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Because of spin-orbit coupling, an incident light wave can flip the effective spin of carriers in a semi-
conductor. In the presence of a strong dc magnetic field H, the frequency shift for the scattered light due
to this process corresponds to the intraband excitation energy gess8H. Using the band-edge structure of PbTe,
PbSe, and PbS at the L point in the Brillouin zone, the spin-flip Raman cross sections are calculated for
both electrons and holes in these materials. Scattering amplitudes, which can be assumed to be independent
of the magnetic field, are calculated by considering six bands near the band gap. The predictions of a simple
two-band model including the spin-orbit effect are also analyzed to try to relate the scattering amplitudes
directly to energy gaps and effective masses. Theoretical values for the cross sections in PbTe and PbSe for
a CO; laser are comparable to those in InSb. The nature of the variation of these cross sections with the
carrier concentration z and the magnetic field A is discussed.

I. INTRODUCTION

N presence of a strong dc magnetic field, inelastic
scattering of light from intraband excitations of
electrons! in InSb and InAs has been observed experi-
mentally? with a CO, laser. Using Kane’s band structure
for InSb and InP near the T point, Yafet® has derived
expressions for cross sections for the Landau-Raman
(LR) process, where the spin-direction remains the
same (AS=0) but Landau-level quantum number
changes (Al=1, Al=2), and for the spin-flip Raman
(SFR) process where only the spin quantum number
changes (AS=1, with corresponding excitation energy
getiBH ). Recently, Patel and Slusher* have reported the
observation of SFR scattering in PbTe. Mixed processes
have not yet been observed consistently.

In the electric-dipole approximation there is no LR
scattering from electrons in a simple parabolic band,
because in this case Landau levels are equally spaced,
with electronic motion harmonic. Also, in absence of
spin-orbit coupling SFR scattering vanishes since the
dominant A-P interaction of the light wave cannot flip
the electronic spin. Thus for appreciable LR scattering
it is essential to use semiconductors with highly non-
parabolic bands whereas for large SFR scattering, one
has to choose materials with large spin-orbit coupling.
For LR scattering, it is also clear that numerical results
for the cross section will be very sensitive to the detailed
variation of the energy of an electron near the band-edge
and its necessarily complicated motion in the dc
magnetic field. However, for low magnetic fields SFR
scattering amplitude is independent of the dc field® and
it is enough to know the band-edge structure in the
effective-mass approximation. In this paper we will
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calculate SFR cross sections for lead salts using band-
structure parameters obtained by Lin and Kleinman.®

In Sec. 2 we will review the band structure of PbTe,
PbSe, and PbS at the L point in the presence of the
spin-orbit coupling and discuss the structure of mo-
mentum matrix elements between six levels (each
Kramers doublet in absence of the magnetic field) near
the band gap. Since in the first approximation the
effect of the dc field on the matrix elements can be
neglected in our case, we use these to calculate the spin-
flip transition amplitudes and scattering cross sections
for both electrons and holes in these materials in Sec. 3.
Numerical results are obtained by using the values for
band-structure parameters due to Lin and Kleinman?®
based on the pseudopotential method. Since these
parameters for PbTe differ from the corresponding
values obtained by Conklin, Johnson, and Pratt® based
on a true potential, we also consider a simple two-level
approximation in Sec. 4 and obtain the cross sections
directly from the experimental values of the bandgaps
and effective masses. The calculated cross sections are
large in both PbTe and PbSe and are of the same order
asin InSb. We will discuss our results in Sec. 5.

II. BAND-EDGE STRUCTURE

Each of the lead salts under consideration has the
NaCl crystal structure (fcc) with a truncated octahedron
as the Brillouin zone. From available experimental as
well as theoretical results it has been established that
conduction- and valence-band extrema are located at
the L point (111 edge) of the Brillouin zone. The lowest
set of states, (L1,Ls"), for an empty fcc lattice,”® at the
L point arises from linear combinations of two plane-
wave states of wave vectors k== (27/a)(},3,3). The
next set of six states [L1,Ls’,L3(2),L3'(2)] arising from
linear combinations of plane waves of wave vectors
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k== (2r/a)(3,3,3), = (2r/a)(3,3,3) and =+ (27/a) (3,3 2
determines the structure of the bands near the gap. If
we include the spin, we may label the basis functions by
Let*(Ly), Levt(L1); Lett(Ls), Levt(Ls); Lst(Ls),
Lit(Ls); Ler (L), Les™(Ly'); Ler(Ls), Loy (Ls);
Ls(Ly), L (L3"). In terms of the plane waves

¢1=exp[ (ir/a)(—x—y+32)],

¢2=exp[(im/a)(3x—y—2)],

¢s=exp[ (ir/a)(—x+3y—2)],

we may write

Lot (L) = (1/4/6)[(p1F¢1*)+ (po+ o)+ (s+05*) 1T,
Leyt(L1)=KLer*(Ly),
Lett(Ls)=(1//6)
X[($1+¢1%)+ (@otd2*)o*+ (@3t 5* ) 1T,
Leyt(Ls)=KLet*(Ls),
Lit(Ls)= (1/V12)[(01+ ") (T+ 1)+ (622"
X (@l w*])+(ps+¢s*) (0*T+wl])],
Lst(Ls)=KLsH(Ls),
Lot~ (Ly) = (i/vV6)[(pr1—1*)+ (p2—¢2*)+ ($3—¢5*) 1T,
Loy (Ly)=KLegr— (L),
Lot (Ls") = (i/v/6)[($1— 1)+ (2— o™ )w*
+ (ps—¢s*)w]T,
Loy (Ls')=K Ler(Ls') ,
Li(Ls")=(/v12)[(p1— ") (T—|)+ (p2—2*)
X (ol —w* )+ (3= ¢s*) (*T—w])],
Li (Ly)=KL(Ly),

where w=exp}(2xi), T and | are spin-} wave functions
quantized in the [111] direction, and where K is the
time-reversal operator which takes the complex con-
jugate of the spatial part and changes T to | and |
to —T.

In the absence of spin-orbit coupling Ly, ++(L3) states
are degenerate with L, (L), and Ley +—(Ls') states
are degenerate with L4357 (Ls’) so that there are only
four bands instead of six. However, because of large spin-
orbit coupling in lead salts these degeneracies are lifted
with considerable mixing of Lg(L,’) and L¢(L3’) states
which determine the nature of the conduction band and
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Fi16. 1. Energy levels for lead salts at the L point.
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of L¢t(L,) and Lg¢t(L;) states which determine the
nature of the valence band. This mixing is responsible
for SFR scattering. Apart from L4,5~(Ls’) and Ly 5t(L3)
states, we may write the remaining new eigenstates
(see Fig. 1) in the form

|CAa)=cLet(Ly")—dLey (L),

CAB)=K|CAa), (2.1)
I CB&>=CLst—(L‘;I)"‘dLﬁl—(Lz,) :
|CBB)=K|CBa), (2.2)
[VAa)=aLer*(L1)+bLeit(Ls),
|[VAB)=K|VAa), (2.3)
|VBa)=alLst*(Ls)+bLey*(L1),
[VBB)=A|VBa), (2.4)

where a?4-b*=¢?*4-d*=1 and where CA is the bottom
of the conduction band and VA is the top of the valence
band.

It is convenient at this stage to work in a new co-
ordinate system where the Z axis is parallel to the [111]
direction, the X axis is parallel to the [112] direction,
and the ¥ axis is parallel to the [110] direction, so that

Z=(1/V3)(E+9+32), (2.5)
X=01/7/6)(—2—5+28), (2.6)
V=Q1/V2)(#—9%). (2.7)

In the new coordinate system the nonvanishing
matrix elements of $(2m)~'%e-p, which are approxi-
mately equal to the matrix elements of 3(2m)~1/2
e-[p+ (%/4mc*)eX V], are calculated in the notation?
of Lin and Kleinman and given in Table I, with

(ex+iev)/V2=e,, (ex—iey)/V2=c_.

III. SPIN-FLIP RAMAN CROSS SECTION

A general expression for the cross section which in-
cludes the effect of the Coulomb interaction of the elec-
trons has been derived!® earlier. In the present case one
can, however, treat the electrons to be moving in-
dependently in the dc magnetic field and neglect!! the
residual Coulomb interaction. In the electric-dipole
approximation one then finds the differential scattering
cross section per unit solid angle per unit frequency to
be given by

d% wy [T dt

=ry— —e* (T y11(t) T91(0)
4042 w1 ). 2n w72 (0))

= ro"’? ; Z Jo(EJ[1— fo(Ef)]

XO(Er/h—Ei/hi— Q) [(fltm]i)]?, (3.1)

® Note that matrix elements in Table IV of Ref. 5 are for
i(2m)~1/?k- 7 and not for H’ of that paper. Our M, M, etc. denote
the absolute magnitudes of M, M, etc. defined in Ref. 5.

10§, S. Jha (to be published).
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TABLE 1. Matrix elements of $(2m)~'%e-[p+ (Mdmc)ae XV V.
| CAer) |CAB) |CBa) |CBB) |Ls) [Ls™)
(VAa| (acM,—bdM,) (adM 3+bcM ;) (acM 3—bdM ) (adM+beM ) (aM_ —bOM)(1/V2) (aM M) (1 /V2)
—iez —ie_ —ie_ —iez —1ey —iey
(VAB| (adM;+bcM ;) (acM \—bdM ) (adM \+-bcM ») (acM 3—bdAM ;) (aM+bM)(U/N2)  (aM 4—bMy)
iey —iey +iez —ie4 +ie_ —ie_
(VBa| (acMs;—bdMs) (adMo+bcM ) (acM y—bdM,) (adM.:,—i—bcM;) ((lMa.—bM4)(1/\7) (aMs_+bM4)(1/\’2)
—iey —iez —iez —iey —ie_ —e_
(VBB! (adMs+bcd,) (acM ;—bd M ) (ad M 5+bcM 3) (acMy—bdM ) (@Ms+bM)(A/N2)  (aMg—bM,)(1/\2)
) ) iez —1e_ ie_ —iez iey —ie,
(L] (eMe—dM)(1/\2) (cMs+dM1)(1/32)  (cM7—dMe)(1/72) (cM7'+dM.;J(1/\2) 0 M,
—1e_ —ie, —iey —ie_ —1ieyz
(Li*]  (cMe+dMa)(1/N2) (cMe—dM(1/72)  (cMi—dMe)(1/72) (cM1—dMe)(1/\2) My 0
ie_ —ie, ie, —ie_ icz

(flta|i)=es-eids,i+m 3

n

[(fl veez|n)(n|v-eii)
(Ei— En+#wr)

+(flv-exfn><nIV'ezli>:|, (3.2)

E{—'E,.—hwz
P er 3
y=—f—f aXVV, (3.3)
m mc 4m*c?
Q=w1—w2,
(3.4)

ro= e"’/mc? s

where w; and w, are incident and scattered light fre-
quencies, e; and e, are respective polarizations, A, is
the vector potential corresponding to the dc magnetic
field, |i), |n), | f) are single-particle electronic wave
functions including the spin-orbit effect, and fo(E) is
the Fermi distribution function. For the SFR line
wi™w; at low fields and we may neglect the effect of the
field on the scattering amplitude (3.2). Further, the

(CAC!I/Q;,CA6>=—'— -
3 E,

4i[(arCM1‘—bdM2)(adM3+bCM5)/hw1
\E,

spin-orbit term in Eq. (3.3) may be ignored and for low
concentration of carriers the integrated cross section
(per unit volume) at low temperatures may be written as

do/dO=nr| (f]tn]i)|2, 3.5)
where . ( o )
{flta|iy~—3 l: f1p-ex[n)(n|p-ei]i)
e E.— Ep+hw

+(ffp‘ell")("fp'eﬂi>:|. (3.6)
E.;—E,,-—hwl

n is the density of electrons available for the particular
excitation and where the initial state is assumed to be
full and the final state empty. A more general expression
valid for higher carrier concentrations and at finite tem-
peratures will be discussed in Sec. V.

In our approximation we may use the matrix ele-
ments obtained in Sec. II to obtain the scattering
amplitudes for carriers in either the conduction band or
the valence band. We find

)
E2—h%n?

((ICM:,'—bdMs)(adM2+bCM1)/hw1

Ag?

\a, an(@xed-, (3.7)

A3

<VAﬁllzllVAa>=—;

<

\E,

E,

(acM 3—bdM ) (aa’Mrf-bcM«z)/hwl

4i[(aCM1—bsz)(asz“l‘bCMs)/fLwl)(F Eg2 >
,gz——fﬁwl'*’

Ay?

The values for ger for these materials are tabulated in
Ref. 5. Since both g, and g, are positive for the conduc-
tion band and negative for the valence band, knowledge
of the above amplitudes is sufficient to calculate the
scattering cross sections for gesrBH>ET. The transition
amplitudes for reverse processes are related to the above

\ A ><A 2 2o 2)](ere1)+. (3.8)

Ay

amplitudes by
(CAﬁ[ [21 CAC!>= - <CAa] tgll CAﬁ)* y (39)
(VAa|ty| VAB)= — (VAB| 12 LVAa)* . (3.10)

Because of the structure of momentum matrix elements
in Table I, it should be noted that in our approximation
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TasLE II. Band-edge parameters® and scattering cross sections.

1 do 1 do
Semicon— M1 M2 A’Ia A[a Eg A1 As j (CAaltn | (VAﬁi’m n d8 n d@
ductors (Ry.)* (Ry.)} (Ry.} (Ry.)} (Ry.) (Ry.) Ry.) a b ¢ d XICAB)| X|VAa)| (electrons) (holes)
PbTe 0.410 0.306 0.802 0.779 0.014 0.096 0.103 0974 0.227 0.668 0.744 144 14.5 207 ro* 210 ro?
PbSe 0.464 0.319 0.857 0.788 0.012 0.112 0.146 0.999 0.041 0.864 0.504 24.1 24.0 580 72 576 ro?
PbS 0.467 0.329 0.902 0.848 0.021 0.129 0.149 0.999 0.032 0.881 0.473 5.75 5.6 33.17¢*  31.4r0%
a Reference 5.
there are no contributions from Ls,;* and L4 ; inter- In a two-band model we consider only the conduction

mediate levels to the scattering amplitudes. In the
absence of the spin-orbit coupling, b=d=0, and scat-
tering amplitudes indeed go to zero. Using the actual
values for the mixing coefficients a, b, ¢, and d, and other
band-edge parameters obtained by Lin and Kleinman we
have tabulated the numerical values for the magnitude
of the scattering amplitudes, apart from the polariza-
tion factors, in Table II. The incident frequency is
assumed to correspond to 10.6-u CO. laser. For low
concentrations the scattering cross sections calculated
from Eq. (3.5) are also tabulated. The polarization
properties of the scattered wave are obtained from
Eqgs. (3.7) and (3.8). Note that numerical values for
the hole and electron scattering amplitudes are almost
the same because they are determined essentially by
the first term in Eq. (3.7) and in Eq. (3.8), respec-
tively. For #w1<<A;, A;, only the bottom level of the
conduction band (CA) and the top level of the valence
band (VA) are important for our calculation. It should
also be noted that for further simplification the spin-
orbit mixing of the valence band can be ignored since
a*~1 and ?~0.

IV. TWO-BAND APPROXIMATION

In Sec. III we showed that the scattering amplitudes
for the incident photon energy #w,<<A;, As, are sensitive
only to two levels near the gap. Numerical values for
the amplitudes depend on the spin-orbit mixing coef-
ficients of the conduction and valence bands and on the
momentum matrix elements. Since the values of mo-
mentum matrix elements in the pseudopotential cal-
culation of Lin and Kleinman® differ quite a bit from the
calculation of Conklin, Johnson, and Pratt® based on a
true potential, it is worthwhile to investigate the pre-
dictions of a strictly two-band model to relate the scat-
tering amplitudes directly to the effective mass and the

energy gap.

band CA and the valence band VA. Longitudinal (ZZ)
and transverse (XX,YY) effective masses of the elec-
trons at the bottom of the conduction band and for the
electrons at the top of the valence band are then
given by

m m 4 (acM1—bdM,)?
~—1=—< —1)=~——-—, (4.1)
mcl* mvl* 3 Eg

m m 2 (adM 3+bcM 5)?
()
mc;* m,,t* 3 Eg

The predicted ratio of (m/m*—1) and (m/m,*—1) in

our two-band model is fairly well satisfied by experi-
mental results, although actual values are a little dif-
ferent than that obtained from Egs. (4.1) and (4.2)
with the band-edge parameters of Lin and Kleinman.

In a strictly two-band model, ignoring the small con-
tributions from bands other than CA and VA, a com-
parison of Egs. (3.7) and (3.8) with Eqs. (4.1) and(4.2)

gives
>1/2<hw1
2

(CAOI | {91 I CAB)
E,?
i m})

o) (G
mcl mct

)

[ ezx—lezy) (exx—ierr)
(VAB|t21|VAa)

=)

- czz] y (43)
( mtl

V2

() )
m,* E, o2 —h%w,?
[ (eax+iesy) (eix+iery)
€1z — - -
V2 V2
The magnitudes of these amplitudes are given in
Table 111, where we have used the values for (m/m*)— 1

ezz:l . (44

TasLE III. Approximate scattering amplitudes based on a strictly two-band model
and average® experimental effective masses.

Semiconductors me* [m —ma*/m M /m —me*/m [(CAa|t2|CAB)| |(VAB|ta1| VAG)|
PbTe 0.24 0.31 0.024 0.022 18.0 18.0
PhSe 0.07 0.068 0.04 0.034 43.5 43.5
PbS 0.105 0.105 0.08 0.075 8.0 8.0

» See text.
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and (m/m*)—1 as the average of the experimental
values for the respective quantities for the electrons in
the conduction and valence bands.

While comparing the predictions of the two-band
model with our calculations in Sec. III, it should be
kept in mind that while this model is an excellent ap-
proximation for the calculation of the SFR scattering
amplitudes at low frequencies (%w1<KA1, A3) it is not so
good for the effective-mass calculations. Thus the rela-
tions (4.3) and (4.4) are crude in the sense that they are
expected to give only upper limits for the respective
scattering amplitudes.

V. DISCUSSION

From the preceding calculations it is clear that SFR
scattering amplitude in lead salts at 10.6ux can be ob-
tained by considering only two bands near the band gap.
The numerical values for the cross section are sensitive
to the spin-orbit mixing of L¢~(L,") and Lg(Lj’) states
which determines the nature of the conduction band
and to the mixing of Lt (L,) and L¢+(L3) states which
determines the nature of the valence band. Since the
spin-orbit mixing in the valence band is negligible
(b=~0, a~1) the scattering amplitudes can be written
approximately as

<CAa l la1 l CAﬂﬁ(VAﬂ l 91 l VAC()*
4Z CdMlMahwl

Y or?)

3 (Er (e2Xey)—
22—

(5.1)

with d= (1—¢?)'/2. The respective values of the matrix
elements M; and M3 are more or less the same in
PbTe, PbSe, and PbS. An accurate value for the experi-
mental cross section is not available at present. How-
ever, since SFR scattering is a direct measure of the
spin-orbit mixing coefficients it should be quite fruitful
to measure it in all of these lead salts.

It should be noted that the expression (3.5) is applic-
able only for low carrier concentrations and at low tem-
peratures. For not very high fields it is still permissible
to assume the scattering amplitude to be independent of
the magnetic field but in general it is incorrect to assume
that only the lowest Landau level /=0, with effective
spin down for the conduction band and the effective spin
up for the valence band, is occupied. In the effective-
mass approximation, the one-electron energy in the
(111) valley for the magnetic field in the Z direction is
given by
Ez' ky, kz, SZE Ei= EL+ (ﬁ2kz/2ml*)

+#(l+3)(eH/m*c)+guBHSz. (5.2)
Similar expressions apply to electrons or holes in other
valleys® with appropriate effective masses and g values.

22 Since H i is in the Z direction, the effective g value is different
for electrons in other equwalent valleys. Thus there are two
distinct SFR lines. If 6 is the angle of the magnetic field with the
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The carrier concentration 7 in the (111) valley is
given by

n=22

Sz 1

— fo(E ) - (3.3)

dkz [P dby
./;eH/hh 2m

At T'=0°K, approximation (3.5) implies

%1% z*(max)

<
z(ml*)eff

eH

h; geffBH )
(mz*)effc

which, for an order of magnitude calculation, may be
written approximately as

n<(1/7*)(eH /ch)*2.

This requires that for H=80 kG, n be less than 10"
cm™3 and for H=20 kG, # be less than 10'®¢ cm™3. For
higher concentrations upper spin levels of different
valleys start getting populated which decreases the
cross section. At finite temperatures we must use the
expression

do eH
w6 L (o) 50
X[= fo(EA42Q)]|(f|tar]5)]? (5.4)

for the line due to the electrons in the (111) valley, with
a similar expression for the line due to the electrons in
(111), (111) and (i11) valleys, where E;—E;=#.
We can still take the square of scattering amplitude
outside the integration sign and use its field-independent
value. For a fixed # the variation of do/d © with Histhen
given by the integration over joint energy distributions
which are oscillatory. A detailed experimental study of
the variation of the cross section with H and % and its
comparison with the predictions of Egs. (4.2)-(4.4)
should be quite interesting.

In conclusion, it should be noted that we have as-
sumed the momentum transfer #Q from the lightwave
to be vanishingly small (long-wavelength limit). Our
calculation is valid only if geBH>#Quv;, where v; is of
the order of the Fermi velocity for the carriers. The
problem with no magnetic field (H— 0) will be discussed
in another paper.
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axis of an ellipsoid, gets in the valley is given by gets®=gn® cos?0
+g?sin®. For the (111), (111), and (111) valleys gor=1gi?
+(8/9)g1’. See, e.g., L. M. Roth Phys. Rev. 118, 1534 51960) By
varying the angle 0 one can thus tune the scattered frequency
[S.S. Jha and D. V.G. L. N. Rao, Bull. Am. Phys. Soc. II 13,
1640 (1968)].



