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particle motion between sites in the vicinity of the
defect rather than direct absorption by band electrons.
The anisotropy of the changes in attenuation indicate
the particle sites are well defined. Only modes associated
with the C44 elastic constant are eGected by the reduc-
tion, suggesting that the motion is between sites which

became inequivalent as a result of the strain associated
with the C44 elastic constant.
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We report extensive numerical solutions of the electromagnetic wave equation with a saturable, com-
plex, intensity-dependent refractive index. The "large-scale" self-focusing region is fully explored, and
some aspects of "small-scale" self-trapping induced by saturation of the nonlinear index are investigated.
We find that many features of the numerical solutions are predicted rather well by the paraxial-ray —con-
stant-shape approximation.

1. INTRODUCTION

HE phenomenon of self-focusing of intense optical
beams in liquids with intensity-dependent refrac-

tive indices is of central importance in determining the
nonlinear optical properties of these materials. Un-
fortunately, it is difficult to construct a theory of self-
focusing which includes all the physical mechanisms
which are known to inQuence the local optical intensity.
In addition to processes such as orientational and
translational molecular redistribution which give rise to
the nonlinear refractive index itself, one must also
include in a proper theory such inelastic processes as
stimulated Raman and Brillouin scattering. Moreover,
comparison of any such theory with experiment is
awkward because of the uncertainty in the spatial and
temporal properties of the primary laser radiation.

In view of this complexity there seems to be some
advantage in studying each part of the self-focusing
problem separately in depth before attempting a com-
prehensive theory. We report in this paper the results
of one such study in which all time-dependent and
inelastic scattering processes are ignored. The entire
response of the nonlinear medium is assumed to be
contained in an intensity-dependent complex refractive
index. This leads to an approximate nonlinear wave
equation for the optical electric field which was first
derived and solved numerically by Kelley' for a simple
intensity-dependent index. Our work is a direct general-
ization of Kelley's.

*Work supported by the U. S. Army Research Once, Durham,
under Grant No. DA-ARO-D-31-124-6920, and Joint Services
Electronics Program (U. S. Army, Navy, and Air Force), under
Grant Xo. AF-AFOSR-496-67.

t National Science Foundation Fellow.
' P. L. Kelley, Phys. Rev. Letters 15, 1005 {1965}.

After this study was completed, we discovered that
very similar numerical results were reported by Gold-
berg, Talanov, and Erm (GTE) in Ref. 2, which is not
yet available in English translation. While the program
of GTE is remarkably like ours, we feel that sufficient
differences exist in emphasis, domain of solution, and
conclusions to justify publication of our results.
Wherever possible, we have taken pains to compare our
conclusions with those of GTE. Kelley' has also ob-
tained numerical solutions similar to some of those
reported here.

In Sec. 2 we present solutions of Kelley's original
equation with neither absorption nor saturation of the
nonlinear index. From these it is possible to determine
the regions of validity of the various approximate
analytical solutions of this equation, and to find the
"dynamical critical power" for self-focusing. Similar
results are given in Sec. 3 for a linearly absorbing
medium. Here we analyze the relevant experiment of
Kaiser et al.4 and describe another which would be
easier to compare with the theory. Section 4 includes
our results for a saturable nonlinear index. In this case
qualitatively new phenomena appear: the dynamical
formation of rings in the transverse intensity distribu-
tion. The inclusion of nonlinear absorption, discussed
in Sec. 5, does not lead to significant or unexpected
modifications of the previous results. Extreme care was
taken to eliminate instabilities in the computing scheme
as described in Sec. 6.

' V. ¹ Goldberg, V. I. Talanov, and R. K. Krm, Izv. Vysshikh
Uchebn. Zavedenii Radiofiz. 10, 674 (1967).' P. L. Kelley (private communication).' W. Kaiser, A. Laubereau, M. Maier, and J. A. 4iordlnaine,
Phys. Letters 22, 60 (1966).' J. H. Marburger and E. L. Dawes, Phys. Rev. Letters 21, 556
(1968).
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In our attempts to understand the structure of our
u&iinerical solntions, we found the appraxiiiiate aii;l, -

lytical approach described by Wagner ei ul. o (WHM)
to be most fruitful. The notation (WHM-3) means
Eq. (3) in this reference. Other authors have used the
paraxial-ray approximation employed in %HM, as
cited there, but most of the results of this approach are
suxxixnarized in %HM and for convenience we shall
refer only to this work.
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D=ooE+oo(~ EI')-E (2.2)

where ( ), denotes a time average over many cycles.
For more detailed discussion of the approximations
involved in deriving (2.1), see Refs. 1 and 6.

Since Eq. (2.1) has no free parameters, its solutions
may be classified according to the properties of the
initial values for the field at s=0. Throughout this
paper we restrict ourselves to equiphase cylindrically
syxnxnetrical initial field distributions with a single
maximum at r=0. Except where noted, the field dis-
tribution is Gaussian with variance g: E=Eoe "'"'.

In Fig. 1 we have plotted a set of curves obtained
from numerical solutions of (2.1) showing the on-axis
intensity (r =0) versus s for a number of powers in the
input beam relative to the "dynamical critical power"
P2 for self-focusing. The criterion for determining P~
is evident: For beam powers P& P2 the on-axis intensity
is "unbounded" for some a=sf, where sf is the "self-
focusing length. '" This critical power should be com-
pared with Poor obtained by Chiao et ai. ' (CGT) in the
solution of the ordinary di6'erential equation describing
the propagation of a beam whose transverse shape does
not change with s. We find that for a Gaussian inpuI
(Po —Poor)/Ps=0. 013. Thus we may take P, =PcGT-

' W. G. Wagner, H. A. Haus, and J. H. Marburger, Phys. Rev.
175, 256 (1968).'R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Letters 13, 479 (1964).

2. SIMPLEST NONLINEAR SUSCEPTIBILITY

The nonlinear equation whose solutions are analyzed
in this section is simply Kelly's Eq. (9) '

iBI"*/82*+8'Eo/Br*'
+r* iaE*/or*+-~ E*(~E*=0, (2.1)

where Z*=Z/2ka', r*=r/a, E*= (o&/2oo)"' kaE, and a
is the variance of the Gaussian transverse optical field
distribution that we assume at longitudinal distance
2'=0. E is the peak electric field amplitude, k is the
wave number in the medium, and ~2 is the nonlinear
dielectric constant employed by Chiao et a/. ' This
expression follows from the wave equation of electro-
magnetic theory if the divergence of K is ignored along
with the second derivative of the slowly varying ampli-
tude E(r,s) with respect to s. Also neglected are in-
elastic scattering (frequency-shifting) processes. The
constitutive equation which must be used to obtain
(2.1) is

O. I
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FiG. 1.Normalized on-axis intensity I*/Io~ versus axial distance
in units of the near-6eld length 2kao'&((P/Eg) '/'. Curves are
parametrized by I'/I"&.

This result was also obtained by GTE. Kith our
definition of e2,

Po = (1 22Xo) coo'~ /64oo,

where X0 ——2w&0'I'k '
The paraxial-ray analysis of Talanov (see WHM)

predicts a critical power P~=0.273P2. Our numerical
solutions show that for P&&P (P2 the on-axis intensity
rises initially to a "w'eak" focus and then falls to zero
as if the beam were distracting. This behavior can be
understood from an examination of Kq. (WHM-2. 10)
for Gaussian beams with powers in this region. This
equation, which is the equation of motion for a ray,
shows that rays near the axis experience a net focusing
force, while the periphery of the beam feels a net
diffractive force. Thus the on-axis intensity always
increases initially for P)P&. GTE show plots of ray
trajectories for P~&P&P~ and P2&P which display
this behavior. This argixnent also shows that the radial
intensity profile becomes peaked on axis, but with very
wide wings, a feature of the CGT stationary profile. '
In fact, we find that in the Bat portion of curves such as
that in Fig. 1, for which P/Po=1. 03, the radial profile
is very close to the CGT shape.

From the data of Fig. 1 it is easy to find the depen-
dence of the self-focusing length on the input power.
Figure 2 shows that Zf ' is asymptotically a linear
function of P'", the equation for the asymptote being

(P/Po)'"=0. 858+0.369ka'Zr ' (2 3)
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At low power P&0.25P2, the formula (WHM-3. 7)
predicted by the paraxial-ray approximation fits the
numerical solution well:

(')/ (0) =&'+~' —(P/P )~(z/'")') '

P&0.25P, . (2.5)

1.0(10)

OI

0.5(5

For input beams whose transverse shapes are not
Gaussian, but still smooth and with a single maximum,
we find that the "ffactor" is a useful concept. Defining
a beam radius a& by

g'(r)rdr,

00 (&) ~ (~) (4)

Fro. 2. P2 versus inverse self-focusing length. A, square root of
ratio of input power to critical power; B, asymptote of A for high
powers; C, square root of ratio of input power to critical power
versus parameter n appearing in Eq. (2.4). Note that two diGerent
ordinate scales are used. The nonparenthetic scale refers to A and
B, the parenthetic scale to C.

C. C. Wang, Phys. Rev. Letters 16, 344 (1966).

This formula may be used to determine the critical
power from measurements of the self-focusing length
versus power. We stress that the numerical constants
in (2.3) are valid only for Gaussian input beams. (Other
shapes are discussed below. ) Wang's' experimental
determinations of Pi by this method employ an ap-
proximate formula of Kelley's' in which the constant
c=0.858 is replaced by unity. This leads to an under-
estimate of the actual critical power.

GTE also obtain a curve such as A in Fig. 2 and 6t
it with a hyperbola whose asymptote (in our notation)
is given by (2.3) with slope 0.366 and intercept 0.824.
The small discrepancy in slope may be attributed to
GTE's use of solutions with P not exceeding 54P2,
while our maximum power was 333P2. Therefore our
determination of the asymptote is more accurate.

When comparing the results of GTE with ours, one
must bear in mind that in GTE the width b of the input
Gaussian, rather than the power, is used as a parameter.
A change in b, with 6xed input on-axis intensity, changes
the input power as well as the beam diameter. Our use
of the input power as a parameter with fixed beam
width allows the curves of Fig. 1 to be compared
directly with experiments in which, for example, the
input power changes with time, but not the beam radius.

For P/P2& 1.5, the following analytical formula is a
fairly good representation of the curves in Fig. 1:

I(z)/I(o) =[1—(z/zr)'3 " P&15P2 (2 4)

where n is a parameter which depends on power as
shown in Fig. 2. For P/P2& j.00, a is approximately
unity, so that (2.4) reduces to the formula proposed by
Kelley. ' We 6nd that Kelley's numerical curve, ' with
zr*=0.01, corresponds to P/P2=333.

3. EFFECTS OF LINEAR ABSORPTION

Numerical solutions of (2.1) with the additional term
-', iy*E* added to the left-hand side were obtained for a
variety of situations. Figure 3 shows a family of on-axis

20-
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FIG. 3.Normalized on-axis intensity I*//I0* versus axial distance
in units of the near-field length 2ka0'. Curves are parametrized by
the linear absorption coefficient. Input power P =333P~.

where the input field distribution is E(r) =P. ,~(r),
and a transverse radius of curvature ar by g'(r)
= 1—(r/ar)'+, we define f=as/a—r With. this
definition we have found numerically that for all
smooth non-Gaussian beams that we used as inputs,
(2.3) becomes

(P/P )"~0369kas'. (fz~) '

for P)&P2. This agrees with a formula suggested by
Wang. ' We have also found that the dynamical critical
power for self-focusing for beams with f& 1 increases as

f increases.
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experiment with our numerical results. Here s~(y)/sf (0)
is the ratio of the self-focusing length with absorption
to that without absorption at fixed input power. Both
curves stop when y =y, .
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FIG. 4. Square of ratio of self-focusing length with linear ab-
sorption to self-focusing length without linear absorption versus
product of linear absorption coeScient and self-focusing length.
Input power P=333P2. A, Eq. (3.1); B, computer results.

intensity versus z* curves obtained from these solutions,
each curve corresponding to the same input power
P =333P~ but a different absorption coefFicient y*. The
parameter y* is related to the usual absorption co-
eKcient y via

y* =2ku'y.

A similar family of curves was obtained by GTE for
P =13.4P2, with 0&p &20, and shows exactly the same
qualitative behavior. In particular, there is a cata-
stropic focus only for su%ciently small absorption,

~ (P/P2). From our solutions, y, *(333)= 170,
and from GTE, y,„*(13.4) =16. This behavior is not
at aB surprising: If the self-focusing length exceeds
somewhat the absorption length, too much power will

be lost to allow a sharp focus. Thus y, * should be
proportional to zf ' and therefore, for su6iciently large
powers, to (P/P2)"s. This is roughly consistent with
the numbers cited above.

Using an equation derived by Kaiser et al. t Eq. (3)
of Ref. 4g which is based upon the paraxial-ray for-
malism, it is possible to find an approximate formula
for the curves in Fig. 3:

4. SATURABLE NONLINEAR SUSCEPTIBILITY

The most important properties of the solutions of

Eq. (2.1) with the final term replaced by ~E*~RE~/

(1+
~

E*/E,~
~

') have been reported in Ref. 5, but here,
for completeness, we shall repeat some of the arguments
of that letter. Our aim in studying the effects of satura-
tion of the nonlinear refractive index is not so much to
obtain a single numerical solution of an equation in
which all the parameters have realistic values, but
rather to determine how the structure of the solution
depends upon these parameters. In fact, we believe that
the microscopic theory of the nonlinear index is not yet
suKciently well developed to yield realistic values of
the parameter E,* even to within orders of magnitude.

The approximate analysis of %HM indicates that
saturation of the index prevents a catastrophic focus:
At the focus, there is a maximum intensity and a
corresponding minimum beam radius. Moreover, the
focus itself occurs at a somewhat larger axial distance
than for no saturation. Beyond the first focus the beam
diffracts out to its original radius, whereupon the
"self-focusing force" takes over and the process repeats
itself, giving rise to a series of foci spaced 2'.

Our numerical results indicate that these conclusions
are correct as long as the constant-shape assumption of
%HM is not violated. For example, in Fig. 5, we show
the prediction of (WHM-3. 19) for the ratio of the
self-focusing length for a saturable index to that without
saturation as a function of the saturation intensity
I,~=—E,*' (dashed line). The solid line is plotted from
our numerical solutions and is in fair agreement with
the approximate theory. Here the beam power was
taken to be rather high: P—=333P2. For lower powers,

When the bracketed quantity in (3.1) approaches zero,
the intensity increases without bound. Experimentally
one may fix the cell length z and vary p and P to achieve
a focus near the cell exit, as in the experiment of Kaiser
et ul.4 In this case one always has a catastrophic focus
and p never exceeds p, .Alternatively, one could fix P
and vary p and z to achieve a focus and in this way
determine p, experimentally. Since this experiment
probes the region of "anomalous" curves in Fig. 3, one
may expect the approximate Eq. (3.1) to be inaccurate.
Figure 4 compares the predictions of (3.1) for this

8
4

N
V vl

4
N

FIG. 5. Ratio of self-focusing length with saturation to that
without saturation as a function of the saturation field I,~ =E,~~.
Input power P=333P2. Computer result, solid curve; Eq.
(WHM-3. 19), dashed line.
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C' 6rms the existence of a 6nite maximum at the focus.

However, the subsequent behavior of the intensity is
not at all that predicted by the paraxial-ray-constant-
shape theory of WHM. The radial intensity pro61es
beyond the focus, shown in Figs. 7 and 8, show why:
The constant-shape assumption is dramatically violated
here. The formation of the radial rings shown in these
6gures comes about as follows: As the beam propagates,
the refractive index near the axis rises at 6rst but then
becomes constant upon saturation. The resultant in-
duced "convex lens" is Bat in the center and therefore
tends to focus incoming (still nearly parallel) rays into
a ring. The rays initially bent toward the axis continue
inward and give rise to a central maximum. The inten-
sity in the ring also rises until a new "Qat" region is

C

IQ

lQ xZ
15

IO-

Frc. 6. Normalized on-axis intensity versus axial distance in
units of the near-ieM length 2k@0~. ABC, I,~=10000; A'3'C',
I,~=40 000. Input power P=333P2. Dashed line is normalized
intensity averaged over a small radial region versus axial distance
for I,*=40000.

the approximate reduction in Zf may be inferred from
(WHM-3. 19) or from Fig. 4 of WHM.

Figure 6, which shows normalized on-axis intensities
versus Z~ for two diBerent saturation 6elds (solid
curves) obtained from our numerical solutions, con-

A
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Fn. 7. Normalized intensity versus radial distance in units of
the input radius ao, taken at various axial positions ABC shown
in Fig. 6.

FIG. 8. Normalized intensity versus radial distance in units of
the input radius ao, taken at various axial positions A'B'C'
shown in Fig. 6.

formed in the induced lens, whereupon a new ring
begins to form.

Before discussing our numerical results in detail, it is
of interest to compare the range of parameters for which
we have solutions with that of GTE. These authors
show on-axis intensity versus Z curves for beam power
and saturation intensities (P/P2, I,*)= (1.21, 18),
(3.35, 50), (13.4, 200). In contrast, we have solutions
for P/Pm=333 and I,~ ranging from 2500 to 40000
(see Fig. 5), as well as a single solution with P/P2 33——
and I,*=10000. For CS2, Pm is about 10 kW (for
X0=0.7 p) and the power for which most of our solutions
have been obtained is about 3 MW, a power level easily
achieved with modern Q-switched lasers. Realistic
values of 8,* are ~i&cult to estimate in the absence of
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any realistic theory of the saturation of the nonlinear

index. A crude theory which treats the liqui(1 as a ga~

of anisotropic molecules with mutual interactions repre-

sented only by I.orentz local field' yields roughly

E,~= 10'. This is nearly two orders of magnitude greater

than that for which we have solutions, and three orders

of magnitude greater than that for which GTE have

solutions.
Complicated as the curves in Pigs. 6—8 appear, their

structure may be largely understood with the help of

the results of the paraxial-ray analysis. The solutions

with the lower saturation 6eld, ABC in Figs. 6 and 7,
are simplest and show that after the ring structure has

formed, the central peak persists and oscillates weakly

in intensity. The radius of this peak and of the hrst

ring, measured to the point at which the intensity has

diminished by 1/e, are 0.019 and 0.086, respectively.

For comparison, the minimum radius a * and the
equilibrium radius a,* predicted by the paraxial-ray

theory for a Gaussian beam of power P/P2=333 are

0.021 and 0.085, respectively. Fitting the central peak
with a Gaussian and treating it as if the rings were

absent, we find from (WHM-3. 14) a period of oscillation

Z, =3)&10—', which compares favorably with the

distance = 2 X10 ' between the two minima in the curve

ABC in Fig. 6. The power in the central peak is about
an order of magnitude greater than I'2 at the focus and

decreases slowly at greater distances.

In contrast, the power in the central peak of the
radial pro61es plotted in Fig. 8 is not at all constant.
Its fluctuations are reflected in the violent oscillations

of the on-axis intensity as shown in Fig. 6, curve
A'8'O'. However, the power in the central maximum

and the 6rst ring varies much less rapidly and exceeds
I'2 by about an order of magnitude. The intensity
averaged over a small area including the 6rst ring is

shown as a dashed line in Fig. 6.
The radius of the 6rst ring, r =0.045, is again close

to the equilibrium radius predicted by the paraxial-ray
theory, a,*=0.043, and the corresponding predicted
minimum radius a =0.01 is close to the variance of the
best Gaussian 6t to the central peak of curve A' in

Fig. 8, r =0.009. The period of oscillation predicted by
(WHM-3. 14) for this Gaussian as an input beam is

Z,*=0.80)&10 ', which agrees well with the numerical
value 0.74&10 ' inferred from curve A'B'C' in Fig. 6.

The periodic transfer of power between the central
peak and the 6rst ring also occurs in our numerical
solution for P =338~, and here too the radial scale and
period of oscillation of the on-axis intensity is given
quite well by the paraxial-ray formulas.

This persistence of a very high intensity beyond the
focus in a region very near the axis is strikingly similar

to the observed "small-scale filament" formation ob-

served experimentally. ' "AH of our numerical solutions
of the self-focusing equat. ion with saturable nonlinear
index display this behavior, and in every case the
transverse scale of the centra1. region in which power is
approximately conserved is in good agreement with the
equilibrium radius a, predicted by the paraxial-ray
theory (WHM-3. 12):

u. (P/P2)'"—= 1.91
P o[(P/P )I/2 1]1/2

This is a weak function of P/P2 for large powers and,
for these, a, will be practically independent of the
properties of the input beam, in accord with the obser-
vations on small-scale filaments. "The actual magnitude
of a, depends upon the saturation properties of the
nonlinear index and, for the particular model of the
Kerr effect described in %8M, agrees w'ell with the
half-width of the stationary-shape solutions obtained in
Refs. 14-16.

%e emphasize that experimental observations of
6lament properties are invariably 6me-averaged over
the duration of the input pulse. Quantitative com-
parison of theory with experiment will only be possible
with the advent of a theory which includes time-
dependent effects such as relaxation of the nonlinear
polarization and stimulated inelastic scattering.

5. NONLINEAR ABSORPTION

A crude estimate of the effects of stimulated inelastic
scattering on the stationary self-focusing process may
be obtained by solving Eq. (2.1) with saturation
and with an additional nonlinear absorption term
iy~"~~E" ~'. Such a term has been used by Giordmaine
and Howe" to 6t high-power transmission data in CSg,
which were subsequently shown by Maier eI, a4."to arise
from backward stimulated Srillouin scattering.

Using the approach described in WHM, it is not
dificult to derive the following set of approximate ordi-
nary equations for the power and beam radius as a

~P. Lallemand and ¹ Bloembergen, Phys. Rev. Letters 15
1010 (1965). t

1o E. Garmire, R. Y. Chiao, and C. H. Townes, Phys. Rev.
Letters 16, 347 {1966).

» R. Y. Chiao, M. A. Johnson, S. Krinsky, H. A. Smith, C. H.
Townes, and E. Garmire, EEEE J. Quantum Electron. 2, 467
(1966).

» R. G. Brewer and J. R. Lifsitz, Phys. Letters 23, 79 (1966).» Y. R. Shen and Y. J. Shaham, Phys. Rev. 163, 224 (1967).
~4 J. D. Reichert and %. G. Wagner, IEEE J. Quantum Elec-

tron. 4, 221 (1968}."T. K. Gustafson, P. I. Kelley, R. Y. Chiao, and R. G.
Brewer, Appl. Phys. Letters 12, 165 (1968},"J.H. Marburger, L. Hu8, J. D. Reichert, and %'. G. wagner
(unpublished)."J.A. Giordmaine and J. A. Home, Phys. Rev. Letters 11 207
(1963). 7

» M. Maier, W. Rother, and %. Kaiser, Phys. Letters 23 83
(1966). t
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function of s:
/I'-'a I'

// 8l'
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I
1+

P1( 221/2CE 2/22 J
(5 1)

where

dP
-= —yP—

ds

+oN LP2

2kPpc'
(5.2)

6. NUMERICAL COMPUTATION SCHEME

Numerical solutions of the self-focusing equation
(2.1) including saturation and nonlinear absorption
were obtained by converting it to a difference equation

y*NL =Im22/Re22.

Numerical solutions of these equations for E,= ~ (no
saturation) and y=0 (no linear absorption) yield on-
axis intensity versus s curves very similar in appearance
to those shown in Fig. 3 for linear absorption. In
particular, for each input power there is a maximum
value of yN~ above which a catastrophic focus does not
take place. This critical nonlinear absorption coeKcient

was found to depend weakly on the input
power: *"=0.«{L1+»n(PIP.))'/2-1}.
Ke emphasize that this result was not obtained by
integration of Kelley's equation but of the approximate
system, Eqs. (5.1) and (5.2).

Because of the crudeness of the nonlinear-absorption
approach to the analysis of the effects of stimulated
scattering phenomena, we were unwilling to lavish
much computer time on solutions of Kelley's equation
for this case. Consequently, insufhcient solutions were
obtained to determine the functional dependence of
their structure on the additional parameter y* . Using

=0.01, which is consistent with the results of
Giordmaine and Howe, " and the presumably low
saturation fields E,*=100, 200, we found little depar-
ture in the transverse structure, even near the focus,
from that obtained with y* =0. The axial distance
between foci was somewhat larger than for y* =0,
as expected.

However, these results are inconclusive, since if E,*
is really much larger than the values we used, the beam
in reality focuses to a smaller diameter before filament
formation and the on-axis intensity consequently
reaches higher values. This would cause appreciably
more absorption for fixed y*~ .

Furthermore, "realistic" values of &*NL may be only
remotely related to those inferred in Refs. 17 and 18,
because in the work reported there the transverse mode
structure was undetermined. Therefore it is possible
that the observed removal of power from the primary
beam took place, not in a single near-axis region, but in
several regions corresponding to "hot spots" in the
transverse intensity distribution. This would lead to an
observed y*N~ larger than that appropriate for our
single-mode analysis.

which was then solved by an "explicit" iteration scheme
on a digital computer. An explicit scheme, rather than
an unconditionally stable implicit scheme, was chosen
because of the simplicity with which nonlinear terms
are treated. Following Kelly, ' we performed a stability
analysis in the manner described by Harmuth" (cited
in Ref. 1) and found that the following scheme ensured
negative error growth rates. Replace 8E*/BZ* by the
two-point symmetric difference quotient, and the radial
derivatives by symmetric five-point difference formulas.
Setting r*=mhr and Z*=nhs with m and n integers,
we found that the loss terms at the grid point (m, /2)

must be written

$Y E )m/1r, rz2zz 2p LEm, rz+1 +Em, rz—1 ) z

I q*NL~ E*~2E*)
=27* IE

~
m~'t E ma +1+E mn 1*),

and, finally, that hr and As must be related through

32/3 2 +2 N L32/3 2- —1/2

as& + -,'~++, (6.1)
— (~r)' (~r)'

and
2'(E*))-*&(32/3)/(~r)'

zz1s& ($P (E2')) 2+ (1p2'+p+N L
~

E2'
~

2)2)—1/2

where

P(E*)—=

1+ (E*(2/E *2

Here the subscript max means that the largest value
attained should be used.

The first of these conditions on Ar and 62' is usually
easier to satisfy and we have chosen it for all our
computations. The second may be excluded if we require
that 2hr correspond to the wavelength of a transverse
perturbation which is not amplified by the original
differential equation. Using a linearized stability
analysis exactly analogous to that of Bespalov and
Talanov, "we find that such a perturbation will decay if

LP(E*))-*&+/(& )'.
The relation (6.1) was well satisied for all the com-

putations reported here. The results reported in Secs.
4 and 5 were obtained using a CDC 6600 digital com-
puter and the others were obtained with an IBM 360
model 40. In all cases for which absorption was absent
the beam power remained constant to within 0.1%.
Solutions obtained with different step sizes were con-
sistent, but we did not test the effect of decreasing step
size on every run.
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