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Total elastic and total spin-exchange cross sections have been calculated numerically
for low-energy electrons incident on rubidium atoms. The effects of electron exchange
and of target distortion are treated through the use of the adiabatic exchange approximation
and the method of polarized orbitals.

I. INTRODUCTION

Several authors have, in recent years, com-
puted elastic scattering cross sections for elec-
tron-alkali atom collisions at low energies. Of
these, the calculations by Garrett' for sodium
and lithium appear to be the most successful.
His calculated cross sections are in excellent
agreement with the experimental data of Brode'
and with that of Perel, et al. ' in the energy range
0.25-16.0 eV. In addition, optical-pumping ex-
periments4 ' yield a spin-exchange cross section

for electron-sodium collisions at thermal ener-
gies in good agreement with Garrett's results.

The optical-pumping data is useful because it
gives information about the phase shifts at ex-
tremely low energies. At the lowest energies,
the theoretical phase shifts are particularly sen-
sitive to the approximations made in the calcula-
tion.

Recently, it has become feasible to carry out
spin-exchange optical-pumping experiments over
a wide range of thermal energies. ' It appears
reasonable that the energy dependence of alkali
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atom-electron spin-exchange cross sections will

be measured over a temperature range 300-800'K.
Rubidium is a very convenient element to opti-
cally pump, and the same kind of cross section
data is available for rubidium as is available for
sodium. For this reason, it appeared useful to
repeat Garrett's phase shift calculation for the
case of electron-rubidium collisions. The follow-

ing is a report of this effort. First, the theo-

retical basis of the calculation will be briefly re-
viewed. Next, the specific application to rubidi-

um will be discussed, and departures from Gar-
rett's procedure explained. Finally, the results
of the calculation will be presented and compared
with existing experimental data. '~'

II. METHOD OF CALCULATION

A detailed description of the theoretical basis for the calculation discussed in this report is contained
in Ref. 1. The effect of the distortion of the target atom by the electric field of the incident electron is
taken into account through the use of a polarization potential in the scattering equation. The polarization
potential is calculated by the method of polarized orbitals. 'f' The distortion due to the incident electron
is assumed to occur adiabatically and is treated by an application of first-order perturbation theory to
the Hartree-Fock electron orbitals of the unperturbed atom. Under the influence of the perturbation, the
electron orbitals depend upon the coordinates of the incoming electron.

The present calculation involves a further simplifying approximation in that the unperturbed wave func-
tions are calculated by means of the Slater approximation. In this approximation, exchange integrals in
the Hartree-Fock equations are replaced by an average exchange potential.

The radial equations (in atomic units), which must be solved for the perturbation of the atomic orbitals
due to the incident electron, are

and

with V(r )=-2Z/r +Q. f ~P. (r )~'(2/r )dr
2

and A (r )g(r )=6[(2/8v)Z. Q. (r )@.(r )] ' 'g(r ).s i 1

(2)

The gf are the unperturbed Hartree-Fock-Slater (HFS) wave functions, As is the Slater exchange poten-
tial, the P„~ are the radial HFS functions and the U„~ ~1 are the radial perturbations of the orbitals.
The coordinate of the incident electron is rf, l'=l+ i for l &0 and l'= i for /=0. In obtaining these equa-
tions only the dipole part of the perturbing interaction was used.

The polarization potential V which must be calculated is

where

V, (r ) = ff, [(2/r ') f f P (r )r U, (r, x )dr +2r f P (r )U (y r ) -2d ]nf —f' f nl —f' f 0 nl l l nl —f' l' f l f r nl l nf —f'f
(6)

The constants K~~ ~I are numbers which depend upon l' and on the number of electrons in an nl shell.
The polarization potential should approach —ot/rf' as r —~, where o. is the dipole polarizability of ru-
bidium.

The scattering equation is written as a two-electron equation for the incident electron and the valence
electron in the field of the perturbed core. The adiabatic exchange approximation is used to express the
wave function g(r„r, ) for the two electrons as

g(r„r, ) = g (r„r,)F(r, ) + $,(r,)E(r,),

where g, is the ground-state wave function of the valence electron, F is the free electron wave function,
and $' is the ground-state wave function which is perturbed adiabatically in the collision. The plus and
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minus signs refer to the singlet and triplet states, respectively, of the two electrons. Applying first-
order perturbation theory and expanding F in partial waves, one obtains the radial equations for each
partial wave ff .

, f+ k' —V+A —V-, f =sU [(E —k')6 f f Udr

+[2/(2l+1)](r f f U r dr+r f f U r dr —r f f U r dr}],I ~ -(I+1) —(I+1} r I I r —(I+I)

where V(r, ) = V(r, )+($,i 2/r» jg,), (6)

which is the screened Hartree-Fock potential. The kinetic energy of the free electron is k,'=E —E„
where Ep is the ground-state energy of the bound electron. U, is the radial part of the normalized
ground-state wave function for the bound electron.

III. APPLICATION TO RUBIDIUM

Equations (1) and (7) must be solved by nu-
merical methods. The calculations were per-
formed on a CDC 3600. The calculation of the
HFS wave functions is, of course, the starting
point. These were obtained from a program writ-
ten by Herman and Skillmann. ' In their discus-
sion, Herman and Skillman note that the use of the
Slater approximation leads to a potential which
goes to zero at large r rather than to —2/r, the
potential of a singly ionized atom. They attempt
to partially correct this deficiency by replacing
V(r) —As(r) by —2/r for r &r, where ro is the
value of r for which

This modification of the HFS potential was used
throughout this calculation because it should pull
the valence wave function in closer to the origin.
The approximate wave functions which are typi-
cally generated for the larger alkali atoms have
the defect that the valence wave function does not
fall off fast enough with increasing values of r.
This results in an undesirably large value for the
polarizability of the atom and, hence an incorrect
polarization potential.

The Herman and Skillman program furnished
P„i(r), V(r), As(r) and el'. The Pnf (r) were
calculated on a 512 point mesh. This same mesh
was used to obtain the solutions to Eq. 1. The
method of solving Eq. (1) is completely analogous
to the technique used by Sternheimer" in his cal-
culation of atomic dipole polarizabilities. The
boundary conditions are that U„~ ~

-0 as r-0
and that U„~ ~~ be exponentially decreasing at ~.
Starting with a series expansion at the origin and
an exponential at large r, the two solutions of
Eq. (1) were integrated by the Numerov" process
and matched at a convenient radius to five signifi-
cant figures. The U„& &i were calculated for
values of x~ at every fourth point on the mesh in
order to obtain Vp(r~} The cont. ribution to V~

from every electron orbital was included.
The polarization potential calculated on the

basis of the HFS wave functions obtained from the
Herman and Skillmann program was unsatisfactory.
The dipole polarizability of rubidium "~" is ex-
perimentally 264 +27 in atomic units. Thus, one
expects V& to approach —264/r' at large r The.
calculated V~, however, approached -405/r' at
large r. This was too large a discrepancy to con-
tinue with because of the extreme sensitivity of
the scattering cross section to the form of the
polarization potential.

The principal contribution to Vp at large r is
from the perturbation of the valence orbital.
Therefore, an attempt was made to improve the
unperturbed valence wave function. The magni-
tude of the valence eigenenergy &,' generated by
the self-consistent HFS procedure is slightly
smaller than the experimental value. A first-or-
der correction to the valence wave function was
made by simply replacing the HFS value for e', '
in the Schrodinger equation for the valence orbi-
tal by the experimental value. The valence wave
function was then recalculated. With this new
wave function, together with the other electron
orbitals (unmodified} from the Herman and Skill-
mann program, Vp was calculated again. This
time Vp -—325/x' at large r, which was a con-
siderable improvement. A plot of the recalculated
Vp is shown in Fig. 1.

It should be pointed out that Garrett's' calcula-
tion for sodium was in far better shape at this
stage. His HFS wave functions were adequate to
give complete agreement between the experi-
mental value of the dipole polarizability and his
calculated value. Although the recalculation here
of the valence orbital improved the situation, the
calculated polarizability is still -25% too large.
In addition, since the valence contribution to Vp
obtained from the HFS wave functions was so much
in error, the core contribution to V, which domi-
nates at small x, is automatically suspect.

In the solution of Eq. (7), it was decided to use
the improved polarization potential along with the
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recalculated valence wave function and the experi-
mental value for the valence ground-state energy.

Equation (7) was solved by a successive itera-
tion procedure and the phase shifts 5~+ and 5~

were obtained from the solutions. The solutions

fE were started at the origin by a series expan-
sion and with the right-hand side of Eq. (7) set
equal to zero. They were integrated by the Nu-

merov method out to a value of x for which

02, I I I I I I

2 4 6 8 l0 l2 l4 l6 l8 20
r {ao)

FIG. 1 Contributions to the polarization potential
from the core electrons and from the valence electron
together with their sum Vp.

(V + V )/k'(10 '
0 p

for each value of k'. The solutions to the homo-
geneous equation were substituted into the inte-
grals on the right-hand side to obtain the first
iteration. This process was continued until the
integrals on the right-hand side were self-con-
sistent to within 0.01%%uo. The ff were compared
with the appropriate spherical Bessel functions
at the largest values of r to obtain the phase
shifts. The multiple of ~ to be added to the phase
shift was taken to be the difference between the
number of nodes appearing in the ff and the num-
ber of nodes in the corresponding Bessel func-
tions. The values for 6~+ and 5~ are listed on
Tables I, II, and III.

TABLE I. Singlet phase shifts.

& (Hy)

0.00025
0.00050
0.00075
0.0010
0.0015
0.0020
0.0025
0.0030
0.0040
0.0050
0.0060
0.0075
0.010

0.020
0.030
0.050
0.065
0,075
0.085
0.100
0.125
0.150
0.250
0.500
0.750
1.000

60 —5m

—0.035
—0.044
—0.055
—0.070
—0.105
—0.143
—0.182
—0.220
—0.291
—0.355
—0.412
—0.487
—0.595

—0.913
—1.126
—1.412
—1.558
—1.636
—1.703
—1.788
—1.902
—1.994
—2.273
—2.761
—3.113
—3.391

0.001
0.014
0.036
0.063
0.128
0,203
0.281
0.361
0.517
0.664
0.796
0.963
1.160

1,422
1.470
1.474
1.466
1.457
1.448
1.433
1.404
1.373
1.229
0.891
0.629
0.418

—0.002
—0.004
—0.005
—0.006
—0.005
—0.002

0.002
0.008
0.022
0.037
0.051
0.069
0.095

0.193
0.280
0.414
0.483
0.517
0.543
0.571
0.597
0.607
0.577
0.408
0.251
0.122

—0.001
—0.001
—0.002
—0.003
—0.004
—0.005
—0.005
—0.005
—Q.004
—0.001

0.004
0.012
0.026

0.063
0.102
0.179
0.238
0.277
0.315
0.370
0.455
0.531
0.745
0.980
1.130
1.303

0.000
0.001

—0.001
-0.001
—0.002
—0.003
—0.003
—0.004
—0.005
—0.005
—0.005
—0.003

0.003

0.026
0.041
0.074
0.099
0.115
0.131
0,156
0.197
0.237
0.380
0.595
0.688
0.736

-0.001
—0.001
—0.001
—0.001
—0.002
—0.002
—0.003
—0 ~ 004
-0.004
—0.004
—0.004

0.010
0.020
0 ~ 038
0.050
0.059
0.067
0.080
0.102
0.123
0.206
0.373
0.475
0.533

-0.001
—0,002
—0.002
—0.003
—0.003
—0.004

0.001
0.011
0.020
0.029
0,033
0.039
0.046
0.059
0.071
0.122
0.237
0.325
0.387

—0.003
0.004
0.012
0.017
0.021
0.024
0.029
0.037
0.045
0.077
0.155
0.224

0.278

—0.001
0.008
0.010
0.013
0.016
0.019
0.025
0.030
0.052
0.106
0.157
0.201



82 LUDWIG C. BALLING 179

TABLE II. Triplet phase shifts.

F- (Ry)

0.00025
0.00050
0.00075
0.0010
0.0015
0.0020
0.0025
0.0030
0.0040
0.0050
0.0060
0.0075
0.010

0.020
0.030
0.050
0.065
0.075
0.085
0.100
0.125
0.150
0.250
0.500
0.750
1.000

0.590
0.671
0.689
0.685
0.656
0.619
0.581
0.546
0.483
0.428
0.379
0.312
0.212

—0.087
—0.298
—0.603
—0.777
—0.876
-0.965
—1.085
—1.256
—1,401
—1.839
—2.513
—2.947
—3.270

—0.004
—0.000

0.008
0.018
0.042
0.064
0.084
0.100
0.123
0.134
0.139
0.139
0.128

0.028
—0.096
—0.321
—0.464
—0.550
—0.629
—0.736
—0.893
—1.026
—1.425
—2.004
-2.358
-2.615

—2z

—0.002
—0.004
—0.005
—0.006
—0.005
—0.002

0.003
0.009
0.023
0.039
0.054
0.074
0.104

0.227
0.348
0.558
0.674
0.732
0.776
0.825
0.868
0.883
0.828
0.580
0.376
0.218

—0.001
—0.002
—0.002
—0.003
—0.004
—0.005
—0.006
—0.005
—0.004
—0.001

0.004
0.012
0.026

0.063
0.104
0.189
0.259
0.309
0.359
0.435
0.560
0.674
0.977
1.198
1.296
1.425

0.000
0.001

—0.001
—0.001
—0.002
—0.003
—0.003
—0.004
—0.005
—0.005
—0.005
—0.003

0.003

0.026
0.041
0.074
0.099
0.116
0.133
0.160
0.205
0.250
0.422
0.686
0.783
0.822

—0.001
-0.001
—0.001
—0.001
—0.002
—0.002
—0.003
—0.004
—0.004
—0.004
—0.004

0.010
0.020
0.038
0.050
0.059
0.067
0.080
0.102
0.124
0.213
0.404
0.520
0.582

—0.001
—0.002
—0.002
—0.003
—0.003
—0.004

0.001 —0.003
0.011 0.004
0.020 0.012
0.029 0.017
0.033 0.021
0.039 0.024

0.046 0.029
0.059 0.037
0.072 0.045

0.123 0.078
0.246 0.158
0.344 0.231
0.412 0.290

—0.001
0.008
0.010
0.013
0.016
0.019
0.025
0.030
0 ~ 052
0.107
0.159
0.206

TABLE III. Phase shifts for higher l values where ~~

E (Ry)

0.050
0.065
0.075
0.085
0.10
0.125
0.150
0.250
0.500
0.750
1.000

0.004
0.007
0.008
0.010
0.013
0.017
0.021
0.037
0.075
0.113
0, 148

&io

0.005
0.006
0.006
0.009
0.012
0.015
0.026
0.055
0.083
0.111

0.009
0.011
0.020
0.042
0.063
0.084

0.032
0.049
0.066

0.039
0.052

0.031
0.042

0.025
0.034

0.020
0.028 0.023

IV. TOTAL ELASTIC AND SPIN-EXCHANGE
CROSS SECTIONS

The total elastic cross section 0 in units of 7ta,'
is

1
o = —Z (2l+1)(sin'5 ++3sin'5 ).

k' E=o l

The elastic scattering cross section obtained

from the phase shifts in Tables I, II, and III is
plotted as a function of energy in Fig. 2. The
cross section for rubidium-electron collisions
as measured by Brode' is shown for comparison
in the same figure. The qualitative behavior of
the experimental cross section is in reasonable
agreement with the calculation, but the magnitude
of the calculated cross section is too smal. l rough-
ly by a factor of two.
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FIG. 2 Total elastic scattering cross section com-
puted from the phase shifts in Tables I, II, and III com-
pared with Brode' s experimental results and with the
total cross section computed from the modified polari-
zation potential (270/325) Vp.

FIG. 3 Total elastic scattering cross section for
cesium calculated by Crown and Russek compared with
Brode' s experimental data for cesium.

l400—

l200—

Primarily to test the sensitivity of the calcu-
lated cross section to the form of the polariza-
tion potential, the polarization potential V~ was
normalized by the factor (270/325) and the cross
section recalculated. This, of course, brings the
asymptotic behavior of the polarization potential
into line with experiment by brute force. This
approach was tried in the calculation of Crown
and Russek" for cesium-electron scattering. The
cross section resulting from this modified V is
also plotted in Fig. 2. This normalization o V
pulls the cross section further away from agree-

p

ment with experiment and introduces a narrow
resonance due to P-wave scattering. A p-wave
resonance (much larger) was also produced in
the Crown and Russek calculation when they
normalized their polarization potential in the
same way. There is no experimental verifica-
tion or disproof of the existence of this resonance.

A comparison of the Crown and Russek calcu-
lated cross section for cesium-electron scatter-
ing with Brode's data and a similar comparison
for Garrett's sodium calculation are given in
Figs. 3 and 4, respectively. The results of the
present calculation for rubidium with the un-
modified Vp are in much poorer agreement with
experiment than was the case for sodium, but
more satisfactory than the calculation for cesium.
The cross sections for rubidium and cesium are
monotonically increasing at the lowest energies,
while the sodium cross section has turned
around and is decreasing.

The only experimental check for the phase shifts
at very low energy is the spin-flip cross section
obtained from optical-pumping experiments. In

IOOO—
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O

b 600—

rett s analysis

el, Englander,
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de experiment

400—

200-

00

I

I

Inelastic threshold

I i I

2 3

/E eV

FIG. 4 Total elastic scattering cross section for
sodium as calculated by Garrett compared with the
experimental results of Brode and of Perel et al.

these experiments, the conditions can be adjusted
so that the linewidth of the electron spin reso-
nance is a function of the electron-alkali atom
spin-flip cross section v f. The linewidth issf
calculated by averaging the expression VNO sf
over a Boltzmann distribution characterized
by the temperature of the electrons. The velocity
of the electrons is V, N is the volume-density of
the rubidium atoms and a f is given bysf

0
f Q, Z (2f + 1 ) s in' (5 —5 ) . ( 10)

E=0 L

Here the cross section is in units of cm' and Sk
=m V is the momentum of the electrons. The ex-
perimental linewidth for rubidium-electron col-
lisions at 293'K is 1500+200 Hz. The calculated
linewidth using the phase shifts in Table I is 700
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Hz and the calculated linewidth using the modified
Vp is 350 Hz. Again, the ad hoc normalization
of Vp makes things worse.

Thus, the calculated spin-exchange cross sec-
tion for rubidium averaged over the energy spread
of the optical pumping experiment is about a
factor of two too small ~ Garrett's phase shifts
for sodium yielded an averaged spin-exchange
cross section in good agreement with experiment. '

V. CONCLUSION

Though HFS wave functions are apparently quite
adequate for scattering calculations involving the
lighter alkalis, they proved less adequate for
rubidium. The quantitative agreement between
this calculation and experiment is poor compared
to Garrett's calculation for sodium, but a good
deal better than for cesium. This probably
simply reflects the relative size and complexity
of the target atoms. Recently, it has been re-
ported" that Brode's numbers for the E- e col-
lision cross section are too large by a factor of
2. If it turns out that his results for Rb are in

error in the same way, the agreement between
the present calculation and experiment at the
upper end of the energy range may be better than
it now appears. There would still be poor agree-
ment with the optical-pumping experiment at
thermal energies. The results for rubidium are
sufficiently reasonable, however, to encourage
one not to abandon the method of polarized orbi-
tals and the adiabatic approach to the scattering
equation without first trying again with more ac-
curate wave functions. The ad hoc normalization
of the polarization potential to yield the correct
dipole polarizability at large r did not appear to
be useful in this calculation.
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