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Ke see that it is proportional to o.' rather than 0,', as in
the optical-polaron problem. The reason for this is
clearly that the dynamical behavior of the acoustic
phonons is different from that of optical phonons.

27 7l Cg
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that move slowly and are not highly excited (i.e., we Hence the polaron effective mass is given by
assume 8/BR, 8/Bt', and ot' are all of order o").Equa-
tion (28) then describes a free particle and a set of rn(polaron) 32

uncoupled harmonic oscillators. For an eigenstate of
Z—(8/BR) having eigenvalue k =a 'sc, and being in the

ground state with respect to f, the energy is
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Various dynamical surface properties have been calculated for noble-gas crystals in the quasiharmonic
approximation. The calculations were carried out for slab-shaped fcc crystals in which the atoms interact
through a Lennard-Jones potential. Changes in the force constants near the surface caused by changes in the
interplanar spacings (static displacements) have been taken into account. Mean-square amplitudes and
mean-square velocities of vibration were calculated for the (100), (111),and (110) surfaces. The surface
specific heat, which was calculated for the (100) surface, is found to be positive and to vary as 1 at low
temperatures. So-called dynamic displacements, which are the displacements of the mean atomic positions
in a vibrating crystal with free surfaces from the mean positions in the bulk, were calculated for the (100)
surface. They are found to increase rapidly with temperature, indicating that thermal expansion is con-
siderably greater at the surface than in the bulk, Some qualitative features of the static displacements for
the (100), (111),and (110) surfaces are pointed out and explained. It is shown that the dynamical matrix for
a general slab-shaped crystal can be reduced to a real symmetric matrix of the same size; this fact greatly
facilitates calculations based on such models. The fact that the mean-square amplitudes diverge at finite
temperatures for infinite slab-shaped crystals is discussed; it is found that accurate calculations based on
slab-shaped models are possible despite this feature.

I. INTRODUCTION
' 'N recent years there has been considerable interest
~ ~ in the study of structural and dynamical properties
of crystal surfaces through low-energy electron diffrac-
tion experiments. Measurements of the mean-square
amplitudes' of vibration, for example, have been per-
formed for nickel, ' silver, ' platinum, ' and palladium and
lead. ' In parallel with the experiments there have been
various theoretical studies and calculations. The work
up to a few years ago has been surrunarized in a review

* Work supported by the U. S. Air Force Ofhce of Scientific
Research under Grant Xo. AF-AFOSR 1257-67.' The quantities frequently called "mean-square displacements"
we call "mean-square amplitudes, " in order to avoid confusion
with the displacements of the mean atomic positions. Definitions
of "mean displacements" and "mean-square amplitudes" are
given in Secs. I and III, respectively. There has already been some
confusion between these two quantities, namely, in Ref. 5.

2 A. U. Mac Rae, Surface Sci. 2, 522 (1964).' E. R. Jones, J. T. McKinney, and M. B. Webb, Phys. Rev.
151, 476 (1966).

'H. B. Lyon and G. A. Somorjai, J. Chem. Phys. 44, 3707
(1966).

s R. M. Goodman, H. H. Farrell, and G. A. Somorjai, J. Chem.
Phys. 48, 1046 (1968).

article by Maradudin. ' More recent work includes a
general analytical treatment of the static displacements
and vibrational modes in a semi-in6nite crystal by
Feuchtwang, ' calculations of the mean-square ampli-
tudes in a nearest-neighbor, central-force model by
%allis, Clark, and Herman, ' and calculations of dy-
namical quantities for microcrystallites by Kothari and
Sing al.'

Qualitative agreement has been found between the
experimental and theoretical results for the mean-
square amplitudes of vibration. "However, a detailed
comparison between theory and experiment has not
been possible, since the experiments have been per-
formed on metal surfaces while no 6rst-principle cal-
culation of dynamical surface effects in metals has
been carried out to this date, because of the inherent
difhculties in the theory of the lattice dynamics of

' A. A. Maradudin, Solid State Phys. 18, 1 (1966).
7 T. K. Feuchtwang, Phys. Rev. 155, 715 (1967).

R. F. Wallis, B. C. Clark, and R. Herman, Phys. Rev. 167,
652 (1968).' L. S. Kothari and C. M. Singal, Phys. Rev. 168, 952 (1968).

'0 B. C. Clark, R. Herman, and R. F. Wallis, Phys. Rev. 139,
A860 (1965).
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metals. As a consequence, past calculations have in-

volved simplifying assumptions such as restriction to
nearest-neighbor' or nearest- and next-nearest-neigh-
bor" interactions, use of force constants which are the
same at the surface as in the bulk, and restriction to
the high-temperature limit.

In order to carry out a 6rst-principle calculation of
surface properties, avoiding all such approximations,
it is necessary to have an accurate knowledge of the
atomic interactions. The only group of substances for
which this requirement is nearly satis6ed is that of the
noble-gas solids. It is well-known that the I.ennard-
Jones (6,12) potential gives an adequate description
of the pair-wise interaction in these solids (see Sec.
VIII). Some of the advantages of using the LJ potential
are the following: First, dimensionless quantities can be
introduced which do not depend upon the mass or the
potential constants, so that the calculation is free of
empirical parameters; i.e., it is not necessary to perform
a separate calculation for each substance or to repeat
the calculation for improved values of the potential
constants. Second, interactions with all neighbors can
be readily taken into account. Third, changes in the
force constants near the surface can be determined and
taken into account. Finally, a direct comparison of
calculations based on the LJ potential and experiments
on the noble-gas solids may be possible in the future.
Aside from this possibility, however, a detailed cal-
culation of surface eff'ects in a realistic model is in
itself of considerable interest.
~In this paper we are primarily concerned with cal-
culation of the following quantities: The mean-square
amplitudes and mean-square velocities of vibration,
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I' IG. 2. Side view of slab-shaped crystal showing spacings
between planes perpendicular to the s axis. d is the bulk inter-
planar spacing.

"A. A. Maradudin and J, Melngailis, Phys. Rev. 133, A2288
(1964).

the surface speci6c heat, and the displacements of the
mean positions of atoms near the surface from the
mean positions that these atoms would have in the
bulk of the crystal.

The last set of quantities will be represented by 8,
where ns is an integer labeling the planes of the crystal
which are parallel to the surface. This notation is
clari6ed by Fig. 1, which shows a side-view of a slab-
shaped crystal. We take m to be 1 for the upper surface,
2 for the plane just below the surface, and so on. 8 is
de6ned to be the fractional change in the distance
between the tmth and (m+1) th planes; i.e.,

Zm Zna+ I
1

p

interplanar spacing in bulk

where z is the coordinate of the mth plane in the
direction perpendicular to the surface.

In general, we shall refer to the 8 as the mean Chs-

placements, or simply the displacements If t.hey are
determined by minimizing the static energy, we shall
call them the static dksplacememts If they. are determined
by minimizing the total free energy, including vibra-
tional contributions, we shall call them the dynamic
displgcements. The static displacements, therefore, are
displacements of the equilibrium positions in a static
crystal. The dynamic displacements are displacements
of the mean positions in a vibrating crystal.

In carrying out the dynamical calculations we have
used the static rather than the dynamic displacements
to determine the change in force constants near the
surface. Our reason for doing so is that the static dis-
placements are readily calculated and are independent
of mass and potential constants, whereas the dynamic
displacements are calculated with somewhat more 4'&-
culty and depend upon the de Boer parameter, which
is different for each substance (see Sec. VI). If there is
an appreciable difference in thermal expansion between
the surface and the bulk, this approximation of using
the static displacements should lead to errors in the
calculated quantities at high temperatures. We shall
find (in Sec. VI) that the thermal expansion is in fact
considerably larger at the surface. However, we shall
also see that at low temperatures it is a good approxi-
mation to use the static displacements.

In Sec. II we describe the general model and the
method for calculating the static displacements. Two
qualitative features of the static displacements, namely
a "staircase" behavior for the (110) surface and a
1/m' dependence for the deeper displacements, are
explained in Appendix A. In Sec. III the procedure for
dynamical calculations is outlined. Expressions for the
dynamical matrix and physical quantities in the case
of an LJ potential are given in Appendix 3, and in
Appendix C it is shown that the dynamical matrix for
a slab-shaped crystal can, under very general condi-
tions, be reduced to a real, symmetric matrix of the
same size. Use of this reduced matrix results in a very
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large rc&luction in the required computer time. The
fact that the mean-square amplitudes diverge for an
in6nite slab-shaped crystal is discussed in Appendix D.
In Sec. IV results are presented for the mean-square
amplitudes and mean-square velocities; some qualita-
tive features of these results are discussed. In Sec. U,
tests of the accuracy of the method are described.
Section VI deals with calculation of the dynamic dis-
placements, and Sec. VII with the density of states
and calculation of the surface speci6c heat. Finally,
in Sec. VIII we give a general discussion of the work
of this paper.

II. GENERAL MODEL AND STATIC
DISPLACEMEÃTS

All the calculations of this paper were carried out
for slab-shaped, face-centered cubic crystals, the two
free surfaces of which are, respectively, (100), (111),
and (110) planes of the crystal. It will be shown that
the 6nite thickness of the model crystal does not have
an important eBect upon the results, provided that a
sufBcient number of planes of atoms are used. The
atoms in the crystal are taken to interact through a
Lennard- Jones (6,12) potential.

We denote by x and y two suitably chosen orthogonal
directions in a plane parallel to the surface, " and by z
the direction perpendicular to the surface. The number
of planes in the model we call E3, and the number of
atoms per plane X. The planes are labeled by an
integer m, the position of each plane is speci6ed by
lz (not necessarily an integer), and the position of an
atom within a plane is specified by /j and l2. It is con-
venient to choose the l3 axis perpendicular to the surface
(i.e., in the s direction), in which case the two-dimen-
sional lattice represented by integer values of /& and l2
is nonprimitive. The distance between the equilibrium
positions of the atoms at l (l~,ln, l3) and 1' (l~', l2', l&')

is called ro". We de6ne a distance a such that the
nearest-neighbor distance is equal to V2a.

In order to calculate the static displacements or the
dynamical matrix it is necessary to carry out lattice
summations which involve designating an atom in one
plane as the origin and then summing over all the
atoms in another (or the same) plane. These sumrna-
tions are performed most readily by surnrning over
shells of atoms with the same distance from the origin.
The convergence of such summations can be improved
by special convergence techniques, "but in the present
case relatively little computer time would be saved by
such methods; we have used the direct summation
method throughout.

~ The structures of the various surfaces and our choice for the
s and y directions are shown in Fig. 1 of II. In particular, for the
(110) surface the x and y axes are taken to point in the I 1)0j
and $001j directions, respectively.~ B. M. E. van der Hog and G. C. Benson, Can. J. Phys. 31,
1087 (19S3).

In calculating the static displacements we assume
that each plane is displaced as a whole in the direction
perpendicular to the surface. One can easily see that
such a displacement results in an equilibrium situation,
and in II" we show that this equilibrium is stable for
all three of the surfaces considered here. Our method
of calculation is essentially that described by Alder,
Vaisnys, and Jura. " The total static energy of the
crystal is

e N=x'-, x 4 ( )
—

( I, (2.1)

where e and o are the familiar constants of the LJ
potential. C is to be minimized with respect to the
displacements b; i.e., we have to satisfy the equations

=0, m1)2] ~ (2.2)

"R. K. Allen, F. W. de Wette, and A. Rahman, following
paper, Phys. Rev. 179, 887 (1969). We refer to this paper as II.'t'B. J. Alder, J. R. Vaisnys, and G. Jura, J. Phys. Chem.
Solids 11, 182 (1959).

'~ R. Shuttleworth, Proc. Phys. Soc. (London) A62, 167 (1949)."G. C. Benson and T. A. Claxton, J. Phys. Chem. Solids 25,
367 (1964).

The numerical procedure was to calculate 8 using the
previously determined 8 ~ for nz'(m and to take 8 =0
for m') m in the 6rst iteration. Two complete iterations
were used for the (100) and (111) surfaces and four
for the (110) surface, which presents special problems
(see below).

Calculations of the static displacements in semi-
infinite crystals with an LJ potential have previously
been carried out by Shuttleworth, "by Alder et al. , and
by Benson and Claxton. "Only the 6rst 6ve displace-
ments were determined, with the deeper ones taken to
be zero. We have calculated all the displacements in
models ranging from 11 to 51 planes in thickness, and
our results for the (110) surface are slightly more
accurate than those of Benson and Claxton. We 6nd
that the 6nite thickness of the crystal has only a very
small eGect on the results for E3&30.

The results for the static displacements are shown
in Fig. 2. Notice the unusual "staircase" behavior for
the (110) surface; the rate of decrease with distance
from the surface is alternately large and small. This
behavior is due to the close spacing of the (110)planes:
In the (100) and (111) cases, all the nearest neighbors
for a given atom are in the same plane or adjacent
planes. In the (110) case, however, there are nearest
neighbors in the next planes also, so that each displace-
ment is dependent upon those adjacent to it (see
Appendix A). This coupling of the displacements re-
quires that extra iterations be used in the calculation
for the (110) surface. It should also be noted that the
displacements decrease monotonically. (That they fail
to do so in the results of Benson and Claxton is a
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the atoms are vibrating. In order to make the dynamical
problem amenable to calculations, we need to assi»»c,
first, that the crystal has a finite thickness and, second,
that the vibrations obey the usual periodic boundary
conditions with respect to translations parallel to the
surface. This n~odel has been previously used by ("lark,
Herman, and %allis" and has been discussed by
Maradudin. ' The justification for the model is that
the correct results for a semi-infinite crystal are ob-
tained as the periodicity length and the thickness
simulta, neously approach infinity (see Sec. V and
Appendix D).

Let u, (l) be the n component (n=x, y, s) of the dis-
placement of the 1th atom from its mean position. The
coordinates of the mean position we call x0', y0', and
z0'. Because of the two-dimensional periodic boundary
conditions, the normal mode solutions have the form

u. (1)=M-''& (l,)e'"e *'~**0'+~»"i, (3.1)

FzG. 2. Static displacements 8 for (100), (111),and (110) surfaces
expressed as fractional changes in the interplanar spacings.

peculiarity induced by the assumption that all dis-
placements beyond the fifth are zero. )

«We find that the displacements for all three surfaces
fall oft approximately as the inverse cube of the distance
from the surface. This rule becomes increasingly better
as the depth of the displacement increases, but is rather
good for all displacements except the first in the (100)
and (111) cases. In the (110) case the "staircase"
behavior is superimposed upon the 1jrm' behavior until
m&8. Our results are thus in accord with the demon-
stration of Alder et al. that the deeper displacements
should decrease as 1/m' for the (100) surface and
imply that this rule is of more general validity. In
Appendix B we show that in fact the following is true:
If the particles in a semi-infinite crystal interact through
a potential P(r) such that for large

~

r
~

(2.3)

where M is the atomic mass and ~ is the vibrational
frequency. The quantities $ (fa) will turn out to be
components of the eigen vectors of the dynamical
matrix. The allowed values of q and q„are determined
by the periodic boundary conditions; they may be
taken to lie in the erst two-dimensional Brillouin zone
for the primitive lattice associated with a plane of
atoms parallel to the surface (see Fig. 3).

Henceforth we shall write two-dimensional vectors
without boldface, so that q=(q„q„), l=(li, 4), and
re' ——(xo', yo'), whereas r, '= (x,',ye', zo'). In this notation,
q ~0 =q&0 +qyyo ~

When Eq. (3.1) is substituted into the equation of
motion in the quasiharmonic approximation, one ob-
tains the usual eigenvalue equation

where p=1, 2, , 3X~ labels the branches of a& for a
given q. The dynamical matrix D &(l3t&') is defined by

j
D e(f&l3')= QC e—(11') exp[i' (ro' —r ')j (33)

M &'

4'-e(11') =
a" e)8"ee'j)

(3.4)

(2.4)
The subscript "0" in Eq. (3.4) indicates that the force
constants C e(11') a,re to be evaluated at the true mean
positions of the atoms, with the displacements from the
bulk positions taken into account.

The general solution for u (I) is a superposition of
the normal mode solutions of Eq. (3.1)

with
where p is an integer greater than 3, then for large m

For any potential in which a van der Waals part
dominates at large distances p=6, and as a result the
inverse cube behavior holds.

III. PROCEDURE FOR DYNAMICAL
CALCULATIONS

In the previous section we were concerned with
surface eBects in a static crystal. In this section~we
consider the surface properties of a crystal in which

u. (l) =X '~'M '~' p Q(qp)t. (/, ; qp)e-""". (3.5)

Using this solution, one can obtain an expression for
the mean-square amplitude (u '(I&)), which is defined
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Fzo. 3. Two-dimensional Srillouin zones associated with (100),
{111),and (110) surfaces for fcc lattices.

as the thermal average of u '(I), in terms of the eigen-
values cv' and eigenvectors $ (f&) of the dynamical
matrix. (See pp. 236-237 of Ref. 18 for the derivation. )
The result is

where k~ is the Boltzmann constant and T is the tern-
perature. Similarly, if p(1) is the momentum of the
particle labeled by I, the mean-square momentum
(p '(l,)) is given by

hM
(P.'(1 ))= 2'I ~-(1;vP) I'

2g e, »

X(a„(g) cothI ha)n(qV2kggT7. (3.7)

The Helmholtz free energy F and the specific heat at
constant volume C, can be expressed in terms of the
frequencies alone

hs)„(q)
F=k~T P'ln 2 sinh

e.u 2k' T
(3.8)

(3.9)

(u-'(73)) =- 2'14(f3; 9P) I'
2EM e, »

cothI hcd~(q)/2k' T7
, (3.6)

~~(V)

because the divergence is logarithmic and the mean-
square amplitudes are small, the effect of the divergence
can be observed even for small periodicity lengths. The
mean-square amplitudes can be calculated with reasona-
ble accuracy despite this fact (see Appendix D), but
it does not make sense to speak of calculating the mean-
square amplitudes for a slab-shaped crystal of infinite
extent. Properly, one calculates these quantities for a
crystal whose periodicity length and thickness are ap-
proximately equal and are large enough so that their
finite values have only a small effect on the results.

IV. MEAN-SQUARE AMPLITUDES AND
MEAN-SQUARE VELOCITIES

Using the procedure outlined in Sec. III, we have
calculated the mean-square amplitudes and mean-square
velocities of vibration for the (100), (111), and (110)
surfaces at various temperatures and densities. Some
typical results are given in Figs. 4-10 and in Table I.
All these results were obtained with a crystal 21 layers
in thickness. For the (100) and (111) surfaces, 309
points were used in the irreducible element of the two-
dimensional Brillouin zone, yielding 1890 (30X3X21)
independent frequencies; 36 q points in the irreducible
element were used for the (110) surface.

It is a well-established fact that (u') increases and
(p') decreases toward the surface, because surface atoms
are less tightly bound than those in the bulk, and that
near the surface these quantities are not isotropic even
in cubic crystals; e.g. , (u.2)&(u '). The qualitative
features of the temperature dependence of (u') and
(p') for constant density follow from Eqs. (3.6) and
(3.7). At very low temperatures (u') and (p') are ap-
proximately constant. At high temperatures (u') and
(p') are proportional to T, and (p') is the same at the
surface as in the bulk of the crystal. When the tem-
perature-dependence of the density and the dynamic
displacements are taken into account, the high-tem-

(see pp. 45—46 of Ref. 18).
Calculations of the above dynamical quantities based

on Eqs. (3.6)—(3.9) are straightforward, but two facts
should be mentioned: First, the point q =q„=0 is to
be included in the surnrnations, but the three ~=0
modes are not to be included (as indicated by the
primes on the sununations) because these modes corre-
spond to uniform translations of the crystal. Second,
the expression for the mean-square amplitude diverges
at nonzero temperatures" (see Appendix D). The
divergence is very slow, so that the root-mean-square
amplitude is of the order of a lattice spacing only for
crystals much larger than the solar system. However,

' A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Latt4ce Dynamics in the Harmonic Approximation (Academic
Press Enc. , New York, 1963).

I~We wish to thank Dr. B. J. Alder for drawing our attention
to this fact.

.05 t100) Surface

(111) Surface

T = 00K

a =1.2$
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.03
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FIG. 4. Mean-square amplitudes (I ~) and (e,') for (100) and (111'
surfaces at T=0'K and cr/a=1. 28.
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zero, the expression for (u'(t, ,)) in Eq. (3.6) involves
sununing

~ & (Is) ~"./&a over all modes; the expression for
(p'(ls)) in Eq. (3.7) involves sunnning

~
&~(ls) ~'co. Since

(u'(ls)) increases as the surface is approached (i.e., as
le increases) and (p'(l, )) decreases,

~ $ (l3)
~

must on
the average increase for small co as the surface is ap-
proached and must decrease for large co. At T=O'K,
the summand in Eq. (3.6) is proportional to 1/co, and
for high T it is proportional to 1/cv'. Consequently, the
lower frequencies, which serve to increase (u').~,t.«with
respect to (u')b„n, are more important at high tem-
peratures, and as the temperature increases (u'),„,t...
gains with respect to (u')b m

.03
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8.0

F'rG. 5. Mean-square amplitudes (u '}, (I„'},and (u,'} for (110)
surface at T=0'K and 0/a=1. 28.
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FIG. 7. Mean-square momenta (p, '},(p„'},and (p,'} for
(110) surface at T=O'K and e/c= 1.28.
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2 3 4 5 6 7 8 9 10

N ~16

Fio. 6. Mean-square momenta {P,') and {p,') for {100)and
{111)surfaces at T=O K and o/a=1. 28.

perature behavior is not so simple. The results of
Table I, Fig. 11, and Fig. 12 show, respectively, that
(u') increases as the density decreases, that the dynamic
displacements increase with temperature, and that the
mean-square amplitudes at the surface increase with
the dynamic displacements. Consequently, the mean-
square amplitudes will actually increase faster than
linearly as the temperature increases.

One qualitative feature which is not shown in the
6gures, but which can be seen in Table II, is that the
ratio (u'),„,t /(u')b„~~ undergoes a pronounced increase
in passing from T=O'K to the high-temperature regime.
This feature can be explained as follows: At absolute

.08-

.04-

0 2 4 6 I 10 12 14

Fj:G. 8. Temperature dependence of mean-square amplitudes (I '}
and (uP} for (100) and (111)surfaces at o/a=1. 28.



SURFACE PROPERTIES OF NOBLE —GAS CRYSTALS. I

V. TESTS OF THE MODEL AND EFFECT OF
SIMPLIFYING ASSUMPTIONS

One important question which has to be considered
is the eBect of the finite thickness of the crystal on the
calculated quantities. In order to test this eGect, @re
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FIG. 11. Static displacements 8 for (100) surface compared with
dynamic displacements for Ar at O'K and for Xe at 70'K.
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FIG. 9. Temperature dependence of mean-square amplitudes (u '),
(u„'), and (u,') for (110) surface at o/e=1.28.

.15
1 2 3 6 7 8

FIG. 12. Mean-square amplitudes (u,2) normal to the (100)
surface at ~/a=1. 28 for all-neighbor interaction with static
displacements taken into account, all-neighbor interaction ne-
glecting static displacements, and nearest-neighbor interaction
neglecting static displacements, for a temperature slightly above
the Debye temperature.

Taaxx I. Dimensionless mean-square amplitudes(Me)'~~(cc~)/Acr
at the surface for T=O'K and densities given by o/a=1. 30, 1.28,
1.26, and 1.24.
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1.28
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FIG. 10. Temperature dependence of mean-square momenta (p ')
and (p,'} for (100) and (111)surfaces at cr/a=1. 28.

performed calculations for models 1f, 2f, and 3f layers
in thickness, for both the (100) and (110) surfaces. In
addition, we carried out an independent calculation
for the bulk. Table lI contains the mean-square ampli-
tudes for the bulk, and for the surface and the center
plane of each of the three models with a (100) surface.
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TABLE II. Effect of thickness and denseness of sample points
on dimensionless mean-square amplitudes (N~)'~'{u')/ho for (100)
surface at 0/a=1. 28.

Number of
k~ Ate' '~' Number points in

T of irreducible
layers element

0 11 30
21 30
31 30
21 9
21 64

{u,')
at

surface

0.05474
0.05468
0.05468
0.05472
0.05449

a't in
center bulk

0.03466 0.03437
0.03437
0.03435
0.03442
0.03426

70 11
21
31
21
21

30
30
30
9

64

0.9916
0.9785
0.9784
0.9464
0.9906

0.4603 0.4218
0.4166
0.4130
0.3984
0.4316

~ il'P ii'

F."=k Q )up(l) ua(l')5—,
p (» ii')2

(5.1)

where k is a constant. Here o.p" is the o. component of
the vector (ro' —ro'), where n=x, y, or z. The force law
for an LJ potential in the quasiharmonic approximation
can be put in the form (5.1) by setting all displacements
equal to zero, discarding forces due to atoms which are
not nearest neighbors, and discarding a term in the
nearest-neighbor force which is small. The results of a
calculation of the mean-square amplitudes for such a
nearest-neighbor interaction are shown in Fig. 12 to-
gether with the results for the all-neighbor interaction.
Another calculation, the results of which are also
graphed in Fig. 12, was carried out with an all-neighbor

It can be seen that the eBect of the finite thickness
(and of the number of sample points in the Brillouin
zone) is somewhat greater in the high-temperature
regime than at absolute zero. This fact is related to
the divergence of the mean-square amplitudes at high
temperatures in an infinite slab-shaped crystal (see
Appendix D and Ref. 25).

Another test was carried out to determine the eGect
of varying the number of sample points used in the
irreducible element of the two-dimensional Brillouin
zone. The results of calculations for the (100) surface
with 9, 30, and 64 sample points are given in Table II.
The results di6er by only a few percent even in the
high-temperature regime. An independent test is again
provided by the bulk calculation, which was performed
with a much finer mesh (10569 points in 1/48th of the
three-dimensional Brillouin zone). It can be seen that
the results for the center layer all agree with those for
the bulk to within a few percent.

It is interesting to investigate the effect that the
simplifying assumptions used by other workers have on
the present results, since this eBect provides a direct
measure of the error introduced by these assumptions
(in the case of an LJ potential). Clark, Herman, and
XVallis" assumed a nearest-neighbor force law of the
form

interaction, but with the displacements set equal to
zero (i.e., no change in force constants at the surface).
It is evident from the results that neglecting the change
in force constants introduces substantial error into the
calculated quantities at the surface.

Our calculated mean-square amplitudes for a nearest-
neighbor interaction in the high-temperature limit are
in agreement with those of Clark et a/. , which were
found by a slightly different method involving calcula-
tion of the inverse to the dynamical matrix rather than
its eigensystem. These authors also tested the eEect of
thickness in their model and found it to be small.

It should be mentioned that efI'ects of changes in the
force constants at the surface have been considered in
the literature. VaiP' has evaluated the force constant
changes in the case of a Morse potential and estimated
their e6ect on the Debye-Wailer factor. However, only
one layer was allowed to relax in his model, and as a
consequence the effect of the relaxation (i.e., the first
static displacement) on the force constants and the
Debye-Wailer factor was underestimated. %allis, Clark,
and Herman investigated the efI'ect of force constant
changes on the mean-square amplitudes in a nearest-
neighbor model; they found that appropriate changes
in the force constants lead to improved agreement with
the experimental results for nickel. '

VI. DYNAMIG DISPLAGEMENTS

In Sec. II we discussed the static displacements of the
surface layers of a crystal. These displacements result
from the asymmetry in the forces acting upon a surface
atom. There is, however, an additional asymmetry at
the surface of a vibrating crystal which sects the
displacements of the mean positions: Consider a surface
atom that is vibrating normal to the surface. Upon
moving inward (i.e., toward the crystal), it is repelled
by the atoms in the second layer, which cause it to
reverse its direction of motion. When moving outward,
however, it does not collide with any other atoms, but
is forced to reverse its direction of motion by the
attraction of the atoms in the crystal. Because of the
asyrnrnetry of the repulsive and attractive forces, this
situation results in an additional outward shift of the
mean position of the atom. It is obvious that these
additional displacements will be strongly temperature-
dependent. In fact, we find that at absolute zero they
are small with respect to the static displacements, but
at high temperatures they are of equal importance. As
far as we know, these additional displacements have
not been previously considered. The total displace-
ments —i.e., the sum of the displacements resulting
from static and dynamic causes —we call the dynamic
di splacements.

The calculation of the dynamic displacements is
quite analogous to the calculation of the thermal ex-
pansion of bulk crystals; the mean lattice positions at

~ J. Vail, Can. J. Phys. 45, 2661 {1967).
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a given temperature are obtained by minimizing the
Helmholtz free energy at that temperature with respect
to the lattice positions. Since we assume that all atoms
in a plane paraQel to the surface are aBected in the
same way, we actually minimize the free energy with
respect to the lattice spacings in the s direction. (To
obtain the lattice spacings as a function of tempera-
ture, this process would have to be repeated for all
temperatures. )

The total Helmholtz free energy is 4+Ii, where the
static energy 4 is given by Eq. (2.1) and the vibra-
tional free energy j' is given by Eq. (3.8). If we de6ne
the dimensionless quantity A (the de Boer parameter)
by

temperature. According to the results of Sec. V, this
fact implies that our approximation of setting the dis-

placements equal to their static values will introduce
large errors into the calculated mean-square amplitudes
at high temperatures. The results for Ar at O'K, how-

ever, show that at low temperatures such errors will be
small.

Since we have defI.ned both static and dynamic dis-

placements as fractional changes in the interplanar
spacing with respect to the bulk spacing at the same
density, the fact that the dynamic displacements
increase rapidly with temperature means that thermal
expansion is much greater at the surface than in the
bulk of the crystal.

A =k/(Me)'"0.

then the dimensionless free energy

(6.1)
VII. DENSITY OF STATES AND SURFACE

SPECIFIC HEAT

(6.2)

is to be minimized with respect to the b . Notice that
A depends on the mass and potential constants, so that
the dynamic displacements, unlike the static displace-
ments, depend upon the atomic parameters and have
to be recalculated for each substance.

The calculations reported here were carried out for
the (100) surface with 0/a=1. 28. In order to make
the calculations feasible, only one displacement was
allowed to vary at a time, while the others were as-
sumed to have their static values; this approxixnation
should be a good one because the displacements for
the (100) surface depend only weakly upon one another.
A calculation of the free energy was performed for 6ve
values of each of the 6rst two displacements and for
three values of the next two. The minimum of the
expression (6.2) was then determined by an interpola-
tion procedure. In addition to the values of A for the
noble gases (taken from Horton and Leech2'), an extra,
very small value was chosen for a comparison with the
results of molecular dynamics. "

Figure 11 shows some of the results. " Since the de
Boer parameters of Ar, Kr, and Xe are rather small,
one expects the static displacements to be a rather
good approximation to the dynamic displacements at
absolute zero for these substances. This expectation is
conarmed by the results for Ar at O'K. (Ar has the
largest de Boer parameter of the three substances. )
However, the dynamic displacements for Xe at 70'K
are about double the static displacements. The dynamic
displacements, therefore, undergo a rapid increase with

Surface atoms may be thought of as less tightly
bound than those in the bulk, since at the surface some
interactions are missing and others are weakened by
the displacements. Accordingly, one expects a down-
ward shift in some of the vibrational frequencies of the
crystal when there is a surface present. This shift
should show up on a comparison of the density of
states curves for the bulk and for a crystal with surface.
Ke have calculated the density of states for a slab
with (100) surfaces and a thickness of 21 layers, and
have performed an independent calculation for the
bulk. The results, given in Fig. 13, show that the ex-
pected downward shift in the frequencies of the slab-
shaped crystals is indeed present. (The second graph
is somewhat smoother than the 6rst because more
frequencies were determined in the bulk calculation
than in the surface calculation. )

DENSITY OF STATES

(100) SURFACE

- = 1.28a
SULK

.. ..... .. WITH SU

~1 G. K. Horton and J. W. Leech, Proc. Phys. Soc. (London)
82, 810 (1963).

~ In calculating the dynamic displacements, one must assume
a value for the density in advance. Since the assumed density
(corresponding to o./a=1. 28) was not precisely correct for the
temperatures at which the calculations were performed, the
dynamic displacements approach asymptotic values which are
not precisely zero.

4 8 12 16 20 24 28
)MO'

FIG. 13.Density of vibrational states at cr/a= 1.28 in the bulk and
for a slab-shaped crystal 21 layers thick with a (100) surface.
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FxG. 14. Surface specific heat C„' for (100) surface at o/a=1. 28.
The results for PI= 11, X3' ——21 and for E3——21, X3' ——31 coincide
to within the thickness of the line drawn.

In Eq. (3.9) the specific heat is expressed in terms
~if the vibrational frequencies. Since the suImnand in
that equation increases monotonically as co decreases,
the specific heat is expected ordinarily to be increased
by the presence of a surface. We define the surface
specific heat to be the diRerence between the specific
heat of a system of particles with a surface and the
speci6c heat of the same number of particles in the
bulk, divided by the number of surface atoms. We
expect the surface speci6c heat to be positive, to de-
crease as T' at low temperatures, because of the two-
dimensional character of a surface, and to be inde-
pendent of the thickness of the crystal for suKciently
large thicknesses. For further discussion of the surface
specific heat and a description of previous calculations
of this quantity in various models, we refer to Ref. 6.

Ke have calculated the surface speci6c heat for the
(100) surface in the following way: We assume that
C, can be broken up into a bulk contribution which is
proportional to the total number of atoms XÃ3 and a
surface contribution which is proportional to the
number of surface atoms 2E. Calling the corresponding
speci6c heats per particle C, ' and C,' respectively, we
have

C.=EXEC„~+2'„'. (7.1)

Using Eq. (7.1) and the calculated values of the specific
heat for two different thicknesses E3 and E3', we can
solve for C, '.

One source of difhculty in calculating the specific
heat at low temperatures is the fact that only values
of cv of the order of magnitude of ksT/fi contribute, so
that if T is small it becomes necessary to include
sample q points for which ~ is also small —i.e., points
very close to the center of the Brillouin zone. A uniform

mesh of q points is thus unsatisfactory for calculating
C,. (The corresponding problem for the bulk is dis-
cussed in Ref. 23.) For this reason, successively finer
meshes were used as the origin was approached. Five
meshes were used altogether, giving a total of 56 inde-
pendent points. As a test on the accuracy, the calcula-
tion for a thickness of 11 layers was repeated with up
to eight meshes; none of the results was changed by
more than 0.25%.

In Fig. 14, the results of two calculations of the
speci6c heat for different thicknesses are shown. In
the 6rst calculation, E3——11 and 373' ——21; in the second,
F3=21 and E~'=31. It can be seen that C,' is positive,
as expected. It is also found to be almost independent
of thickness and to show the expected T' behavior at
very low temperatures.

VIII. CONCLUDING REMARXS

The object of this work has been to carry out com-
prehensive first-principle calculations of static and
dynamic surface sects in crystals, using a realistic
model which may be taken to represent the noble gas
solids. In order to carry through this program, certain
assumptions and approximations had to be made. In
the following we shall briefly summarize these approxi-
mations and discuss the way in which they afI'ect the
results.

First of all, we have assumed that the noble-gas
atoms interact through an LJ (6,12) potential. In
recent years there has been increasing criticism of the
LJ potential, and it is widely agreed that it is not the
best potential to describe the pair interaction of noble-
gas atoms. Its great virtue, however, is its analytical
simplicity, and the use of any other potential would
have made this work far more complicated. In addition,
the LJ potential is known to give good results in
calculations of both static" and dynamic" properties
of noble-gas solids, the agreement with experiment
often depending on the way in which the potential
parameters e and 0. have been determined. Since all of
the present calculations, except those of the dynamic
displacements, have been carried out in dimensionless
form, the results are independent of e and 0 and can
thus be used with any improved set of potential pa-
rameters. We therefore view the LJ potential as a
model potential, but one which is quite realistic.

The other approximations involved in our model,
such as the 6nite thickness of the model crystal and
the assumption that the displacements have their

~F. W. de Wette, L. H. Nosanow, and N. R. Werthamer,
Phys. Rev. 162, 824 (1967).

~The density predicted by the LJ potential in the static
approximation agrees quite well with experiment. Also, Benson
and Claxton (Ref. 17) found that their results for the static
displacements calculated with the LJ potential agreed rather well
with the average of the results for Xe, Ar, Kr, and Xe calculated
with a Buckingham potential.

"See, for example, F. W. de Wette and R. M. J. Cotterill,
Solid State Commun. 6, 227 (1968).
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static values, have been shown to be well-justified
(for Ar, Kr, and Xe), provided that the temperature
is not too high. It is believed, therefore, that the only
important assumption in our model at low tempera-
tures is the validity of the quasiharmonic approxima-
tion; i.e., the assumption that anharmonic eRects are
negligible.

At high temperatures, where the mean-square am-
plitudes are large, the validity of the quasiharmonic
approximation is certainly open to question. This is
particularly true at the surface, where the mean-square
amplitudes are much larger than those in the bulk.
Furthermore, we have seen in Sec. VI that the dynamic
displacements are much larger than the static dis-
placements at high temperatures, and in Sec. V we
have found that the displacements have a substantial
inQuence on the calculated quantities. Therefore, one
expects both the quasiharmonic approximation and the
assumption that the displacements have their static
values to break down at high temperatures. In II
results will be presented which were obtained by
means of molecular dynamics, a method which is
suitable at high temperatures and which takes both
dynamic displacements and anharmonic eRects into
account automatically.

Most of the calculations reported here were per-
formed for a/a=1. 28, which corresponds to the density
of argon at low temperatures. Two of the calculated
quantities —the displacements of the mean positions
and the mean-square amplitudes —can in principle be
measured by means of low-energy electron di6raction.
This same technique can be used to study the thermal
diRuse scattering, for which calculated results will be
published elsewhere. "It would be extremely interesting
if low-energy electron difI'raction studies of noble-gas
crystals could be undertaken, since such studies would
provide a direct link between experiment and theory in
the areas of surface structure and surface dynamics.

plane of the crystal. It is also assumed that each plane
is displaced as a whole, and that the displacements are
small.

The condition for static equilibrium of the crystal is

ay(r r'—)
Z
&N&m &ihB, (z s)

m& n'& 1 l1',la'

=0 (A3)

where d is the distance between planes and r and r'
specify positions of particles within the nth and n'th
planes, respectively. If the summand on the right hand
side of Eq. (A3) is expanded in a Taylor series about
the bulk positions, we obtain to first order

The subscript "b" indicates that a quantity is to be
evaluated with all particles at their bulk positions, and

Az= (s—z )—L(z—s )j~. (A5)

In (A4) the terms in (Az)', etc. have been omitted
because of our assumption that the displacements are
small.

Now suppose that the semi-infinite crystal were
converted into an infinite crystal by filling the space
above the surface with particles. The equation for
static equilibrium would then become

B@(r r')—
co &m &m latm cl(z—z )

m& n'& —oo lt'la'

=0.

cltt'(r —r')

8(8 d) )
m& n'& 1 lt'l~'

cl'y (r—r') )+ g Q
~

hz=0. (A4)
&m ld~ ci(z—z ) ) b

m& n'& 1 lt'ls'

y(r —r')=c~ r —r'~-& (A1)

for large ~r —r'~, where c is a constant a.nd p is an
integer &3. We show that for m sufficiently large

8„=const. )& 1/m~'. (A2)

The structure of the crystal and the type of surface are
bzunaterial, except that the surface is assumed to be a

"F. 4V. de bette and R. E. Allen, in Proceedings of the Fourth
International Symposium on The Structure and Chefnistry of
Solid Surfaces, Berkeley, Calif. , 1968 {John Wiley R Sons, Inc. ,
New York, 1969).

APPENDIX A: DEPENDENCE OF STATIC DIS-
PLACEMENTS UPON DISTANCE FROM THE

SURFACE

Consider a semi-infinite crystal which is composed
of identical particles interacting through a potential
p(r r') such—that

Furthermore, since the equilibrium positions in this
case would be the bulk positions, the summation in
Eq. (A6) is to be evaluated with all atoms in their
bulk positions. Therefore, if we break this summation
up into the parts for n'& 1 and n'&0 and make use
of Eqs. (A4) and (A6), we obtain

a'4 (r r')—
&e&m ti&~ 8(z—s)2

m& n'& 1 li'ls'

cia (r—r')
+ Z Z (A&)

~ &n &m ldll 8( sz)
0& n'& —~ lt'ls'

Now we make two approximations regarding the right-
hand side of this equation, both of which are valid for
large ~r —r'~ and hence for large m: (1) Ke repla. ce
p(r —r') by c~ r —r'~ —"in accordance with Eq. (A1);
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(2) We replace the sum by an integral,

I= —cPDX ds dz' (22rpdp)

XLp'+(s —s')'j '~""(s—s') (A8)

=constX1/mI 2, (A9)

where D is the number of particles per unit volume.
According to Eq. (A7), therefore,

472@(r—r')
hs= const)&

~ &Is&sss lits 8( —S S )
m& e') 1 /1'l2'

(A10)
mp 3

Suppose that the displacements can be taken to vary
independently, so that all displacements except the one
under consideration may be set equal to zero. Then
Az=b for all the terms of the sum in Eq. (A10), and
Eq. (A2) follows immediately.

It is not necessarily true, however, that the displace-
ments vary independently. For example, in the case
of an LJ potential the derivative in Eq. (A10) is large
for nearest neighbors. When the surface is a (110)
plane, there are nearest neighbors in the planes which
are adjacent to a given plane and in the next planes
also. Consequently, three terms in the sum of Eq.
(A10) are important, and these terms contain b,
(b +b~+1), and (b +b„1),respectively. Each displace-
ment is thus coupled to the two adjacent to it.

In the case that the displacements do not vary
independently, we make two additional assumptions:
First, we assume that each displacement is coupled to
only a finite number of others, so that there is some
no such that only 8 +„„8+„~&, . , 8, occur in Eq.
(A10) (for m) np) Second,. we assume that the solution
for 8 has the form

integers m, the coe%cient of each m~ must vanish.
Therefore a, =u J =0, and by induction al, =0 for
k) —p+3. Hence, Eq. (A11) reduces to

~—x+2+ + + +. .
mI 2 m~' m&

(A13)

and in the limit m —+ 40, Eq. (A13) in turn reduces to
Eq. (A2).

Equation (A2) for uncoupled displacements and Eq.
(A13) for coupled displacements were derived with
no approximations except the two immediately pre-
ceding Eq. (A8) (plus the assumption that m)np).
For an LJ potential, both approximations should be
good for quite small values of m. We can therefore
expect the inverse cube behavior to show up for small
m when there is no coupling of displacements L(100)
and (111) surfacesj, but when there is coupling [(110)
surface] the higher order terms in Eq. (A13) may
persist until m is fairly large. Both these expectations
are confirmed by the calculated results.

where

P (IT IT

D p(4lk)=, I 814+ — 82
a

and

S-p(q)
814———48 Q — 14 —b.pS(q), (82)

~ ll' ~ ll' 2

APPENDIX B: EXPRESSIONS FOR DYNAMICAL
QUANTITIES IN THE CASE OF A

LENNARD-JONES POTENTIAL

In this Appendix we give explicit expressions for the
dynamical matrix and the physical quantities (I'), (p'),
P, and C, in the case of a Lennard-Jones potential.
The dynamical matrix is given by

b =ap+akm+ +a,ms+a 1m
—'

+a 2m '+, (A11)
S-p(q)

82=24 Q 8 —b pS(q)
~ ll' ~ ll' 2

(83)

where s is an arbitrarily large positive integer. When As
is written in terms of the displacements 8 ~ between the
eth and e'th planes, when these 8 ~ are expressed in
terms of the series in Eq. (A11), and when the binomial
theorem is used to evaluate m'"= (m+integer)", then
an equation of the following form results:

S

(asI sk+as —1 4s—1,k+ ' ' '+akPkk)m
kA

—1

+ 2 (a—1&—1,k+a—2c—2,k+ ' ' '+akckk)m

= constXm T+2. (A12)

S p(q)= Q 42p"'Pp" expriq (rp' —r„')j (84)

S(q)= Q exp)2q (rp' —rp')].

ssxx (
' )" Is"'=' -b-pS(q=0), (86)

Here i labels a shell of atoms with the same distance
from the origin and j labels the atoms within a shell,
so that summing over i and j is equivalent to summing
over /I' and l2'. If /3'=l~, then the li'=l2'=0 terms in
Eqs. (82) and (83) are, respectively, to be replaced by

The c,,- are constants. In order to use the binomial
theorem for negative powers of m' we have assumed
that m)np If Eq. (A1. 2) is to hold for all positive

aTlCl

-ssXX( )
s'' —b pS(q=O), (87)
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T'= (he/h) (Ma'/e)'"T,

~= n, (q)/T*.

(89)

(810)

where the prime indicates that the point lj."=l2"=0 is
to be omitted if l~"——l3.

For an LJ potential, we can define the dimensionless
quantities

n„(q) = (Ma'/e)"'««, (q),

used to describe all the planes, but that the unit cell

associated with a lattice point may diBer from one

plane to another in the number and kind of particles
it contains and in their positions. The particles in a
unit cell of the l&th plane are labeled by K = 1, 2, , s(l&).
Equations (3.1)—(3.9) still hold, with the quantities
now depending on ~ and with 4 now signifying the
total static energy due to any kind of interaction. From
Eq. (3.4) it follows that

In terms of these quantities, Eqs. (3.6)—(3.9) can be
rewritten as follows: 4 e.(I'«'; 1«) =C.e (1»; 1'«') (Cl)

(Me)'" 1
) p~(l« , qp) ~

.' e*+1
( -'(1 ))=—2'

ha 2Ã «r D„(q) e*—1
(811)

and from Eq. (3.3)

De 1«'»', 1««) =
[M„.(1«')M„(13)]'"

g 1 e'+1
(p (13))=—2'

I k. (1«; qp) I'&,(q), (812)
h(M«)" 2E «n e*—1

&( p 4 (I'K' 1»)e'«'~"' "' (C2)

1 M'a' '" Q~( ) It makes no difference whether we sum over 1 or over

~

~

h e „2 ' 1' in Eq. (C2). Equations (C1) and (C2) therefore

imply that

—C„=P'
&r~ «i (e —1)-'

1(814)

(M, (4)M, (l,'))'~'

X P C e(1»;1,'»')e —'««i —.«' (C3)The summations over q in Eqs. (811)—(814) in
principle extend over the complete two-dimensional
Hrillouin zone. In practice, however, it is sufhcient to
use only the irreducible element, which comprises 8
and -', the full zone for the (100), (111), and (110)
surfaces, respectively (see Fig. 3). If w(q) is the number
of points in the full zone represented by the point q
in the irreducible element, then the surrunations need
only extend over the irreducible element provided that
each term is multiplied by w(q). There is one exception:
For the (100) and (111) surfaces the prescription for
o.=x or

=D e*(l,»; 1,'K').

Hence the dynamical matrix is Hermitian.
Now we take the origin (ra'=1=0) to lie at the

crystal's center of inversion, so that the force constants
are invariant under the transformation 1 —+ —1:

(C5)C.e( 1»; 1'—«') =C—.e(l»; 1'K')

p ls
(« is chosen such that the unit cell is reversed for 13(0.)

(1 ) ] w(q)[t ( (1 ) ) y [ ( (1 ) [ j (815) By definition,

APPENDIX C: REDUCTION OF THE
DYNAMICAL MATRIX

In this Appendix we show that the original dynamical
matrix for a slab-shaped crystal can always be reduced
to a real, symxnetric matrix of the same size. Use of
this reduced matrix results in a very great saving in the
computer time required to calculate the eigensystem.

The method for reducing the dynamical niatrix does
riot depend upon the crystal structure, the interaction
between particles, or the type of surface. It is assumed
only that the slab possesses a center of inversion and
has a structure which is periodic with respect to some
set of translations parallel to the surface; i.e., we assume
that the same two-dimensional Bravais lattice can be

D e(—1;»; —1«'»') =
[M„(—1«)M, (—1«')]'"

X Q C e(—1» 1'»')e'«'—"o '"« '& -(C-6)

where 1' has been renamed 1' Since M„(——1«).=M, (l«),
ro

—'= —ro', and summing over —t' is equivalent to
summing over 1', Eqs. (C5) and (C6) imply that

D~e( l«K, —1«'K') =Dae*(1.3» j 13 K
—) .

Because the dynamical matrix is Hermitian, cv is real,
so Eqs. (C7) and (3.2) imply that we can t:ike

~-( 1»)= ~-*(t «)—
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v (lax)=v2Reg (l,a), lm&0

=Ret (0~), is=0
=v2 Imp (—13~) 13(0.

(C10)

Since the P (ly&) are orthonormal, so are the v (13K).
Kqs. (C4) and (C7) imply that

Wp~(l3'~', l3~) = W~p(lg~) lg'~') . (C11)

Finally, by substitution and use of Kqs. (C7), (C8),
and (3.2), one can show that

W~p(lgK& l3 K )sp(lg «') =aPr. (lgK) (C12.)
p4'x'

The eigensystem of D p(l&~, 1&'~') can thus be ob-
tained from that of W p(13~, l&'a') in a very simple
w'ay: The eigenvalues are the same and

P (lac)= ,'v2fs (l-g(()+i» ( 13K)] — (C. 13)

It should be mentioned here that Wallis, Clark, and
Herman' have previously shown how the dynamical
matrix for their model can be reduced.

APPENDIX D: DIVERGENCE OF THE MEAN-
SQUARE AMPLITUDES IN INFINITE

SLAB-SHAPED CRYSTALS

It is well-known that the mean-square amplitudes of
vibration for a two-dimensional crystal diverge loga-
rithmically at finite temperatures as the size of the
crystal increases (see, for example, Ref. 18,pp. 241—242).
The same is true for slab-shaped crystals, as can be
seen from Kq. (3.6): The sum over p in this equation

Next we define the matrix

W p(ly(;13'K') —ReD p(13m;l~'~')+ReD p(l~z; —l~'~'),

l»0, l,'&0
= ImD~p(13K; lg K ) I mDggp(13K( l3 K ) )

l»0, l,'&0
= —ImD p(lax; lg'K') Im—D p(lp~, —

LORY),

l,&0, le'&0
=ReD p(l~; 13'~') Re—D p(13K; la K ),

l &O, l'&0
=%2 ReD p(l3~, Oz'), la&0, lq'=0 (C9)
= —v2 ImD p(lg~, 0~'),

l,&0, l,'=0
=V2ReD p(0~;l3'K) l3 0 l3 &0
=&2 ImD, p(OK; ls K ), l3 0, 13'——(0
=ReD p(OK; 0~'), l3=0, l3'=0

and the vector

involves 3%3—3 "optical" modes, for which ~~ ap-
proaches a 6xed value as

~ q~
—+ 0, and 3 "acoustic"

modes, for which M„~ (q~ for small )q(. Therefore,
when ~q~ is sufficiently small, the contribution from
the acoustic modes dominates the summand in Eq.
(3.6) and the summand is proportional to 1/~q~' for
T/0. The contribution from a small circle of radius

qo about the origin in reciprocal space is then roughly
proportional to

lim = 2n. lim ln (qo/8)5~
~q(R pM

which diverges.
As long as the number of atoms per plane, and thus

the periodicity lengths in the x and y directions, are
finite the smallest allowed values of q in the first
Brillouin zone are a finite distance away from the
origin, and hence the mean-square amplitudes are
finite. However, for small thicknesses one can observe
an increase in the mean-square amplitudes at high
temperatures as the periodicity length is increased.
For example, in Table II it can be seen that when the
number of sample points was increased from 9 to 64,
the mean-square amplitudes at both the surface and
the center of the slab-shaped crystal increased by
several percent. At T=O'K, where there is no diver-
gence problem, the change was only a fraction of one
percent.

As the thickness of the crystal is increased, the value
of

~ $, (l~, qP) ~' for a given mode decreases because of
the normalization condition on the eigenvectors. Con-
sequently, the contribution of the acoustic modes to
the mean-square amplitudes is roughly proportional
to 1/X3,. i.e., the divergence of the mean-square am-
plitudes with respect to increasing periodicity length
(and hence the effect of changes in the number of
sample points) decreases in inverse proportion to the
thickness of the crystal. As X3~ ~, the divergence
disappears entirely.

In order to obtain very accurate results for slab-
shaped crystals at high temperatures, one would have
to use model crystals of very great thickness. Even in
the high-temperature regime, however, if the periodicity
length is approximately equal to the thickness, the error
for a crystal of moderate thickness (about 20 layers)
should be only a few' percent. It can be seen in Table
II that the results for a crystal with a thickness of 21
layers, with 30 points in the irreducible element, agree
with the result of an independent calculation for the
bulk to within about 1%. The error decreases with
temperature, and at absolute zero there is agreement
to four significant figures.


