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Calculation of Dynamical Surface Properties of Noble-Gas Crystals.
II. Molecular Dynamics*
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Various surface properties have been calculated for the (100), {111),and (110) surfaces of nobIe-gas
crystals through the method of molecular dynamics. This method tal. es complete account of anharmonic
effects and mean displacements, both of which are found to be important for surface calculations at high
temperatures. The results are compared with those obtained through lattice dynamics in the quasiharmonic
approximation. The results for the displacements of the mean atomic positions (from the positions in the
bulk} are in good agreement with these found through lattice dynamics. The results for the mean-square
amplitudes are in good agreement for atoms a few layers beneath the surface, but indicate that anharmo-
nicity causes a substantial increase in these quantities near the surface at about half the melting temperature
{the temperature for which most of the calculations were performed). The Fourier transform of the velocity
autocorrelation function is compared with the density-of-states function determined in the quasiharmonic
approximation, and the presence of anharmonic effects is again indicated. The static displacements, deter-
mined by damping the motion of the atoms, are found to be the same for all atoms in a given plane, thus
justifying the usual assumption made in calculating these quantities.

I. INTRODUCTION

'HERE has, until the present, been no calculation
of the mean-square amplitudes of vibration of

atoms near a crystal surface in which anharmonicity is
taken into consideration. Since the mean-square ampli-
tudes are much larger at the surface than in the bulk
of the crystal, ' anharmonic e8ects should be more
important at the surface. In this paper we present
results obtained with a method which takes anharmonic
efI'ects into account completely. These results are com-
pared with those of lattice-dynamics calculations for
the same model crystals.

In Sec. II the method of calculation is described, and
in Sec. III the results are presented and discussed.

The arrangement of lattice points in an fcc crystal is
such that the surface planes under consideration have
the structures shown in Fig. 1. Since the slab consisted
of 11 such layers in each case, the total number E, of
particles in the system difI'ered slightly for the three
cases; the values of X, were 550, 539, and 528 for the
(100), (111), and (110) surfaces, respectively. The
usual periodic boundary conditions were imposed with
respect to translations parallel to the free surface, so
that one can visualize the slab as being surrounded by
replicas of itself extending to infinity (see Fig. 1).

All calculations were performed for a Lennard-Jones
(6, 12) potential of interaction between pairs of par-
ticles p(r) given by

II. METHOD OF CALCULATION
e(r) =4~I:(~/r)" —(~/r)'j, (2.1)

Molecular-dynamics calculations' consist in solving
Newton's equations of motion for a system of inter-
acting particles. The three systems considered in this
paper are slab-shaped, fcc crystals, their two free
surfaces being, respectively, (100), (111), or (110)
planes of the crysta]. In each case the slab consists of
11 layers of particles parallel to the surface. Ke shall
denote by x' and y, two suitably chosen orthogonal
directions in a plane parallel to the surface, and by s
the direction perpendicular to the surface.
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*Work supported in part by the V. S. Air Force Ofhce of
Scientific Research under Grant Xo. AF-AFOSR 1257-67, and
performed in part under the auspices of the V. S. Atomic Energy
Commission.' R. E. Allen and F. W. de Wette, preceding paper, Phys. Rev.
179, 873 (1969).We refer to this paper as I.' A. Rahman, Phys. Rev. 136, A405 (1964).
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FIG. 1. Structure of (100}, (111),and (110) surfaces in an fcc
crystal. Each dot represents an atom. The solid lines indicate the
boundaries in the xy plane of the slab-shaped models used in the
molecular dynamics calculations.
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FIG. 2. Dynamic displacements 8 for (100), (111), and (110)
surfaces of noble-gas crystals at about half the melting tempera-
ture, expressed as fractional changes in the interplanar spacings.

where e and 0 are potential constants, and r is the
distance between the particles. We define M to be the
atomic mass, t to be the time, and r' to be the position
vector of the particle labeled by l. Ke also define the
dimensionless quantities s' and ~ by

and
r'= o.s' (2.2)

(2.3)

where
dv2

sll' sl sl $!l =
i
sl L'i

(2.4)

The potential p(r) was truncated at r= 3.25 a, where
vs is the nearest-neighbor distance; for this range of
interaction each particle interacts with about 70 neigh-
bors around it. A surface particle, of course, interacts
with only a little more than half this number. The
total force in the z direction due to the particles outside
the sphere of interaction is not negligible, because of
the asymmetry in the z direction resulting from the
free surface. However, this force can be approximated
by a constant "background force, " perpendicular to
the surface, calculated in advance by taking all the
atoms in the slab to be at their static equi)ibrium
positions. Test calculations show that neglecting the
background force can lead to an increase of up to 20%
in the displacements of the mean positions and the
mean-square amplitudes at the surface.

The 3E, coupled equations of motion given by Eq.
(2.4) were solved numerically, ~ so as to give the posi-

3 The details of the algorithm used to solve Eqs. (2.4) will not
be described here; we refer the reader to C. W. Gear, Argonne

i.e., we adopt 0. as the unit of length and (Mo'/e)'" as
the unit of time. Then we can use Kq. (2.1) to write
Newton's equations of motion for the particle l as

d2st

tions and velocities of the X, particles in the x, y, and
z directions as functions of time. The solutions were
obtained for v. =nh7. , where n is an integer, and in the
present calculations, Dr=0.01 (corresponding to At

10 '4 sec).
There is a wide variety of w;Lys i ii which initi;~l con-

ditions (positions and velocities of the Ã, particles)
can be chosen to start off the cajculation. Ke have used
the following procedure: The static displacements, cal-
culated as described in I, are used to place the S,
particles in positions which, if not disturbed, would be
positions of static equilibrium. At t=0 the particles are
given small random displacements from these posi-
tions and from then on are allowed to move according
to the equations of motion (2.4). The potential energy
put into the system by the random displacements is
gradually released as the particles move, and eventually
thermal equilibrium is achieved. The temperature
finally attained (we shall define temperature below)
depends on the potential energy given to the system
at t=0.

It must be emphasized, however, that although the
time required to reach thermal equilibrium depends oil

the initial conditions, the final state of equilibrium
does not. Since we are interested in the properties of
the system while in thermal equilibrium, the details of
the starting procedure will not be of further concern.
Ke only mention that, for the above starting condi-
tions, about 100 steps of 6~=0.01 each v ere sufhcient
to establish thermal equilibrium.

In a classical system in equilibrium, temperature (in
degrees absolute) is a measure of the mean-square
velocity or, equivalently, of the mean kinetic energy
of the particles. If v' denotes the velocity of the par-
ticle labeled by l, we have

',PENT= Q -', 3-f(v')',
Ã,

(2.5)

(2.7)

(The unit of temperature e/kn is 119, 159, and 228'K, '
respectively, for Ar, Kr, and Xe. The melting points
are given by T=84, 116, and 161'K, or T**=0.71,
0.73, and 0.71, respectively. )

National Laboratory Report No. AXL-7126, 1966 (unpublished).
We shall only mention that the solution was accurate enough to
keep the total energy of the system constant except for Quctua-
tions of the order of O. i'P& of the mean value.

4 G. L. Pollack, Rev. Mod. Phys. 36, 748 (1964).

where k~ is the Boltzmann constant. Using e, the
depth of the potential, we have expressed T in terms of
a dimensionless quantity

(2.6)

so that, in terms of s' and v, we have
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Since the purpose of these calculations is to investi-

gate the dynamical behavior of the atoms in the
system as a function of the distance from the free
surface, we have made all the analyses separately for
each layer. However, because there are two equivalent
layers in every case (except for the central layer, there

being 11 layers in all), we have used the positions and
velocities of particles in both of these layers in obtain-
ing the results to be presented below. These results,
therefore, represent averages over 9{i—100 particles, the
exact number depending upon the type of surface (see
Fig. 1), and over an ensemble of 1500 configurations
of the system (each con6guration corresponding to a
different value of the time).
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iRACTIONAL CHANGES

III. RESULTS AND DISCUSSION

The surface quantities in which me are primarily
interested are the displacements of the mean positions
of the atoms from the positions they would occupy in
the bulk of the crystal, and the mean-square ampli-
tudes of vibration about the displaced positions. Both
these quantities can be measured by means of low-

energy electron-diffraction (LEED) experiments. ' We
express the displacements in terms of 8, the fractional
change in the distance between the mth and (m+1) th
planes. The displacements in a static crystal and in a
vibrating crystal me call, respective1y, the static dis-
p/accents and the dynamic disp/accents. '

Results for the dynamic displacements are shown in
Fig. 2.7 It can be seen that the dynamic displacements
at the temperature for which these calculations were
carried out (T™=0.35, or about half the melting tem-
perature) behave qualitatively in the same way as the
static displacements given in I. In particular, the dis-
placements for the (110) surface exhibit the "staircase"
behavior pointed out and explained in I. However, the
dynamic displacements are roughly twice as large at
the surface as the static displacements, and the graph
for T**=0.547 in Fig. 3 shows that they are still
larger at this higher temperature. Figure 3 also shows
that there is very good agreement with the displace-
ments (at 0/a=1. 28 and T**=0.356) found by mini-
mizing the total free energy in the quasiharmonic
approximation. '

The fact that the dynamic displacements are larger
than the static displacements can be explained as
follows: An atom at the surface encounters its neigh-
bors in the next plane upon moving toward the center
of the crystal and encounters no other atoms upon
moving away. On the average, therefore, an atom will

' See, e.g., A. U. MacRae, Surface Sci. 2, 522 (1964); I. Mark-
lund and S. Andersson, ibid. 5, 197 (1966).' See Secs. I and VI and Fig. 1 of I.

7 In performing a molecular-dynamics calculation, one has to
assume the density in advance. Since the assumed density (corre-
sponding to cr/a=1. 28) is not precisely correct for the tempera-
tures reached at thermal equilibrium, the displacements in Fig. 2
approach asymptotic values which are not precisely zero.

FIG. 3. Dynamic displacements 8 for (100) surface at about
half the melting temperature (P"*=0.356), as determined with
molecular dynamics (solid line) and lattice dynamics (dashed
line), and dynamic displacements from molecular dynamics at
a higher temperature (T*~=0.547).

be farther from the center of the crystal when vibrating
than when stationary.

In calculating the static displacernents in I, it was
assumed that all the atoms in a given plane are dis-
placed equally in a direction perpendicular to the
surface. Schmidt and Jura, ' after studying several
possible surface configurations for static semi-infinite
noble-gas crystals, concluded that it is unlikely that
atoms in the same plane will undergo difI'erent dis-
placements. In order to investigate this matter further,
we imposed a damping force on the vibrating atoms
until they were almost entirely motionless. It was
found that for the (100), (111),and (110) surfaces all
the atoms in each plane were indeed displaced equally
in the direction perpendicular to the surface. One
advantage of molecular dynamics for such studies of
surface structure is that each atom in the system is
allowed to relax independently.

Now we turn to the mean-square amplitudes. The
displacement of an atom from its mean position we call
u, so that (I ') is the mean-square amplitude of vibra-
tion in the n direction, with 0;=x, y, or s. It is interesting
to compare the results for the mean-square amplitudes
obtained through molecular dynamics with those ob-
tained through the completely independent method of
lattice dynamics. We have therefore performed lattice-
dynamics calculations for the model crystals described
above using the procedure outlined in I:The thickness
was taken to be 11 layers, and the q points in the
Brillouin zone were chosen so as to correspond to the
periodicity length and surface structure of the crystals
used for the molecular dynamics calculations (see Fig. 1).
The displacements were taken to be those shown in
Fig. 2 (i.e., those calculated through molecular dy-
namics), rather than the static displacements which

'H. H. Schmidt and G. Jura, J. Phys. Chem. Solids 16, 60
(1960).
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TABLE I. Root-mean-square deviations 6 of the mean-square
amplitudes, expressed as percentages of the mean values.
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FIG. 4. Mean-square amplitudes (I ') and (uP) for (100) surface at
about half the melting temperature (T"*=0.356 and a/u = 1.28).

were used in I. The calculations were carried out in
the~high-temperature limit in order to eliminate the
effect of zero-point vibrations.

In Figs. 4-6 the results from both methods are
presented. The planes are labeled by m, with m= 1 for
the surface plane, m=2 for the next plane, and so on.
It can be seen that, in general, the molecular-dynamics
and lattice-dynamics results are in good agreement at
the center of the crystal, but that there are considerable
differences between the results at the surface, particu-
larly in the case of (I„')for the (110) surface.

These differences must be due to anharmonicity, '
since they are too large to be attributed to statistical
fluctuations (see below). Our results indicate, therefore,
that at about half the melting temperature anharmonic
effects are small in the bulk, but cause substantial
increases in the mean-square amplitudes at the surface.
At higher temperatures, of course, anharmonic effects
will be greater both in the bulk and at the surface.

One rnatter of importance is the inQuence of sta-
tistical Quctuations upon the 6nal results of the molec-
ular-dynamics calculations. Since these results repre-
sent averages over only a finite number of configurations
of a system containing relatively few particles (about
50 per plane), they will depart somewhat from the
results that would be obtained from averaging over an
infinity of configurations. In order to determine the

ll "Anharmonicity" in this case includes effects due to a linear
term in the Taylor-series expansion of the potential energy 4, as
well as the usual cubic, quartic, etc. terms. This linear term
vanishes in the strict harmonic approximation, in which the mean
positions are taken to be the positions of static equilibrium; it
also vanishes because of symmetry in a perfect crystal at any
density (provided that every atom is a center of symmetry).
However, in the present case (quasiharmonic approximation for a
crystal with surfaces), the linear term is in general nonzero and is
to be regarded as a perturbation together with the higher-order
anharmonic terms. See G. Leibfried and W. Ludwig, Solid State
Phys. 12, 275 (1961).

probable error associated with the results presented
here, which represent averages over j.500 conhgurations,
one would have to repeat the complete molecular-
dynamics calculation a large number of times. Such a
procedure is impractical, but one can obtain a rough
estimate of the probable error by performing separate
averages over several groups of configurations and see-
ing how well these averages agree. A rough quantitative
measure is provided by the rms deviation of these
separate averages from the mean which is calculated
by taking all the available configurations into account.
This rms deviation 6 is, for the mean-square ampli-
tudes, defined by

A=Le'(( ').-( '«V»", (3.1)
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FzG. S. Mean-square amplitudes (u ') and (u,~) for (111)surface at
about half the melting temperature (P"~=0.369 and a/a = 1.28).

where (u'); is the average over the ith group of con-
figurations, E is the number of such groups, and (I')
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Taste II. Comparison of (u ') and (u„') for
(100) and (111)surfaces. (IIO) SURFACE
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&.u~
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Q.QQ256 0.00249
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0.00223 0.00225
0.00197 0.00206
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0.00203 0.00196
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I'Ic. 6. Mean-square amplitudes (I 2), (u„2), and (u,~) for
(110) surface at about half the melting temperature (T*~=0.335
and eje=1.28).

is the average calculated over all the con6gurations.
In the present calculations, the 1500 conhgurations
were divided into three groups of 500 each for the
purpose of calculating h. The results are given in
Table I, expressed as percentages of the mean values.
It can be seen that the fluctuations are largest at the
surface, where 6 ranges from 8.5 to 22.5%. The proba-
ble error associated with the results presented here is
expected to be smaller than 6, of course, since these
results were obtained by averaging over 1500 rather
than 500 steps.

Another test of the importance of fluctuations is
provided by comparison of (N,2) and (I„'),which should
in principle be equal for the (100) and (111) surfaces.
Such a comparison is given in Table II, and it can be
seen that in all cases there is agreement to within 5%.

Another interesting comparison between lattice dy-
namics and molecular dynamics involves the Fourier
transform of the velocity autocorrelation function,
which we call f(o&) In the qu. asiharmonic approxima-

lO 20

Fio. 7. Fourier transform f(ca) of the velocity autocorrelation
function compared with the density-of-states function calculated
through lattice dynamics. The results of calculating f(co) with
three values of the cuto6' time t„given by (e/Mr')'"t, =i, 10,
and 13, are superimposed in the figure.

tion this quantity is proportional to the density-of-
states function. f (co) is defined as

"(v(tyt, ) v(t, )),
f(co) = - cosset Ct,

(v(to) "(to)).
(3.2)

where v(t) is the velocity of an atom at time t and the
subscript s indicates that the average is taken over the
whole system, rather than over a single plane. In Fig.
7, f(s&) is compared with the density-of-states function
from a lattice-dynamics calculation for the same model
crystal. (The density-of-states function is normalized
to an area of —,'m. .) In a practical molecular-dynamics
calculation one is, of course, limited to a 6nite range
of the time t in Eq. (3.2), and it is necessary to truncate
the integration at some point. In order to determine
the eRect of disregarding the part of the integral for
t& t„where t. is some finite cutoG time, we carried out
the calculation for three values of t, . The results are
superimposed in Fig. 7. In each case, 20 initial times tp

were used in calculating the velocity autocorrelation
function (v(t+to) v(to)), . The shift of f(co) toward
higher frequencies as compared with the quasiharmonic
density-of-states function is at tributed to anharmonicity.

In attributing diRerences between the lattice-dy-
namics and molecular-dynamics results to anharmonic-
ity, we have tacitly assumed that there is no recon-
struction of the surface —i.e., that the mean positions
of atoms in the surface plane are displaced from the
bulk positions by the same amount. This assumption
was tested in the case of the (110) surface, for which
the differences between the lattice-dynamics and molec-
ular-dynamics results are greatest. It was found that
in the present calculations reconstruction of the surface
did not occur.

In summary, two significant results have been ob-
tained: First, the dynamic displacements (fractional
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changes in interplanar spacings calculated with vibra-
tional effects taken into account) increase rapidly with
temperature; equivalently, one can say that thermal
expansion is greater near the surface than in the bulk.
Second, anharmonicity already causes a substantial
increase in the surface mean-square amplitudes at about
half the melting temperature.

Since both of these e6ects should be observable by
means of LEED, it would be interesting if LEED
experiments (on metals or other monatomic materials)
could be carried out over a wide range of temperatures
to determine the importance of anharrnonicity and the
dependence of the mean atomic displacements upon
temperature.

The method of molecular dynamics used here has
two important advantages for surface calculations at
temperatures above the Debye temperature, in that
both anharmonic sects and mean displacements are

taken into account completely. Below the Debye tem-
perature zero-point vibrations become important, and
the classical approximation consequently breaks down.
But the method described in I is most applicable at
low temperatures, since this method involves the
quasiharmonic approximation and the approximation
of using the static, rather than dynamic, displacements.
In this sense, therefore, molecular dynamics and lattice
dynamics are complementary methods of investigation.
Both methods have considerable potential for theo-
retical studies of the structure and dynamics of crystal
surfaces.
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Dielectric Function of a Model Insulator
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A wave-number —and frequency-dependent dielectric function has been calculated for a model insulator
using the random-phase approximation. The model insulator consists of a free-electron conduction band
represented by a single orthogonalized plane wave (OPW) and a valence band represented by linear com-
binations of ionic wave functions. All energy bands are assumed parabolic and isotropic. Numerical results
are obtained for Ar, KCl, CsCl, MnS, and Si, in reasonable agreement with previous calculations. Screened
exchange potentials have been obtained by using an interpolation formula, and evaluated for the chlorine
ion in CsCl.

I. INTRODUCTION

HE dielectric formulation" of the many-body
problem has been found especially attractive in

solid-state physics, since it uses mathematical and
physical concepts known to most solid-state physicists,
and interprets solid-state systems in terms of familiar
quantities which are accessible through experiment.
Aside from its use in various schemes for calculating
correlation contributions to ground-state energies, ' the
dielectric formulation has been used to understand
energy loss by fast electrons in solids, 4 plasma energies, '
and optical properties~' of solids. In addition, the

* Work supported by the U. S. Air Force Ofhce of Scienti6c
Research.

'P. Nozihres and D. Pines, Xuovo Cimento 9, 470 (1958);
Phys. Rev. 109, 741 (1958); 109, 762 (1958); 109, 1062 (1958).2D. Pines and P. Nozieres, The Theory of Quantum Liquids
(W. A. Benjamin, Inc. , ¹wYork, 1966), Vol. I.' P. Xozi5res and D. Pines, Phys. Rev. 111,442 (1958).' R. A. Ferrell, Phys. Rev. 101, 554 {1956).' D. Pines, D~"ementary I'xcitationsin Sollls {W. A. Benjamin,
Inc. , New York, 1963).' D. Brust, Phys. Rev. 134, A1337 {1964).

dielectric formalism has been used extensively to study
properties of the electron gas, ' and quasiparticle9 and
collective" excitations of an electron gas containing a
single point-charge impurity. Recent calculations have
considered more carefully sects of the Pauli exclusion
principle. ""The formalism has also been used in band
theory to develop a theory of self-consistent screened
pseudopotentials for semiconductors" and more recently
to develop a theory of the covalent bond in crystals. '4

Application of the theory centers around calculation
of the dielectric constant tensor e(q, cv) as a function of
frequency and wave vector for the many-body system
under consideration. Longitudinal or transverse compo-
nents of ~(q,co) have been calculated in various approx-

' F. M. Mueller and J. C. Phillips, Phys. Rev. 157, 600 (1967).
K. S. Viswanathan and J. Callaway, Phys. Rev. 143, 564

(1966).
9 A. J. Layzer, Phys. Rev. 129, 897 (1963); 129, 908 (1963).' K. A. Sziklas, Phys. Rev. 138, A1070 (1965)."D.N. Tripathy, Phys. Rev. 164, 582 {1968)."L.Kleinman, Phys. Rev. 160, 585 {1967)."M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 {1961)."J.C. Phillips, Phys. Rev. 166, 832 (1968).


