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Methods which have been developed and employed for the calculation of point defects in ionic crystals are
described. These methods involve a detailed Hartree-Fock-like treatment by way of angular-momentum—
dependent exchange potentials of the ions within an inner region v-~ centered about the defect. In the outer
region &,, composed of the rest of the crystal, the ions are treated in two diferent approximations, the most
successful of which involves an eoective-mass formalism. Polarization effects are included by expressions of
the form resulting from the work of Toyozawa, Iraken, and Schottky. Although the main purpose of the
paper is to describe the methods, applications are made to the calculation of the electronic energy levels in
the optical absorption of the F center in KCl and NaC1. Good agreement with experiment is found only if
polarization effects, which are important even in the ground state, are included. Additional applications will
be given in subsequent papers.

I. INTRODUCTION

HIS is the first in a series of papers dealing with
the calculation of the electronic structure of

point defects in ionic crystals. In it we shall present
some of the methods which we have used in extensive
calculations on the electronic structure of the F and
U ' centers in alkali halides and the F and F' centers
in MgO and CaO. The methods have also been used in
calculations on excitons in alkali halide crystals.

In this first paper, in addition to developing our
general methods, we shall give the results of calcu-
lations of the absorption energy of the E center in
KC1 and NaCl. These results will serve both to illustrate
the methods and to indicate the validity of certain
approximations which might be used in subsequent
calculations. For example, we shall explore the extent
to which a fairly rigorous solution of the Hartree-Fock
problem, in which no dielectric polarization eGects are
included, gives agreement with the experimental
absorption energies of the Ji center in KCl and NaCl.
We shall see that if all polarization sects are neglected
the agreement is evidently rather poor, whereas if they
are included the separations of the energy levels in
absorption are much improved.

In order to carry out the calculations associated
with the Hartree-Fock part of the model, we found it
necessary to develop what we believe is essentially a
new approximate method for the evaluation of two-
center, one- and two-electron integrals. In previous
calculations' ' these were done by a conventional
method' of quantum chemistry (elliptic coordinate
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transformation), but this method is both more accurate
than we need and for our purposes much too time
consuming even for a large computer. Basically, the
approach we have employed here consists in first
determining an angular-momentum —dependent (f-de-
pendent) effective potential including exchange for
each type of ion in the crystal and then expanding
defect-centered trial functions about the sites of the
neighboring ions. Of course, such expansions are not
particularly new, but some of the numerical methods
employed we believe to be, and these will be described
in more detail in the Appendix.

Even with these new methods, the computing time
can become quite lengthy, and it is necessary to reduce
as far as possible the number of ions whose electronic
structure is considered explicitly. This leads us to a
consideration of two approximations for taking into
account the structure of ions beyond the third neighbors.
In fact, however, we shall see that the employment of
the effective-mass approximation just beyond the first
neighbors seems to work quite well. This fact was
utilized in many of the calculations reported in the
next paper of this series. We could go a step further by
eliminating the details of the first neighbors and extend-
ing the effective-mass treatment inward to a radius
somewhat less than the first-nearest-neighbor (1nn)
distance. We would then have a purely semicontinuum
model which has often been used in calculations of the
electronic structure of the F center in alkali halide
crystals. We shall not report on our calculations with
the semicontinuum model here, but the models we do
use have a number of features in common with it.

Report of the Molecular Physics Group, University of Texas
{Austin) 1962 {unpublished).
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II. THEORY OF A METHOD FOR SOLVING THE
PROBLEM IN THE HARTREE-FOCK

APPROXIMATION

The physical system in which we are interested
consists of a crystal, whose constituent ions (or a,toms)
have electrons entirely in closed shells, and one addi-
tional electron. For the present we shall neglect the
overlaps between the core orbitals, i.e., the orbitals
describing the electrons in the closed shells, on different
ions; this defect will be partly removed at a later stage
in the calculation. For the sake of definiteness we shall
take our system to be the I' center in an alkali halide;
the theory will require only minor modifications to
make it applicable to other systems and, in part, to
conduction-band states. The extension to two-electron
defects is also straightforward.

The precise formulation of the Hartree-Fock problem
that we wish to solve is as follows: Let p„; denote the
ith core orbital on the vth ion; we assume this orbital
to be doubly occupied. Let P be the orbital of the
additional electron. We wish to determine the orbital P
so as to make the expectation value of the effective
one-electron Hartree-Fock Hamiltonian BCEUF, namely,

&&)= &kl~nr I4)/&WI4),

stationary with respect to small variations in f, subject
to the constraint that P be orthogonal to the core
orbitals much as in an orthogonalized-plane-wave
(OPW) band calculation. Here the eRective Hamil-
tonian is given by Z„.V„

Xnr ————,'V' —P +P V, „
~ /r —R„[

and the operator 'U, is defined by

cV„ Ly„;(r')jp
'o.wp)=( — +2+ dx')ap)

[r—R/ '
/

r' —r/

Hamiltonian is
pk g F —XpiF+ U (4)

KIIF being defined as above and 'U' being defined, for
an arbitrary one-electron wave function u(r), by

r' ' r'u r'
'U'u (r) =u(r) dr' —«,f (r) dr', (5)

r' —r r' —r

where e, is 1 or 0 according to whether the spins of the
electrons in orbitals P and u are parallel or antiparallel.
Now, if the orbital P(r) is strongly concentrated in the
vacancy, then the Hamiltonian BCEUF' represents the
effective charge of the vacanc~ as having been largely
neutralized by the additional electron, and conse-
quently the resulting core orbitals p„;, which should be
used in defining 3CIIp, are not greatly distorted by the
electrostatic field of the vacancy. And since it is easily
seen that 'U'/=0, (6)

we may still use 3C&F instead of X&F' in calculating the
orbital P of the additional electron.

Of course, this argument does not apply if the orbital
P is diffuse, nor, for instance, to the single-electron F
center in magnesium oxide. In such cases one should,
strictly speaking, use distorted (polarized) core orbitals.
This is a very complicated problem, and the effect of
using polarized core orbitals has not been investigated.

We need a siniplified expression for the exchange
term involved in the definition of 'U„, Eq. (3), because
in the variational calculation in which the trial func-
tion is expanded in some basis set the two-center
exchange integrals must be evaluated a very large
number of times, and this is too time consuming by
the conventional methods. Let us, therefore, consider
the purely atomic problem of one electron moving in
the field of one single ion. Placing the nucleus of the
ion at the origin and dropping the label v, we may write
the Hartree-Fock equation for the orbital &0 of the
outer electron as

@„;(r')I(r')—Q g„;(r) dr', (3)
r' —r

L
——,

' i7'—(Z—E)/r+'U —Ep+p(r) =0.
The function &0 is of the form

(7)

where we use atomic units. N(r) is an arbitrary one-
electron wave function, Z„ is the charge number and
I„the position vector of the nucleus of ion v, cV„ is the
number of electrons on ion v, and we use real wave
functions.

In our definition of XIIF, we take the core orbitals
p„; to be the free-ion orbitals, neglecting the distortion
caused by the electrostatic field of the effective charge
of the vacancy. This can be partly justified in cases
where the orbital P of the additional electron is compact,
as follows.

In the fully self-consistent solution of the Hartree-
Fock problem, both the core orbitals p„; and the orbital
P of the additional electron would be calculated from
Hartree-Fock equations in which the one-electron

where r = r/r and Y(r) is a spherical harmonic. Equation
(7) is now by standard methods rewritten as an equa-
tion for the radial function I'(r); and having solved that
radial equation, we can calculate 'Ugp(r). LMore
precisely, the calculation of this expression is an
essential part of the iterative procedure of solving the
radial equation for E(r).g

Our calculations would be greatly simplified if it
were possible to replace the operator 'U by a numerical
function U(r) such that 'Ugp(r) is equal to U(r) multi-
plied by pp(r). If it is attempted to define such a
function by
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TAsI.K I. An illustration of the insensitivity of the effective
exchange potential to the energy I;p at which it is determined.
2Ep is the energy in rydbergs (so that 6;p is in atomic units,
27.21 eV), r is the distance from the nucleus in atomic units, and
the tabulated quantity is b(2Z„), where —r '8 (2Z„) is the exchange
correction, in rydbergs, to the effective potential energy for an s
electron moving in the field of a Ca'+ ion.

r
0.02
0.06
0.18
0.80
2.8
4.0

21.'p —— —0.83

0.5066
1.104
1.298
1.064
0.0729
0.0109

—0.4

0.5052
1.101
1.284
1.015
0.0786
0.0314

—0.05

0.5042
1.098
1.274
0.979
0.0856

—0.0576

4 L. Siermann and K. Lubeck, Z. Astrophys. 25, 325 (1948).' This fact does not seem to be generally known. For example,
Hartree and Hartree )Proc. Roy. Soc. (London) A193, 299
(1948)j in their work on the sodium atom state that a small but
significant nondiagonal parameter had to be introduced to ensure
the orthogonality of the 3s orbital to the 2s orbital. Actually this
nondiagonal parameter is merely a measure of the numerical
inaccuracies in the calculation. That parameter could be made
arbitrarily small by making the numerical errors in the calcu-
lation small enough.

then it is found that the resulting function U(r)
depends fairly strongly on the azimuthal quantum
number l, but only slightly on the energy Eo used in
Eq. (7), as long as that energy is well above the core
energies. Such a behavior of a numerical potential
representing exchange has also been found by other
authors; see, e.g. , Biermann and Liibeck. 4 An illustra-
tion of the dependence of the function U(r) on the
energy is given in Table I, and the /I dependence is
illustrated in Table II.

We see, then, that while we cannot without significant
loss of accuracy replace the operator U by a numerical
effective potential energy U(r), we may, nevertheless,
define by Eq (9) a .separate numerical function U&(r)
for each angular-momentum quantum number /, and
replace the operator 'U by a simpler operator %L, de-
fined by

&4Dl(r) = «(r)4«(r), (10)

where poi(r) is a solution of Eq. (7) belonging to the
value l of the azimuthal quantum number. In practice,
we calculate Ui(r) for /=0, 1, , 5, and use Ui(r) in
place of Ui(r) for /)5.

If the core orbitals used in defining the operator 'U

in Eq. (7) are the Hartree-Fock orbitals, obtained by
solving the Hartree-Fock problem for the core in the
absence of the additional electron, and if Eq. (7) is
treated as an eigenvalue equation, then it can be shown
that those solutions &0 that are not core orbitals are
orthogonal to core orbitals, even though we have not
introduced the nondiagonal parameters. These param-
eters ~ould be needed only if the solution were to be
made fully self-consistent in the sense that the sects
of the additional electron in the orbital &0 on the core
orbitals were to be included. '

In defining the operator %L, it is not necessa, ry to
treat Eq. (7) as an eigenvalue equation. The determi-
nation of the operator %L can be perfectly meaningfully
carried out for an arbitrary value of E&, the functions
po would then be made to satisfy the usual boundary
conditions of finiteiiess at the ori& i», while po would iii
general tend to infinity as r —&~.

We now define a new Hamiltonian BC', to be obtained
from birr by replacing 'U„by 'll„ in Eq. (2), 'll, being
the operator U. defined for the vth ion. The operators
XHF and K&, when operating on the orbital P of the
additional electron, are then expected to give very
nearly the same result, provided that the value of E', 0

used in Eq. (7) is suitably chosen for each ion.
We might now attempt to impose the orthogonality

constraint by taking i/ to be of the form

where @„;are, as above, the Hartree-Fock core orbitals
of the free ions. Such an attempt would, however,
immediately lead us into a difhculty, because there is
no simple way of expressing the result of operating
with 3CU on P„.The operators 'h. and 'U, give practically
the same results only when they operate on a function
(such as 1/) which is orthogonal to the core orbitals
p„on the vth ion; but they give appreciably diferent
results when they operate on the core orbital p„; itself.
Ke know that the functions ft„satisfy the equation

Z„—E,—-,'P — +'U„—E„; g„;(r)=0,
I
r—R.

I

(12)

(
Z„—E„

+'lL„—Eo yo ——0
Ir—R„f

(13)

for various energies L&0, all well above the core energies,
so that the dependence of 8,.on Eo may be neglected.
Each of these solutions of Eq. (13) must, then, be
orthogonal to those solutions of Eq. (13), say p„,
that correspond to the core orbitals. Therefore, instead
of Eq. (11),we may write

In order to be able to evaluate the expectation value of

but they do not satisfy the equation obtained from this
by replacing 'U, by 'lL. . Consequently, the calculation
of the contributions from the double summation in
Eq. (11) to the expectation value of BCp would be
complicated, and the advantage of using Rl„ in place of
'U, would be lost.

We avoid this difhculty by noting that, within the
region of the i th ion, f(r) is supposed to be, to a good
approximation, expressible as a linear combination of
solutions of the equation
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3CU with this form of the wave function, we write

3Cp= (Xz;+q/r) q/r=—XU' q/r, —

where
U @vi I'ui $vi )

where q is the valency of the ions in the crystal (q= 1

for KCl, q=2 for MgO, etc.). Since 3CU' represents the
effective positive charge of the vacancy as having been
neutralized by a negative point charge q, we may
regard the functions p„,

' as eigenfunctions of XU',
i.e., we assume that

l=
r 2Eo=

0.02
0.06
0.18
0.80
2.8
4.0

0-0.2915

0.5016
1.094
1.240
1.015
0.136
0.026

1—0.18

0.4384
0.776
1.182
1.090

—0.006
0.005

2—0.11

0.3708
0.666
1.034
0.839
0.209
0.027

3—0.0625

0.2621
0.436
0.634
0.871
0.086
0.007

4—0.04

0.178
0,263
0.377
0,789
0.058
0.004

5-0.02778

0.118
0.146
0.217
0.706
0.043
0,003

TABLE II. An illustration of the dependence of the effective
exchange potential on the angular-momentum quantum number
l. r is the distance from the nucleus and the tabulated quantity
is b(2Z„), dehned as in Table I but this time for the outer electron
of a potassium atom, the energy Eo for each value of / being
approximately that of the lowest free-atom state for that value
of l {i.e., 4s, 4p, 3d, etc).

Eyy Evi +ogM/o ~ (17)

Here E„ is the eigenvalue of Eq. (13) corresponding
to the solution @„',c~ is the Madelung constant, and a
is the nearest-neighbor separation in the lattice.

With these approximations we could write down the
expectation value of 3CU in a fairly simple form; how-

ever, it is more useful to write down the matrix elements
of 3Czr and unity between /zzo functions of the form (14),
say, P, and Pq, given by (14) with f replaced by f, and

f&, respectively:

&4. I
~U IA&=—ff"= (f. I

~U
I f~&

v s J

X&y„,'lr-'14. , )(y„'I f,), (18)

&4.IA)=—s. =&f, lf )

We express f as a linear combination, with unknown
coeKcients, of a number of functions of the type P„
fq, and then the energies and the wave functions are
obtained by solving the secular equation

det(H —ES)= 0, (20)

this can scarcely be more objectionable than our neglect
of the overlaps between the core orbitals on diferent
ions that is reRected in the form of Eq. (19).A further

where II and S are the matrices whose elements are
H, z and 5,&, given by Eqs. (18) and (19). In practice,
we replace the last term of Eq. (18) by the simpler
expression

+q 2 2 &f.l4-'&&&-'Ir 'l4-')8-'I f~&;

simplification would be to replace Eq. (18) by

0'= (f. I
~o

I f~&

—2 2 (&.;"—&. ')(f. l4-'&(4.*'I f~& (21)

which would imply that the functions p„' are treated
as eigenfunctions of 3CU. It would appear that the form

(18) is probably more accurate.
In order to use Eqs. (18) and (19), we have to calcu-

late the core function p„' and the corresponding
energies E„as solutions of Eq. (13). Such solutions
do not have much of a physical meaning, because the
operator 'h„ is not approximately equivalent to '0,
when operating on a core orbital; they are only intended
to be substituted in Eqs. (18) and (19). In particular,
while it is found that the wave functions p„are not
very diRerent from the corresponding Hartree-Fock
core orbitals p.;, the eigenvalues E„of Eq. (13) are
considerably higher than the corresponding Hartree-
Fock orbital energies E„, and the use of E.;&a~/a in
place of E.;" [as given by Eq. (17)j in Eq. (18) would
be quite incorrect. Of course, it would be perfectly
correct to orthogonalize the orbital of the additional
electron to the Hartree-Fock orbitals p„; instead of
p„, but the formula by which this could be achieved
would not be (18); it would be much more complicated.

It seems to be generally true that the interaction of
an outer electron with a closed-shell core and the
interaction of one of the core electrons with the rest of
the core cannot be represented by the same numerical
effective potential (even if it is l-dependent) —such
an effective potential will give either too high an energy
for the core electron or too low an energy for the outer
electron. (The reason is that a numerical effective
exchange potential designed to give correct results for
an outer electron does not completely subtract o6 the
Coulomb self-energy of a core electron as the exchange
operator does. ) We believe this at least partially explains
the fact that band-structure calculations' which use the
same numerical effective exchange potential for the

' P. D. DeCicco, Phys. Rev. 153, 931 (1967); S. Oyama and
T. Miyakawa, J. Phys. Soc. Japan 21, 868 (1966); Y. Onodera,
M. Okazaki, and T. Inui, J. Phys. Soc. Japan 21, 2229 (1966).
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valence band and for the conduction band give band

gaps which are nearly always smaller than one might
expect to obtain from a truly self-consistent Hartree-
Fock band calculation. Such a calculation should give
a band gap several eV higher than the observed one,
since polarization eRects' would not be included. Of
course, these eRects can be included implicitly by
adjusting the potential to give the experimental band
gap as Onodera et al. ' did in their calculations on KI,
but then this goes beyond the Hartree-Fock scheme.

In order to be able to use Eqs. (18) and (19), we
have to expand the function f„ in spherical harmonics
about the nuclei of the various ions; and since this has
to be done a large number of times, an economical
method is needed. Such a method has been developed
and programmed, and is brieRy described in the
Appendix.

We have carried out extensive tests of our method of
treating exchange and of the approximate expansion
technique described in the Appendix. We expand our
trial function f in a series of Slater-type orbitals of
the form

where I"~o is a spherical harmonic of degree l and zero
magnetic quantum number. The tests show that the
values of the overlap integrals of the form (f(r)

~
g„;(r)),

calculated by our approximate expansion method,
differ from the exact values by about l%%u~ if p„; is a
p-type core orbital, except in those cases where the
values are very small, when the percentage errors are
larger, although the absolute errors are smaller. If
g„; is an s-type core orbital, the errors are between 0.05
and 0.2%. This is considerably more accuracy than
we need. In our eRective potential method of treating
exchange, it is inconvenient to isolate the purely
exchange contribution, and so we have carried out the
tests on the matrix elements between functions of the
form of Eq. (14) for the entire effective Hamiltonian
minus the point-ion potential energy and the kinetic-
energy operator. The Hamiltonian we used for these
tests was that appropriate to the F center in KCl with
only the nearest-neighbor K+ ions treated as extended
as in Ref. 2. The largest discrepancy we found between
the values of these matrix elements calculated by our
approximate methods and the more exact methods
(exchange integrals calculated by the elliptic coordinate
method) was 0.11 eV. Generally, they were consider-
ably less. Moreover, the errors in the ground and excited
states tended to cancel each other so that differences
in transition energies calculated by the two methods
were of the order of a few hundredths of an eV. In
view of the very great saving in machine tim- calcu-
lations that took a few hours by the old method take a
few minutes by the new method —this must be con-
sidered very satisfactory. Indeed, it is probable that

~ W. B. Fowler, Phys. Rev. 151, 657 (1966).

the approximations that have to be made at present
in the physics of the problem, whatever the method
used, give rise to errors that are greater than this, so
there is not much to be gained by treating the ex-

change terms more accurately than we have done.
There is some ambiguity in the choice of the energy

Eo to be used in Eq. (7) in the determination of the
eRective exchange potential, but fortunately the results
are not very sensitive to the choice, as long as the
value chosen is not too low. In these tests the value of
I';0 chosen for each value of the azimuthal quantum
number l was the energy of the lowest stationary state
of the valence (i.e. , series) electron of the neutral atom
for the value of l. Using values of Eo that are several
electron volts higher would not change the results very
much. The use of lower values of Eo seemed to make the
matrix elements less accurate.

III. FURTHER DEVELOPMENT OF THE
METHODS

A. Orthogonalization of Orbitals on 2nn Negative Ions
to the Orbitals on Neighboring Positive Ions

Early in the development of the Hartree-Fock part
of the model it became apparent that the transition
energies for the main F band were going to be higher
than the experimental values. A few rough calculations
indicated that the agreement with experiment would
be improved somewhat if the overlaps of the core
orbitals on the negative ions with those on the positive
ions were not neglected as we have assumed up to this
point. It can be shown that one should orthogonalize
the defect functions to the Wannier orbitals on the
neighboring ions instead of to the free-ion orbitals. In
any case, if we force the orbitals on the negative ions
to be orthogonal to those on their positive neighbors,
say by a Schmidt procedure, we should be on firmer
ground than to neglect their nonorthogonality al-
together. We found that an approximate inclusion of
this orthogonality improved the transition energy by
almost 3 eV, which is certainly non-negligible. Never-
theless, as we shall see in this and the next paper, even
this orthogonalization procedure is probably not
entirely adequate.

B. Treatment of Distant Ions as Extended Ions

With the use of the method described in Sec. II,
there is no difhculty in including the second- and the
third-nearest neighbors of the defect as extended ions
in a Hartree-Fock calculation —although the machine
time is increased, it still remains within reasonable
limits unless the symmetry of the orbital of the defect
is very low. Treatment of more distant ions by this
method seems impractical. In order to do calculations
on more diffuse states of the defect electron, however,
it is desirable to treat the electronic structure on even
more distant ions than the third neighbors. We have
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~0= O) (25)

a2 L4 (fi+f2+ f3+f~) f0]I3t, —(26)

a*= (f~ f f3+f4)t4t-
with analogous equations for a„and a„and

(27)

(a 2+a 2+a 2)1/2 —L1 (f 2+f 2+f 2+f 2)

'(f +f +f +—f—)'3'"lt (2g)

done this in two difI'erent approximations, which we
shall describe here and in Sec. III C.

Incidentally, at first sight it might appear that our
method described thus far would be very inaccurate
when applied to di6'use states, because in our orthog-
onalization procedure we have neglected the distor-
tions of the core orbitals which arise when the effective
charge of the vacancy is not largely neutralized by the
charge distribution of the additional electron concen-
trated in the vacancy. However, this is not necessarily
so: If the orbital of the additional electron is rather
diffuse, then it may well happen that so little of its
charge distribution is in the region of the near neighbors
of the defect that the neglect of the distortion of the
core orbitals of these neighbors does not matter very
much.

Let f(r) be one of the smooth component trial
functions to be orthogonalized to the core orbitals of a
distant ion. We choose the nucleus of that ion for the
origin of a Cartesian system of coordinates, x, y, s, and
approximate to f(r) within the volume occupied by
that ion by the following quadratic expression:

f(r) =a~+a,x+a„y+a,s+a~p'+ fd, (23)

where fd stands for terms of d-type symmetry (i.e.,
l=2) and p'=x'+y'+s'.

Each of the core orbitals of the ion under considera-
tion is of the form

(24)

where V& is a spherical harmonic; only the values
l =0 and /= 1 occur in those alkali halides with which
we are concerned.

With Eqs. (23) and (24) the overlap integrals
(f, ~p„;) and the matrix elements (f.~'LL~ fq) of the
ionic eiIective potential energy LL (see Sec. II above)
can be written down easily. They involve a few radial
integrals which can be calculated and stored once and
for all at the beginning of the calculation.

To evaluate the coeKcients in Eq. (23) as economic-
ally as possible, we use the values of the function f (r)
at five points, which are the center and the corners of
a regular tetrahedron, namely, the nucIeus 0 of the
ion, which is also the origin of the x—y —s system, and
points I'i, P'2, I'3, and I'4, whose coordinates in the
x—y —s system are, respectively, (t, t, —t), ( t, t, —t), — —
( t, t, t), a—nd (t,t,t). Denot—ing the values of f(r) at
these points by fo, f„f2, f3, and f~, we have

There is some doubt as to the best value to use for t;
we have chosen it so that the corners of the tetra-
hedron are in the region of the maximum radial charge
density for the outermost p orbital of the ion.

Unfortunately, this method does not completely
eliminate the eGect of the presence of the d-type
terms in Eq. (23). Those d-type terms that belong to
the two-dimensional irreducible representation of the
cubic group have, indeed, no e6ect, but those that
belong to the three-dimensional representation (i.e. ,

terms of the ys, sx, xy symmetries) affect the values
of a, a„, and a,. The only satisfactory way to remedy
this defect would be to evaluate the function f(r)
at more than five points, but since the number of ions
to be treated in this manner can be very large, this
would be liable to increase the machine time very
considerably.

The niethod which we have outlined here estimates
the overlap integrals with K+, Cl 3P orbitals mostly
with an error of a few percent; the errors are larger
and may reach 10%%uo if the trial function is rather
compact, but in the case of a compact trial function
the contributions of the distant ions are less important.
The overlaps with ionic 2p and 3s orbitals are estimated
more accurately, and in the case of the 2s orbitals the
errors are of the order of 0.1%. The matrix elements

(f.~'LL~ f&,) are estimated mostly with an error not
exceeding 1%, although errors up to 2% occur oc-
casionally; exceptions to this are matrix elements which
are very small because the nucleus of the ion is in a
nodal plane of both f„and fq. The errors in such
cases are of the same order of magnitude as these
matrix elements themselves, but because of the small-
ness of these matrix elements, this does not affect the
results any more than the other errors do. We shall
refer to calculations employing these approximations
as "extended ion, " although the method to follow also
takes into account approximately the extension of
the ions.

C. Use of the EBeetive-Mass Formalism

In the extended-ion method of calculation, described
above, we cannot avoid certain sources of error. For
example, it might seem that the method for treating
the distant ions, described in Sec. III 8, is too in-
accurate because we use the values of the smooth-
component trial functions at only five points within
the region of each ion. Actually, this source of error
is less serious than would appear at first, because if
the wave function of the excess electron is so disuse
that the contributions from distant ions are important,
then the relevant smooth-component trial functions
are so slowly varying that the approximation of using
only five points is quite accurate. This reasoning,
however, draws our attention to another, more serious,
source of error: the fact that our smooth trial function
in regions far away from the defect site is slowly
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G = —
~~ 7 +Vp„,+V', in r I (31)

G= ——,
' V'+ni*firp+m*V', in r~, (.32)

then G can be shown to be Hermitian.
The Hermitian property of the operator G enables

us to derive a variational equation for the determination
of f, g, and E, but only if we make a further approxima. -

tion whose eRects are difIicult to ascertain. We may
rewrite Eqs. (29) and (30) as

Gtk=EQ, in ri,' (33)

Gg=m*Eg, in r. . (34)

This suggests that for any functions f and g we should
define (using real wave functions)

(~)=( Kk& + r~e& )&1 'r2

Pd +m' g'd ) (35)
~1 T2

and then (E)=E if Eqs. (33) and (34) are satisfied.

varying, would seem to imply that the trial function is
too inflexible for the variational calculation, and a niore
flexible trial function, perhaps containing a component
periodic with the periodicity of the lattice, might
possibly lead to an appreciablx lower energ~. Kith the
view of avoiding this error, as well &s certain ot,her
errors arising from our imperfect knowledge of the
structure of the ions when they are in the crystal, we
have developed the following, alternative, method.

I.et V~„be the periodic eRective Hartree-Fock
potential energy of an electron in the perfect crystal,
V' any additional potential energy needed to account
for the presence of the defect, polarization, etc. , and
let eHF be the Hartree-Fock approximation to the
energy of the bottom of the conduction band. We shall
discuss our choice of its value later. Let P be the orbital
of the excess electron, and g the envelope function for
that orbital in the sense of eRective-mass theory.

We divide the volume of the crystal into an inner
region ri, at the center of which is the defect, and an
outer region r2, consisting of the remainder of the
crystal. For the inner region we use the Schrodinger
equation (in atomic units)

(—-' P+ V +V')if = EP (29)

while for the outer region we use the effective-mass
equation

L
—(2m*) '7 +eirF+ V']g=Eg, (30)

m* being the effective mass. In Eq. (29), V„,+V'
contains the potential energy operator of Eq. (2) plus
a polarization contribution to be given below. V, in
Eq. (30), we approximate by r' in —the case of the F
center in alkali halides, plus the polarization term.

We define an operator G as follows:

It is also easv to derive the v'iriation;il equation th;~t,
if those equations are satis6. ed, then

(.36)

for arl&itrari variations ui f a&ul g, pruv&rPerj t.liat wc
impose on the functions the condition that f and its
normal derivative should be continuous with g and its
normal derivative across the boundary between
and r~. These conditions constitute an approximation,
and this is a weakness of this eRective-mass method.
Ke might attempt to justify them bs drawing the
boundary surface between the regions ri and ro so that
all the points of that surface are as far as possible
away from the cores, and by saying that at such points
the wave function tf is close to the smooth (i.e., un-
orthogonalized) trial function, which in turn is close
to the envelope function; but by saying this, we may
be committing precisely one of the errors that we are
trying to avoid by the use of the eRective-mass method,
namely, making the smooth trial function, by impli-
cation, too inflexible. For example, the envelope
function for a Bloch wave in the conduction band is a
plane wave; therefore, equating the smooth trial
function to the envelope function in such a case mould
amount to doing an OPW calculation using only one
single OPW, instead of a linear combination of a
number of them.

However, the same kind of weakness appears to be
present also in our extended-ion method —unless a
way is found to make the smooth trial function rather
more flexible than we have so far don" and while it
might seem, on purely theoretical grounds, that in the
case of moderately diRuse states the extended-ion
method is superior to the eRective-mass method, our
results seem to indicate that the opposite is actually
true. For very diRuse states of the additional electron,
the eHective-mass method would in any case be expected
to be superior to the extended-ion method.

In a practical application of the eRective-mass
method we simply make the envelope function g equal
to the same linear combination of Slater-type functions
that represents the smooth trial function in the region r~.

D. Inclusion of the Dielectric Polarization
of the Crystal

One might expect that at those distances from the
vacancy at which eRective-mass theory becomes ap-
plicable, dielectric polarization eRects will also have
become important. We have included such eRects in
our calculations according to the THS (Toyozawa-
Haken-Schottky)' ' theory and modifications thereof.
Let us take the polarization potential U(r) as a sum
of an electronic part L', i(r) and an ionic part U;,„(r).

' Y. Toyozawa, Progr. Theoret. Phys. (Kyptp) 12, 422 (i954}.' H. Haken and %. Schotty, Z. Physik. Chem. {Frankfurt) 16,
2i8 {i958).
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v.= (2m, *(uLo/h)'" (39)

where capo is the longitudinal optical phonon fre-
quency. To understand the significance of the param-
eters more clearly, let us consider the limit of the
quantity —1/r+U(r) as r goes to infinity. We have

—1/r+ U(r):—(K„r)
——

2 (1—K„—) (p,+p„)
t'~QQ

——,
' (K„'—K. ) (e,+sK) . (40)

From this relationship, compared to the usual expres-
sions for the energy of a point charge embedded in a
dielectric medium, we see that the terms in p, and pp,

can be interpreted as the self-energy due to the elec-
tronic polarization associated with the electron and
the hole (in the case of an F center, a vacancy). The
suggestion then is that the terms in v, and vA, are the
polarization self-energies due to the displacement of
the ions. The effective interaction of the electron and
the hole is reduced by the static dielectric constant as
expected. Note that according to Kqs. (37) and (38)
the rates at which the polarization is "turned on" are
also determined by the same parameters which deter-
mine the magnitude of the polarization effect.

Since in the case of the F center the hole is a vacancy
with an infinite effective mass, it would seem that vq

should be much larger than v.. Fowler" has considered
modifications of the THS theory for this case. He
concludes that it is reasonable to determine vt, from
the equation

vI,
——2/a

in which c is the nearest-neighbor distance. This has
the effects of giving a large self-energy due to ionic
displacement around the vacancy and of turning on
that part of the static dielectric constant associated
with the vacancy rather rapidly as the electron-
vacancy separation increases. Since we intend to take
the lattice relaxation around the vacancy into account
by classical ionic-crystal theory, some care must be
exercised to avoid double counting of the associated
self-energy. We shall discuss this problem in more
detail in Paper II.

&0 Q', 8, Fowler, Phys. Rev. 135, +172) t,'19+),

For U, ~ we write

U.)(r) = (1—K„-'){—2 (p,yp„)
+(1/ )L1—2(e "'+e '"")j) (37)

and for U;, ,

U;.,(r) = (K„'—K„—'){—-'(e +sp, )
+(1/r)L1 —2(e "'"+e '"")]& ( g)

In these expressions I~:„and a,& are the high-frequency
and static dielectric constants, respectively; p„pp„v„and
vK are parameters (e—electron, h—hole) whose values
in the case of Wannier excitons are prescribed by the
THS theory. However, we shall follow the prescription
only for v„ i.e., we calculate it by the formula

The value of pI, is chosen so that the magnitude given
by the classical expression for the electronic polarization
self-energy is just equal to the polarization energy
associated with the removal of a negative ion as
calculated by a Mott and I.ittleton" type of self-
consistent calculation. Calling the Mott and I.ittleton
value UM~, —,we have the expression

f'~r r. =
2 (1—K ') pK (42)

with which to determine p&. It does not matter greatly
whether one uses a zero, first, or higher-order Mott
and I.ittleton approximation. Fowler' has suggested
the same procedure for determining p~ and a similar
procedure for determining p, but with UML+ (polari-
zation energy associated with the removal of a positive
ion) replacing UM~ in Eq. (42). We have found that
this suggestion does not give satisfactory results unless
we at the same time introduce other modifications, as
we shall explain in Paper II. Instead, we have found
it convenient to equate p, and p~, and we believe the
results we obtain at least partially justify this pro-
cedure, although it would certainly be difhcult to
adduce any arguments a priori for it.

Returning now brieRy to the incorporation of the
effective mass into our model, we make the following
assumption. The negative of the experimental electron

amenity X, „t will be taken as the bottom of the con-
duction band, E pt in the presence of a filled valence
band and with both electronic and ionic polarization
effects included. This means that we have

E&Kpf;= eHF 2 (1 Koo )pz g (K~ Kst )ez (43)

as an equation which determines 6HF. There is some
doubt as to whether or not the last term should be
included, since it is not clear to what extent the ions
can follow the electron in a process which measures
the electron afhnity. However, since this term is small,
it does not matter greatly whether we include or
exclude it.

A somewhat more detailed account of the dielectric
polarization sects is given in Ref. 1, and they will be
discussed further in the Paper II ~

"iX. F, Mott and M. J. Littleton, Trans. Faraday Soc. 34,
485 (1938).

IV. PRELIMINARY APPLICATION OF THE
METHODS TO THE Il CENTER

IN KC1 AND NaC1

The methods described thus far, are sufhcient to
enable us to calculate the absorption energy of the F
center in alkali-halide crystals in a number of diferent
approximations provided we neglect lattice relaxation
eAects. Here we shall use the results of such calcu-
lations on KCl and NaCl to draw a number of con-
clusions about the various approximations and to
indicate a suitable model for the more extensive calcu-
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TABLE III. Inpu t data for the calculations. Explanation of
the symbols and discussion of the values listed are given in the
text.

a pe= pa &e='p gexpt
Crystal (a.u.) m K K t (a.u. ') (a.u. ') (eV)

KCl 5.936 0.5 2.13 4.68 0.1969 0.0339 0.6
XaCl 5.330 0.6 2.25 5.62 0.1972 0.0299 0.8

lations to be presented in Paper II. We choose KC1
and NaCl because some estimate of the necessary
input data exists from experimental work and because
Hartree-Fock wave functions are available in a con-
venient form for K+, Na+, and Cl—ions. " Table III
gives some of the data we have used. a is the nearest-
neighbor distance in the perfect crystal, and we have
taken the values shown from Table 3 of Tosi and
Fumi. " The value of the effective mass m* for KC1
we have taken from the work of Hodby et a/. "As far
as we know, a comparable value for the effective mass
for NaC1 has not yet been obtained. Therefore, we have
chosen m*=0.6, since this value has been used fre-
quently in the past by other authors. The values of
~„and ~,t are taken from the literature. "p, and pq are
chosen in a manner already described (Sec. III D).
For the states involved in absorption we take v, = v~ =0
for the following reason. The ground state of the F
center involved in the absorption process has a compact
wave function. We therefore expect the F electron to
be moving so rapidly that the ions in the crystal cannot
follow its motion to any appreciable extent, and so we
can assume v, to be very nearly zero. Also, the compact
electronic wave function shields almost completely the
effective charge of the vacancy, and so we also expect
v& to be very small or zero for the ground state. In
calculating the excited states involved in absorption,
even though they may have diffuse wave functions, we
invoke the Franck-Condon principle and neglect all
polarization effects due to ionic motion, i.e., we take
U;,„=—0. This can be done by putting v, = v~=0.

We can now test the following approximations: the
effect of including and excluding the dielectric polari-
zation contributions; the question of whether the
effective-mass approximation or the approximation out-
lined in Sec. III B seems to give better agreement with
experiment; and the effect of the choice of the radius
R, at which we go over to one or the other of these
approximations. Tables IV and V give the results of
these tests on KCl and NaC1, respectively. The larger
values of R, were obtained from the equation

—,'7rR, '= (3a)'.
"P.S. Bagus, Phys. Rev. 139, A619 (1965).
"M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25, 45

(1964)."J.W. Hodby, J. A. Borders, F. C. Brown, and S. Foner,
Phys. Rev. I.etters 19, 952 (1967)."X.F. Mott and R. %. Gurney, 1;/ectronic Processes in Ionic
Crystals (Clarendon Press, Oxford, 1948).

TABLE IV. Some results of the calculations on KCl. 8, is
given in atomic units. All energies are given in eV. At —180'C
the experimental values of AE, (1s —+ 2p) and AJ.'(1s ~ 3p) are
approximately 2.3 and 2.7 eV, respectively.

KCl
No polarization
Effective mass

Polarization included
Extended Effective

ion mass

Re
Ete
E2e
E~p
Eap
&E(1s 2P)
~E(1s ~ 3P)

11.048 a.u.
—4.09 eV
—0.74 eV
—1.31 eV
+0.01 eV

2.78 eV
4.10 eV

6.749
—4.09
-0.52
—1.25
—0.04

2.84
4.05

11.048
—4.81
—2.00
—2.37
—1.56

2.44
3.25

11.048
—4.81
—2.46
—2.53
—2.14

2.28
2.67

6.749
—4.84
—2.52
—2.46
—2.09

2.38
2, 75

"G. Chiarotti, U. M. Grassano, and R. Rosei, Phys. Rev.
I,etters 20, 1043 (1966).

That is, we have chosen a cube such that, when it is
centered at the defect site, the faces are midway
between the first and fourth neighbors. The volume of
the cube is equated to the volume of a sphere in order to
determine R„which then lies between the third- and
fourth-nearest-neighbor distances. The smaller values
of R, are chosen by locating approximately that radius
at which a —r ' potential equals the spherically
symmetric part of the point-ion potential. This turns
out to be approximately 1.137a. With these two choices
of R, we are, thus, able to test the approximation of
treating the structure on the first, second, and third
neighbors in detail and accurately and that of treating
only the first neighbors in such a manner. Since both
of these choices of R, are somewhat arbitrary, we shall
in Paper II investigate further the effects of varying R..

In Tables IU and V we show the first two levels of
s-like and p-like symmetry. The j.s—2p and 1s—3p
transitions should correspond to the main F band and
the low-energy side of the E band, respectively.
Experiments on the Stark effect in F centers" indicate
that the 2s and 2p levels should lie very close to each
other. These then are the criteria we shall use for
judging the various approximations. In carrying out
these calculations, we have expanded the smooth part
of the trial function, i.e. , f(r) of Eq. (14), in terms of
five Slater-type orbitals of the form indicated in Eq.
(22). These orbitals were chosen so that the first three
should represent primarily the wave function of the
first level of a given symmetry and the next two the
wave function of the second level of that symmetry.
A g component has been included in the s-like wave
functions, but its contribution is quite small. The
contribution of an f component to the p-like states
was also found to be quite small in the early calculations
and was subsequently dropped. More details of the
wave functions will be given in Paper II.

Let us examine the results for KCl first. Probably
the most striking one is that all of the calculations
with polarization correspond much more closely to the
experimental results than do those without polarization.
Furthermore, even in the ground state there is a polari-
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TABLE V. Some results of the calculations on NaCl. R, is
given in atomic units. All energies are given in eV. The experi-
mental value of bE(1s~ 2p) is 2.77 eV at O'K. The 1s ~ 3p
transition, interpreted as giving rise to the low-energy side of the
E band, is difEcult to discern in the NaCl experimental data.

Nacl No polarization

Polarization included
Extended

Effective

ion mass

R
EI~
~28
E2„
E,
bE(1s ~ 2p)
bE(is ~ 3p)

9.920
—4.68
—0,88
—1.18
—0.02

3.49
4.66

6.060
—5.06
—0.92
—1.93
—0.04

3.13
5.03

9.920
—5.34
—2.20
—2.26
—1.81

3.09
3.53

9.920
—5.35
—2.77
—2.65
—2.32

2.70
3.04

6.060
—5.85
—2.82
—3.07
—2.46

2.79
3.39
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zation contribution of roughly 0.7 eV. The extended-ion
calculation apparently does not do as well as the
effective-mass calculations, which give results remark-
ably close to the experimental ones for all three of our
chosen criteria. Generally speaking, the results for
R =11.048 a.u. and R =6.749 a.u. are close to each
other for the calculations both with and without
polarization. This suggests that e~F as determined by
Eq. (43) is quite elIective in duplicating the eBects of
the detailed electronic structure on the 2nn and 3nn
ions as well as more distant ions. This is important,
since the elimination of the need to consider the detailed
structure on the negative ions will greatly extend the
usefulness of the model in addition to cutting down
significantly on the computing time.

The results for NaCl are analogous to those for KCl,
although the effects of going from an R, between the
third and fourth neighbors to one between the first
and second are much more pronounced. Ke believe
this is attributable in part to our inadequate orthog-
onalization of the outer orbitals on the negative ions
to the orbitals on the neighboring ions. In NaCl, the
overlap of the outer orbitals on one Cl—ion with those
on a neighboring Cl ion is much larger than in KCl,
and we have neglected this effect altogether. Orthog-
onalization to the orbitals on the neighboring positive
ions has been carried out in both crystals, however.
This difFiculty with the detailed treatment of the
negative ions, whose contributions are not negligible,
makes it even more important that the model in which
the effective-mass treatment cuts in just beyond
the first-nearest neighbors apparently works fairly
satisfactorily.

%e shall not discuss these results further here, since
the main purpose of this paper was to present the
methods. In Paper II a much more thorough discussion
of these and other results for the F center in KCl,
KBr, KI, and NaCl will be given.

f(r)= P P I g, (tm~ p).(Pi"(cos8)e„ir-'" cos~
&=o m=o

+g, (lm
~
p)(P~ (cose)n. "' sin~ j, (A1)

where p, 8, p are defined by x=p sin8 cos@,y =p sine sin&,
s= p cos8, so= 2 '", e = 1 for m& 1, 5'~ are the rIorma/-
ised associated Legendre functions, so that

La'&" (u) ]'du= 1, (A2)

and, for q denoting either c or s,

g, (lmt p) =p'Pbo ' (lm)+bi ' (lm)p2

+ . .+b, ii. I) i'}(lm)p'&~ '&g (A3)

e(I.—l) being the greatest even number that does not
exceed L—/. Our problem is to determine the coefficients
b„"(lm) and b„"(lm). It is worth noting that the
greater the value of /, the smaller the number of terms
in the polynomial g, or g, . If we took the polynomials
for /=0 to be given by Eq. (A3) and defined the poly-
nomials for greater values of / so that they contained
the same number of terms, this would be equivalent to
including in the three-dimensional expansion some of
the functions x"y"z with @+v+o-=/& t. without, how-

"H. Hei. l, 1'he 7'heory of (iroicps and Q1cccntccns 3Jeclitcnics
(Dover I'ublications, New York, 1949), Chap. II, Sec. 4.

acknowledges the opportunity given to him to work at
the Oak Ridge National Laboratory as a visiting
scientist.

APPENDIX

Let f(r) be a given function of the position vector r,
and let it be required to expand this function in spherical
harmonics about a given point 0 which is usually not
the point from which r is measured. %e choose the
point 0 to be the origin of a Cartesian system of
coordinates x, y, s and assume that the mathematical
behavior of the function is such that it can be expanded
in terms of the functions x&y"s' in some neighborhood
of 0, where p, v, 0. are non-negative integers.

In practice we can only. use a finite number of the
functions x&y"z, and it seems reasonable to include a//

such functions with p+u+0- less than or equal to some
number I., except only for functions that are dis-
allowed by the symmetry of the function f(r), and to
include none of the functions that have p+v+o-)I.
A suitable value of I. can easily be determined by a
small amount of trial and error.

It can be shown that the function x&y"s, where
@+v+0=/, is expressible as p' multiplied by a linear
combination of spherical harmonics of degrees /, / —2,
l—4, , 1 or 0 (see, for example, Weyl"); here

(i2+y2+ s2) I /2

Therefore the expansion may be written as
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ever, including all such functions for a given value of l;
therefore, the accuracy is not likely to be signi6cantly
improved, but the amount of calculation required would

certainly be increased.
We can here given only an outline of the method;

otherwise this Appendix would be too lengthy. Before
we begin the calculation, we decide on the radius R
of a spherical volume, centered at the point 0, within
which the expansion is to be accurate. We construct
spherical surfaces, centered at 0, of radii p&, p2, . -. , p~,
such that

0 PX- PX I«. PI&~)

the number V depends on L, the maximum value of l
used in the expansion (A1). On each of these spherical
surfaces the function f(r) is a function of the angular
coordinates only, and will be expanded in spherical
harmonics. The expansion on the vth spherical surface,
which is of radius p„, is carried out under the assumption
that terms with l&L„are negligible, where, for the
largest of the spherical surfaces, L„=L~= L, and for the
other spherical surfaces the values of L, are determined

by a somewhat complicated rule so that

L, & L„ for p„& p„.

The smaller the radius of the spherical surface, the less
important, according to Eq. (A3), are terms with large
values of l, and it would not be economical to use the
same number of terms in the expansion on a small
spherical surface as on a large surface.

Considering now one of the spherical surfaces, we
draw on it a number of parallel circles, the plane of each
of these being perpendicular to the s axis. On each of
these circles the function f(r) is a function of the angle

@ and is expanded in terms of the normalized functions
~ m "2cos~ and m 'l'sin~ under the assumption
that, on the pth parallel circle, terms with m) M„are
negligible, ~here, again, 3f„ is in general smaller on a
circle of small radius than on one of large radius. Each
of the expansion coefficients is calculated as a linear
combination of the values of the function f(r) at
2M„+1 equally spaced points on the circle; the coeffi-
cients in the linear combination were precalculated
when the program was being written, and are perma-
nently stored in the program.

The coefficients, say a.(m) and a, (m), of these
trigonometrical functions of p are themselves functions
of cos8 and are now expanded in the normalized func-
tions (P~"(cos8). Each coefficient of such an expansion
is calculated as a linear combination of the values of
a, (m) or a, (m) on the parallel circles, again with

permanently stored coefficients.
We have, thus, obtained the values of g, (lm~p„)

(where q= c or s), i.e., the values of the functions g,
of Eq. (A1), on the spherical surfaces that we have
constructed. Each coefficient b. '"(lm) of Eq. (A3) is
now calculated as a linear combination, again with

permanently stored coefficients, of the values of

g, (tm't p.) for different v.
In the preparation of the program, great care was

taken to select the ratios p,/R so as to minimize the
errors arising from the neglected terms with l&L, as
far as this was possible without unduly increasing the
machine time required for the expansion. The method
of selecting these ratios is based on the theory of
orthogonal polynomials and cannot be described with-
out making this Appendix too long. Suffice it to say
that in each expansion it was found necessary to use
not one but two diferent sets of radii p„. one for even
and the other for odd values of l. Also, on each spherical
surface we use two diBerent sets of parallel circles:
one for even and the other for odd values of m.

Certain kinds of symmetries of the function f(r),
if present, can be taken into account by the program to
shorten the calculation.

This expansion program is very fast: on the CDC
1604, it takes between a fraction of a second and a few
seconds to carry out an expansion of a smooth-com-
ponent trial function (see text, Sec. II), even with l.
as high as 12. Tests of the program on this type of
function have indicated that it is sufficiently accurate
for our purposes, i.e., the errors arising from its use are
much smaller than the errors arising from the un-
avoidable approximati'ons in the physics of the problem.
In most of our calculations we have used the value
L=8 for nearest neighbors, and L=6 for second and
third neighbors; the results do not diBer signi6cantly
from those obtained with L= 12, and this fact by itself
is evidence that the program is sufficiently accurate for
our purposes.


