terms are Clebsch-Gordan coefficients in the notation of Condon and Shortley.?® Only s and
® E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1964).
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p core and valence states are considered here, so ! and I will be either zero or 1. For these states, three separate

cases arise: =0, I'=0, or I=/'=1. In these cases, one has

Too,vm (@)= (47)Y2(— )" Vi e (00s%0) / Gu(gr)Uv (n)Uo* (r)ridr,
0

Iim,00(q)= (47l')”2(—i)lY1m*(9q,¢q)/ Gilgr)Uo(r) U *(r)ridr,

00

Ilm,lm’(q)=5m1m/

0

Evaluating Cebsch-Gordan coefficients for m=0, =+1;
m'=0, 31 yields results in terms of integrals of products
of radial wave functions. Due to the angular dependence
in these terms, e(q,w) will not be isotropic even for the
isotropic energy bands of this model. In order to
simplify considerations here, it was decided to evaluate
e(q,w) in only one direction: ¢ vectors along the z
axis of the crystal, corresponding to a longitudinal
probe propagating along the (001) direction. Other
directions could be done without great difficulty, but
Nara’s® calculation for silicon suggests that this is
probably not a bad average over directions, if an
average is desired for a screening calculation, for
example.

Equations (3.4) and (3.5) include all core states,
even if matrix elements are desired only between conduc-
tion and valence states. Hence, in this model of an
insulator, valence and core states affect e¢(q,w) in two
different ways: directly through transitions at a
frequency w=E,—E, and indirectly via the OPW for
the conduction states. Effects of core states are neglected

[ @10(k) [e=%°7 |y (k+-q)) | 2
+2 cosB/

8r3\212x N
= <——> [cos20
Q V

* 2 cosf(| q|+ | k| cosb)

/ ) J1kr)Ur(r)r2dr

£

X / Fo@) Vo) Ur ()t
0 |k+q|

X [ / Jolgn) | Us(r)| *r2dr—2 [ Fa(gn | UL ()] 2r2(lr:l+

" * 2(al+ K| cos)

/W JolgnUo(r)Ur(r)ridr

|k+q|

X/ ]'O(QT)Uo(f)Ul(r)ﬂdr[/w
+(|‘1|2+2|QI | k| cos6+ | k|2 cos?6)
|k+q|?

ST / (kb ql ) Uo(r)rdr /
7o(gr) | Us(r) | 2r2dr— 2/

/j1(|k+q|r)b'1(r)r2dr

3.9

Golgn) | Us(r) | 2r%dr (87) Y2V *s, o (00,4) (21m— mi'm | 1m) / 2| U(r) |22
0

in the present calculation. This means that e(q,») will
be correct only if core states lie much lower in energy
than valence bands, and then only for frequencies small
compared to core-conduction-band transition fre-
quencies. Thus, in insulators like the alkali halides, only
the ns and np valence bands are treated. Angular
dependence of matrix elements for these valence bands
may be written out by expressing all angles in terms of
the angles of the vector k, measured with respect to the
2z axis of the crystal in order to facilitate calculation of
the sums for e(q,w). The following identities are used in
this case:

|k+q| sinfiiqc=|q| sinfy,

|k+q| cosfisqx=|k|+|q| cosby,

|k+q| sinfxyq.q= | K| sinby,

|k+4q| cosfiq.q=]a|+ | k| cosby,
Prrq=Px-

The matrix element for the p, band, which is identified
by I=1, m=0, is

(3.10)

jl(kf)Ul(f)err/m jo([k—*—qlr)UO(r),ﬂd’,

0

00

N Us(rdr / A(lkt-a)) Usr)redr

0

2

/ ol kt-a| ) Ua(r)rdr

£

J1(|k+q|r)Us(r)ridr

00

J2lgn) | U1r(n) | 21’2dr:|

0

2

X[ / Jo(gn | Ur(n) [*ridr—2 / j2(qr)ll/’1(r)12r2dr]]. (3.11)
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For the p. and p, bands, the result is simpler, since the s-valence states drop out

l(‘l/ll(k) | e_iq'rhh(k_*_ q»l 2 83\ 127
= @11 (k) [ e 7|y (k+q)) | 2= (?{)7 sin’ {

x f " ) U1<r)r2dr[ / jola) | Us(e) 2redr+ / jalen)| Ul(r>|2r2dr]+
0 0 0

/ T ) Usrr

2

2|k| =

A(lkta| DU ()rdr
|k+q| / ' '
2

|k|?
|k+q|2

/ ([ k+q|n)Us(r)ridr

x[ j o@D | Us() |+ / j2<qr>lvl<r>|2r2dr] } (3.12)
0 0

Similar expressions obtain for matrix elements

Well) [ e~ [Y1m(k+0q)).

These matrix elements are taken with wave functions
which have not been normalized explicitly, so normaliza-
tion must be obtained. For the valence tight-binding
wave functions

/\blm*‘pl’ m’dv

1
=—3% [ e RUL*(1—R,)e* B Uy, (1— R,)AV
N w’

=Z e‘k‘R"/ L"vlm*(r) Ul’m’(r—' RV’)dV

=14+ e‘*‘R"/b’lm*(r) Uvm (r—R,)dV. (3.13)
v'7#0

Neglecting overlap integrals, the tight-binding Bloch
functions are normalized if the atomic wave functions
are normalized. The OPW’s are normalized by the
condition

A’/lrﬁopw(k)l V=1,
which leads to

VA= (=32 ). (3.14)

Orthogonality of conduction and valence-band wave
functions is also important in the present calculation.
If they are not orthogonal, an incorrect long-wavelength
limit is found for e(qw). If the orthogonality integral
is not zero, matrix elements of e=%¢ % approach a constant
as ¢ approaches zero, and (1) diverges like |q|=2
indicating metallic behavior. However, choice of an
OPW for the conduction band assures orthogonality,

[ k) | ey (k+q))|?

N (8w3

and the matrix elements approach a constant times
|q|, as q approaches zero, and e(qw) obtains a finite
value, as it should for an insulator.

There remains only the choice of wave functions for
the valence bands. Two parametric radial wave func-
tions are chosen:

Uo(r)=[3(2v)*] e (3.15)
for the s band, and
Ui(r)=[(268)5/24 ] 2re—57 (3.16)

for the p states. These wave functions represent the

X

F1c. 2. Angular relationships between k, k+q, q and r.

radial part of the atomic wave functions which compose
the Bloch sums, and are properly normalized. Methods
of determining the parameters & and v will be discussed
later. With these wave functions, integrals needed for
the matrix elements of ¢=4'T can be obtained and are
tabulated in the Appendix.

Inserting these integrals in (3.11) and (3.12) gives

] 2
= |<¢1—1(k)Ie""‘"!%(k-i-q»l2=—V—<—Q—) sin® (20)"k?{ (8+k%)~0—2[ (8*+k*+¢*+2kg cos6)? (624 k2) ]

X (20)°0(28)*+¢*T*+ (8*+k*+g>+ 2kq cos6)—5(28) 2[ (28)+¢* T}, (3.17)
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[ao() [0 [ Ye (k@) |

N /873\ 2 (2(268)"k? c052¢9i (26)8(26)% cosf [B(v+6)2—¢*] k cosf(g+k cosb)
B 477(?) [ A (PR gt 2kq cosf)2(32+E2) [(v+8)1Hq7]0 (8- ko+q2-+2kg cos6)d(52+42)?
[(26)2—5¢%] (26)8(26)° 1 [3(y+9)2—¢*]?
X 4(26)7(26)8 + -
[(26)24¢2]*  (8*+k>+q2+2kg cost)* 8 [(v+6)*+¢*]
(g+F cosb) [(20)*—5¢*1[3(v+8)*—g*]

(5 g+ 2kg cosb)2(3*+k*+ g+ 2kq cos6)? [(20)*+¢7] [(v+8)*+¢°T°
(g2 2gk cosb+k? cos?0) 2(26)'5[ (28) — 5¢°7?
A cosf-+k* cos®) 2(26)"°[ (26) — 5¢*] . 618)
(6*+k*+2kq coso+¢*)°*  [(20)*+¢* ]

In alkali halides and rare-gas solids the #s bands are well separated from zp bands, so they will not be included
in the numerical calculations which follow, in order that a substantial simplification of angular integrals can be
made. Neglect of ns valence bands will be felt most strongly in the OPW normalization factors and in the OPW’s

themselves through effects of orthogonalization.
Neglecting s-band effects and normalizing, the result for the p, band is

. N /8w%\? N (26)7k? 71| (k?cos?0—2kq cosb+¢?) 2[(26)2—5¢%]
[ (W10(k— q)le‘"‘"l%(k))l224”;(}?) 2(25)7[1_87 (62+k2)"I { (824 k42— 2kg cosB)®  (52+£2)3
y (k2 cos?0— kq cosB) (26)8 . 12[(26)"’—5(12]2 k2 cos?f ]  619)
(0 k2 g*— 2kg cos)[ (28)+¢7TF [Qa)+¢T (ADs
. N 873\ 2 N (26)k? 771 ( k2 cos?+2kq cosf+¢*
I<¢‘(k)le_m'w‘°(k+qm2=47<f> 2(25)7[1_877 (62+k2)6} ’(62+k2+q2+2kq cos6)®
3 2(28)5[(26)2—5¢*] (k2 cos?0+kg cosﬁ)+ 2 12[(2¢S)2~5q2:|2,1’a2 cos20] . G.20)
(82+k2)°[(20)*+¢*]* (8*+k*+2kg cosh)® L(28)2+¢*T#(6*+k2)"

Matrix elements needed for p, and p, bands are

) - e N /873\ 2 S 20[1 g N (28)k% 7! 1
| @n( —q)le [¥.(k)|*= 7";(?>( )k sin 4 I [(62+k2+q2

V (824k?2)8 —2kgq cosb)®
(28)° 2 1 (28)12
nd LQOMHET (= 2kg cos) () (3" [(26>2+q2]°} -
a
[ e (k) [ r [Yn(k+ Q)>12=4W§(§ﬁ)2(25)7k2 Sin29[1“87r£ Sl :\—1{ :
AN Y V (824k2)8 (8*+k*+ g2+ 2kq cosh)®
— (28)° ’ + : o™ } . (3.22)
[(20)24¢2 (84 k24 g2+ 2kg cosb)3(824k2)3  (82+k2)8 [(26)%+¢2]°
A transformation has been anticipated in (3.19) and IV. SUMMATIONS

(3.21) to remove angular dependences from the OPW
normalization factors. This transformation makes it dielectric function have now been obtained, so there

possible to do principal-value integrals over ax}gles remains only the sum over states in the first Brillouin
exactly and avoid the difficulty of numerical principal- , 16 to be performed. This sum has been changed to
value integrals. A corresponding transformation must an integral using the spherical-zone approximation.
be made in energy denominators when using trans- It is further assumed that the p, and p, bands are
formed matrix elements. degenerate throughout the zone with reciprocal effective

Necessary ingredients for computing the RPA
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mass 2Ey;, while the p, band has reciprocal effective
mass 2E5o. No splitting of the p, band at £=0 has been
introduced, although it is a simple matter to do so.
The small spin-orbit splittings for insulators under
consideration here do not merit introduction of yet
another parameter into the model.

In order to remove complicated angular dependence
from the OPW normalization factors in matrix elements

of the type (¢»(k)|e~*¢"*|¢.(k+q)), the following trans-
formation is made on k:

k'=k+q. (4.1)

Limits of integration are then determined by the
conditions

0< |k|2<ky?, |k'—q|2<ks?, 0
0< K[+ |al—2 K || cosp<tsr, P
where cosf is the angle between k and q. Thus
k/ Q_F 2__k 2 k/ 24_ 2
_IKIlak e
2|k'[ | qf 2|k'[ qf
—1<cos0<L1

2

but
(4.3)
is the requirement on cosf, so limits on the angular
integrals must be determined from simultaneous re-

quirements (4.2) and (4.3): cos# must lie between
+1, X, and X,. For the case ¢<k3

k'=kp+q, for
k'=kp—q, for cosf=-—1.

cosf=1
(4.4)

This region of integration is shown in Fig. 3(a). On
the other hand, for ¢> £, the only possibility is cosf=1,
and k'=g-+kg or k'=g—kp. This region of integration
is shown in Fig. 3(b).

dre 2
Ree(q,w)= e1(qw)=14+—
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cosB
11

0

cos®

+1

|
[K'=k+q

q kg=q kg kgtq q-kg kg @ kgtq
q>kg
X

I'1c. 3. Normal (N) and umklapp (U) regions of integration
for different values of ¢.

It is interesting to determine separately the contribu-
tions to e(q,w) from normal and umklapp processes.
Umklapp terms arise for |k=+gq|>%s, in which case it
is necessary to subtract a reciprocal-lattice vector to
bring k+q=Kk’ back into the first zone. In terms of
the variable k’, normal processes occur for |k’| <ks,
while umklapp processes come from integrals |k’| > 3.
These regions are indicated in Figs. 3(a) and 3(b). For
integrals over untransformed matrix elements, normal
and umklapp contributions may be separated by
defining

cosfy= (ks’— |k|*—|q|?)/2]k|[q|.  (4.5)

Normal processes occur when |k+-q|2<%kg?, umklapp
when |k+q| > %% Thus, the two regions of integration
are —1<cosf<L cosh,<1,
—1<cos,<cosb<1, for umklapp.
This is illustrated in Figs. 3(c) and 3(d).
For the purpose of numerical calculations it is

convenient to separate real and imaginary parts of
€(q,w). Including transformation (4.1) where needed

for normal

{P/ l<‘/’10(k~q)|e"“‘"|¢c(k)>)2d3k+/ | (k)| €07 Y10 (k+q))| 2d%
¢* (2m)? Ba/ E.(k)—Ep(k—q)—w Bs

E.(k)— E1o(k— q)+

+2P/ | @ar(k—q)|e=a°7 ]y (k)| "k
Bz’ Ec(k)—Eu(k— q)—-w

and
8mle?

Ime(q,0)= ex(q,0)=

(k)| ey 2d3
2/ [We(k)[eiar [y (k+q)>ldk]

4.6
E (k)= En(k+q)+w (*6)

{,/ [ Wro(k—q) [ 7 | Yo (k)| 6L Eo (k) — Ero(k— q)— w]d%
(27")342 Bz’

+2 [ | (k) =507 (k)| 25[Ec<k>~Eu<k—q>—w]d3k} . @

where P indicates principal value of the integral is to be taken.

V. LONG-WAVELENGTH LIMITS

are

1
i — 1 (k=)0 ly. )=

Expanding matrix elements in powers of ¢, the long-wavelength limits may be evaluated. The limits of interest

36k* cos?0 sin20

G (5.1)
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and

1 . . ko)1= 1 |‘1 6k2cos"‘0:|2 (5.2)
lqlirlo;;I('Pm( —q)| ety (k) —(52+k2)°l_ (82+%2) : ’

Inserting (5.1) and (5.2) into (4.6) and separating the different band contributions,

148 X®X [ 1 1 ]

&*(0,0)+ &¥(0,w)= AP/ —

+ (5.3)
o 5 (AX)L(AFA)XH1—W  (A+A)X+H1+W

2X%UX [ 4Xx? 36 Xt* ]

elc(O,(‘..>)=AP'/-1 1— +—
o (AMXDL (A4X?) 5 (A%+-X?)

1 1
x[ + ] (5.4)
(AcAADX2H1—W  (A+A)X2H1+W

where the following transformations have been made:
X= k/kB , AcEakB"’/E, 5 A= A,,EEusz/Ea ,

(5.5)
WE“’/EM AzEElosz/Ep, A= 6/kB.

Here

g

The physical meaning of these new parameters is clear from the defining equations: X, and Aaremomentarelative
to the momentum at the Brillouin-zone boundary; A, is the ratio of conduction-band width to the band gap;
A., Ay, and A, are ratios of valence-band widths to band gap; and W is the frequency measured in units of the
gap frequency.

At zero frequency the principal-value restriction may be relaxed, and the integrals for the real part of the static
dielectric constant are simple:

=(O)+ ar(0)= A / e G (5.6)
5 Jo (M%) (A 4A)x+1
1 452 36 x4

' (0)=2 A fo “:1—— (Az+x2)6+? (A2+x2)2]2x2dx / A+ [(A+A)e+1]) . (5.7)

Similarly evaluating integrals for e:(q,») by using properties of the Dirac § function,

£(0 )_ [ (W_l)(Ac+Az)5 r1—8 N (ZA)7(W‘1)(Ac+Az)5II}
<O ety et —1L ¥V Tt Ay w—1T
4(W—-1) 36 w-1 2
[1— =—( ):]n(W-l)n(Ac+Az+1—W) (5.8)
d Az(Ac+Az)+W—1 S Az(Ac+Az)+W’_1
o 448 DALY [N QA W—D@ackA)T
€% (0,w)+ ¥ (0,0) = — 1—8r— I
(At2)12 5 [A2(Ac+A)+W—1TL v [A2AA+A)+W—1T
Xa(W—1n(AcA+A+1—W), (5.9)
where VI. NUMERICAL RESULTS

7(x)=0, x<0 N .
n()=1, x>0. In this section parameters for the model are obtained
- for several insulators as well as one semiconductor.
These limits are useful in helping to determine param- Numerical results for the dielectric function of this
eters of the model and in checking calculations with the model are then compared with previous calculations,
more complicated expressions. where available.
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TaBLE I. Band parameters used for calculation
of e(q,w) with this model.

Cell

volume Ga,p Bandwidths (eV)
(au.) (eV) P, P, Conduction ¢(0) 8/kg®
CsCl 386 7 0.60 0.60 1.5 2.70  1.637
KCl 4183 940 0.70 200 4.10 2,13  1.609
Ar 250 13.3 0.20 0.60 270 1.70 1.820
Si 275 (1.0) 3.2 10.0 1.4 11.0 1.595
(4.0) 1.575
MnS 237.5 6.2 1.0 1.0 3.0 6.8 1.613

s kg is the radius of the spherical zone.

Motivation for this model has been the alkali halides,
for which a typical band structure is given in Fig. 1,
along with the present model approximation to it. The
final model may best be described by its parameters:
Q, kg, a, Eio, E11, E,;, and 4. Q is the unit cell volume,
which is related simply to the lattice constant through
the crystal structure. k5 is the radius of the spherical
zone, which is determined by Q. a, Eyo, and E;; are twice
the reciprocal effective masses for conduction and
valence energy bands, which are assumed parabolic
and isotropic throughout the zone. E, is the minimum
gap, assumed to lie at £=0, and § is a parameter in
the valence-electron wave function which, roughly
speaking, indicates the degree to which electrons are
bound to individual ions. Thus, in this simplified model
with seven parameters, there are six independent
parameters which must be determined. Of these six
parameters, five are found from experiment: o/E,,
E\/E,, E\\/E,, E,, and Q. Q has been calculated using
lattice constants derived from x-ray analysis, while
the others have been obtained from optical measure-
ments. There remains one parameter not readily access-
ible to experiment, the valence wave-function param-
eter 4.

This parameter could be obtained by a best fit to the
appropriate free-ion wave function; by a variational
calculation using a pseudopotential for the free ion;
by requiring that the longitudinal sum rule be satisfied

HERMANSON'S MODEL
PENN'S MODEL
THIS MODEL

F16. 4. Zero-frequency dielectric function for solid argon.
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F16. 5. Zero-frequency dielectric function for KCI.

using only the p bands and one conduction band; or by
requiring that e(q,w) obtain the measured static dielec-
tric constant in the appropriate limits. The latter
method has been chosen for these calculations.

The following insulators were examined with this
model : CsCl, KCl, Ar, and MnS. In addition, the model
was tested for one semiconductor, silicon. All necessary
parameters were obtained from Phillips’s analysis of
ultraviolet absorption of insulators,2® or from band-
structure calculations.* Characteristic parameters for
these solids are listed in Table I.

Argon, the insulator which is probably best described
by this model, is discussed first. The static dielectric
constant was obtained from Egs. (5.6) and (5.7) by
iterating until A yielded the proper result for ¢(0).
This result should be the optical dielectric constant,
n*=1.70, since the model describes only electronic
contributions to e(q,w). For the parameters listed in
Table I, A=1.82 gave this value. Numerical calculations
of e(q) with the full set of parameters produced results
shown in Fig. 4. Hermanson’s'® dielectric function for

TaBLE II. Normal and umklapp contributions to e(q) for solid
argon. The total e(qgJ is 14+-e¥(q)+€V(q).

q/kB Normal Umklapp Total
0 0.700 0.0 1.700
0.05 0.690 0.009 1.699
0.10 0.675 '0.020 1.695
0.15 0.656 0.031 1.688
0.20 0.635 0.041 1.677
0.25 0.610 0.051 1.661
0.30 0.584 0.062 1.644
0.35 0.555 0.071 1.625
0.40 0.524 0.080 1.602
0.45 0.490 0.088 1.578
0.50 0.457 0.096 1.553
1.00 0.155 0.071 1.227
1.50 0.019 0.088 1.108
2.00 0.0 0.042 1.042
2.50 0.0 0.016 1.016
3.00 0.0 0.010 1.010

% J. Callaway, Energy Band Theory (Academic Press Inc.,
New York, 1964).
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F1G. 6. Zero-frequency dielectric function for MnS and CsCl.

argon is shown on the same graph, and, although the
static limit for this model was adjusted to be slightly
different from Hermanson’s value, agreement is fair
except for large ¢, where ¢(g)—1 has a ¢~ dependence
for Hermanson’s model and ¢~ for this model. Penn’s"
interpolation formula for the two-parameter-model
semiconductor is also plotted for comparison with the
two model insulators, taking values of his parameters
suitable for argon. It is seen that his interpolation
formula compares quite well with this model insulator
in the case of argon.

A question of interest which can be answered by
this calculation is the magnitude of umklapp contribu-
tions to the dielectric function. Table IT shows contribu-
tions to e(¢) for argon from normal and umklapp
processes separately. The significant result for this
model is that for small ¢S %p umklapp terms are almost
negligible, while for ¢=%» they begin to dominate.
Since e(g) falls sharply at kp, strong screening is
dominated by normal processes, which implies that
average screened exchanged potentials, such as the
ones discussed in Sec. VI, will be affected only slightly
by umklapp processes. This result is found generally in
all solids studied here and at all frequencies except near
a plasma frequency of the p bands.

Dielectric functions for the other solids listed in
Table I are shown in Figs. 5, 6, and 7. Figure 5 shows
Azuma’s!?® calculation for KCl compared to Penn’s
model and this model. While the two models agree
quite well, Azuma’s calculation deviates from them both
substantially. This discrepancy is likely due to the
limited number of terms which he included in his sum
in the Brillouin zone: only 14 points. He found that
1500 points were required to give €(0) correctly, so
his 14-term sum, which overestimates ¢(0), possibly
overestimates e(q) at other ¢ also. Agreement between
Penn’s interpolation formula and this model is even
closer for KCI than for Ar. The same is true for CsCl,
but MnS shows substantial differences between the
models for ¢ <2kp. In the latter two insulators there are
presently no other calculations available for comparison.

L.”FRY
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In the case of silicon it might be presumed that this
model would be a poor one, since valence bands are
more free-electron-like. The energy bands in this model
are parabolic, however, so the principal difference will be
in matrix elements of the valence and conduction wave
functions. Figure 7 shows e(gq) for silicon. At first E,
was taken as 1 eV, but, since agreement with Nara’s?®
calculation for silicon was poor, €(¢q) was also obtained
for E,=4 eV, which is a reasonable value for the
average band gap, in an attempt to make the true band
structure better approximated by the present one. In
neither case does the result produce Nara’s detailed
structure, although the latter case does agree better
with Penn’s result. For large ¢ this model underestimates
€(g), probably because of the method of adjusting e(g)
at ¢=0.

The wave number and frequency dependence of the
dielectric function has been obtained for argon and is
displayed in Fig. 8. Only a few values of ¢ were used due
to the amount of computer time required. For fre-
quencies less than E,, e(q,w) is almost independent of
w, justifying the common use of static screening in this
frequency range. Band transition frequencies are
1< w/E,;<1.3 for argon, and it is in this region that
€1(q,w) passes through maximum, zero, and minimum
values. At frequencies greater than 2.5E,, effects of 3p
bands diminish, and e(q,w)=1. Since the lower-lying
bands are even narrower than the 3p bands and lie
about 2-3 E, below the 3p bands, their effects should
not begin until effects of 3p bands have died out. The
3p- and 3p, bands are not identical, however, and the
detailed structure in the interband transition frequency
range may be traced to this difference. Near a zero of
e1*(qw), p- and p, bands will not give zero, and will
dominate the structure. Furthermore, normal and um-
klapp contributions to e*(quw) pass through zero at
different frequencies, so that umklapp effects may
become strong, especially for large ¢, as shown for
¢=1.5kp. The oscillations are due to competition
between p. and p, bands, as well as between normal
and umklapp parts. For ¢=0.25kp the undamped

130
N Si
1.0
—-—— PENN'S MODEL
————— NARA'S CALCULATION
9.0 THIS MODEL
A Eg=4eV
— B Eg:=leV
Z 70t
w
5.0
30
=
1.0 — 1 ]
5 1.0 1.5 20 2.5 3.0
q/kg

Fi16. 7. Zero-frequency dielectric function for silicon.
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Fi1c. 8. Real part of the dielectric function for solid argon.

plasma frequency is 1.4E,=18.5 eV, while for ¢=0.5k3,
w,=17.9 eV. These may be compared to the free-
electron value of w,= (4rNe?/m)'2=16.6 eV.

The imaginary part of e(q,w) is shown in Fig. 9. The
dominant features are the two strong peaks which are
maxima of the p, and p, band contributions, respec-
tively. The zeros of €;(q,w) which occur there correspond
to strongly damped plasmons. Comparing curves for
¢=0.25kp and q=0.5kp, it is clear that this model
containing the three p valence bands and one conduction
band do not satisfy the longitudinal sum rule for
¢>0.5k5. To do this it would be necessary to include
more valence and conduction bands in the model, or to
relax the restriction on wave functions that the mea-
sured static limit be obtained. The present approach
contrasts with Hermanson’s approach, which was to
eliminate wave functions (matrix elements) by forcing
the sum rule to hold for a two-band model. The
approach in this calculation has been: Given energy
bands and wave functions, find their contribution
independent of any remaining ones (the ones needed
to complete the sum rule), but otherwise make as few
approximations as possible.

VII. SCREENED EXCHANGE POTENTIALS

Since Slater’s original proposal® of the p'/? exchange
potential, there have been a number of modifications or
alternatives suggested® for it. Some of the proposals
are intended to improve the exchange approximation,
while others attempt to incorporate correlation effects
as well. One of the latter effects was made by Robinson

3 J. C. Slater, Phys. Rev. 81, 385 (1951).
3 A recent paper containing most of the references is D. A.
Liberman, Phys. Rev. 171, 1 (1968).

DIELECTRIC FUNCTION OF MODEL

INSULATOR 903
et al.,® who screened the Coulomb interaction with the
Thomas-Fermi dielectric function before performing
the Slater average. The Slater average may be simplified
t033

2k 1
Veum ——r / (2kew)*0 (k) [1—Je-+3asldr,  (6.1)
™ 0

where
V(2krx)="0(q)=V(g)/e(q)

is the Fourier transform of the screened interaction.
Inserting the Thomas-Fermi dielectric function,

e(g)=1+g¢r¥"/¢*, (6.2)
Robinson obtained
Vaexrs=—06[(3/87)p]"3{1—%a tan~'(2/a)
412 In(14+402)—2e[1—3a? In(14+4a72)]}, (6.3)

where a=grr/kr=0.646p"/,

This approach to an exchange potential could be
improved in two respects. First, if the exchange poten-
tial is to be used in atoms or in insulating or semi-
conducting solids, a correction to the small ¢ screening
should be made. Instead of approaching an appropriate
finite €(0), the Thomas-Fermi function diverges in this
limit, indicative of a free gas of electrons instead of
bound electrons, and greatly overestimates screening for
small ¢. A second factor related to this is the absence of
any treatment of covalency or solid-state effects in the
Thomas-Fermi dielectric function.

The dielectric function of the model insulator
developed in this paper does not suffer from these
deficiencies, but on the other hand, calculations using
it in (6.1) would necessitate numerical work, while an
analytic expression like (6.3) would be much more
convenient. In view of close agreement obtained
between this model and Penn’s interpolation formula,!?
substitution of the interpolation formula should not
cause serious error in a screening calculation.

2r ARGON

10.F

q=.25ky
——q=.50kg

€2(q,w)
o

—_— - S ——
obe—T " " L L ! ] ;
1o 105 110 LIS 120 125 1.30 1.35

w/Egq

F16. 9. Imaginary part of the dielectric function for solid argon.

# J._E. Robinson, F. Bassani, R. S. Knox, and J. Schrieffer
Phys. Rev. Letters 9, 215 (1962), hereafter referred to as RBKS.
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Penn’s formula is
e(q) =1+ (ho,/ E,)?F[ 1+ (Er/E,) (g/kr)?F{2T2,

where

(6.4)

F=1—E,/4Ep+3(E,/4EF)?,
and w, is the usual plasma frequency. Defining
A= (hw,/E)F'?, B=4(Er/E,)F'?,

3 qUr  4Ar A 1 B+1
V penn= —6[‘—P] [1+—|:—(3+—><tan‘1———— tan—L

8r 3L2B
4

 3[2B(4+49)]

B A

+3[ (A1) 241 ln|:

It should be noted that all the covalent and solid-state
effects of this calculation are brought into this screened
exchange potential explicitly with one additional
parameter E,, although these effects enter implicitly
through the procedure used to obtain the interpolation
formula.

One remaining question is the application of (6.6)
to a specific solid. Slater’s exchange potential or (6.3)
can be made local in the usual way by letting # be a
function of r. In the case of (6.6) there are two adjust-
able parameters to deal with: # and E,. The former could
be treated as before, while the latter parameter could
be determined from experimental observations of the
minimum or average gap characterizing the solid.
However, the important point for the screening calcula-

3.5
3.0}

SLATER

2.5

Ve, (1) (au. Ry)

r(a.u.)

Fi16. 10. Screened exchange potentials for the chlorine ion in CsCL

{E(A2+1>“2—1]”2 tan
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the Penn screened exchange potential is
6 1 [1_ ix-i—lxs]
VPenn= '—_kF z : dx.
m Jo [14+4%/(1+Bx?)?]

(6.5)

The integral is not simple, but can be worked out exactly
to give

1) ar B(B+2)+(1+A2):|
A/ 4B? "

(1442
_ 2B 1)]
(42+1)*—B
(A2 1)+ B+ [2B((42+ 1)1 1)3”2]} ] . (66)
(A+1)V2 B—[2B((4™ D= 1]

tion is that €(0) be reasonable. Since €(0) is determined
in Penn’s model by both #(r) and E,, as # varies, €(0)
will also vary, with the result that at some finite
densities there turns out to be no screening at all.
This unphysical result can be avoided if #» and E, are
both taken as functions of r, E,(r) being determined
by the condition that the correct ¢(0) always be
obtained for a given n(r). This approximation, which
is analogous to Phillips’s treatment of #» and E, on an
equivalent basis, might be described as a local semi-
conducting electron-gas approximation.

A comparison of Slater’s exchange, the RBKS
exchange, and exchange calculated with Penn’s formula
is shown in Fig. 10, as calculated for parameters
appropriate to the chlorine ion in a cesium chloride
crystal. The effect of screening is evidently strong;
Thomas-Fermi screening, as expected, produces the
greatest reduction in the exchange potential. Both
screening methods reduce the Slater exchange potential
everywhere, but especially important is the reduction
in the tail of the chlorine exchange potential. While
Penn’s dielectric screening is more moderate at inter-
mediate distances from the chlorine nucleus, choice of
one of these local exchange potentials over another
must await numerical calculations in a full band calcula-
tion. Whether a clear choice can be made even then is
not certain.

VIII. CONCLUSIONS

The model insulator proposed in this paper has
proved capable of yielding the static dielectric constant
of real insulators when band parameters are properly
chosen. Results for the dielectric function at finite ¢
and w appear to be reasonable and, at zero frequency,
arein essential agreement with the interpolation formula
proposed by Penn to fit his numerical results for semi-
conductors. In evaluating the dielectric function for
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the model insulator it was found that for ¢> % g umklapp
contributions, as defined here, were more important
than normal, while for ¢<%p the reverse is true.

Dielectric screening using this model produced
screened exchange potentials which were intermediate
to the completely screened results of RBKS and the
completely unscreened exchange potential of Slater.
However, it is very difficult to select one exchange
potential over another, since this choice may be decided
only after a complete band-structure calculation.

The model could be improved in several respects,
especially by including higher conduction bands. In
this way the longitudinal sum rule could be satisfied.
At present the limited knowledge of conduction bands
in insulators does not warrant the added complexity in
this simple model, although free-electron bands could
probably serve as a simple approximation to the higher
bands for this purpose in many cases.
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APPENDIX

The integrals needed for evaluating matrix elements
with the wave functions U, and U, defined by Egs.
(3.15) and (3.16) may be worked out exactly to give

jo(kr)Uo(r)r?dr=% sqe—
[ senerar=nionn

/‘” Jo(gn)Uo(r) Uy (r)rdr
- [(27)3 (26)5]1/22[3 (v+8)*—g2]

2 24 d [(y+o+gP’
- (26)°0(26)2— ]
io(gn) | UL(9) | 2ridy=—————=
/o Bl = T
0 5—1/2 k
f j;(kr)Ul(r)rzdr=|:(26)] —86——,
0 24 (62+k%2)3
2(28)%?

12(gr) | Uy B
/0 | o rar=—



