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The integral formulation of scattering theory is extended to the treatment of a residual in-

teraction with a Coulomb tail. The approach involves expanding the Green s function in a
basis set and then finding the proper analytical treatment of the familiar pole as well as of

other singularities in the kernel which are peculiar to long-range interactions. The pure
Coulomb case is given as an example of the formulation. Methods of reducing the integral
equations to an algebraic set are given for a residual interaction with arbitrary short-range
form and a Coulomb tail. Finally, the extension of this procedure to many channels is
described.

I. INTRODUCTION

Nonrelativistic scattering theory can be cast in
either differential or integral forms. Although
formally equivalent, each form has its distinct
advantages for particular purposes. The integral
formulation generally involves breaking off a resi-
dual interaction from the Hamiltonian and has
been most used for perturbation-theory calculations
and formal developments of the theory. However,
recently, continuum wave functions for auto-ioniza-
tion calculations, along the lines developed by
Fano' and Fano and Prats, ' have been found by ex-
panding the Green's function in a basis set of func-
tions. 'y 4 This is not a perturbation procedure but
is analogous to the configuration interaction ap-
proach to bound-state problems. It is applicable
to systems with several open channels although the
applications up to now have been limited to one
open channel.

The present paper extends this integral equation
technique to the situation where the residual inter-
action has a Coulomb tail. The extension is mo-
tivated by the desire to have the widest possible
choice of basis functions for any particular prob-
lem and not be limited to functions with a certain
asymptotic form. This flexibility becomes in-
creasingly important, almost crucial, when com-
plex systems are to be studied.

In scattering theory the Coulomb interaction
requires special development essentially because
plane or spherical waves are not asymptotic solu-
tions to the wave equation in the presence of such
a potential. For the simplest type of scattering—

one particle potential scattering —expressions for
scattering amplitudes from a potential which has
an arbitrary (nonsingular) short-range form plus
a Coulomb tail exist in standard references, e.g. ,
Mott and Massey. ' More general problems are
frequently formulated in terms of integral equations
which in their abstract form are the Lippmann-
Schwinger equations. These equations contain a
singular kernel, and the path of integration in the
neighborhood of the singularity is chosen to yield
the desired boundary conditions on the scattering
function. If the residual interaction has a Coulomb
tail, however, then its effect is not only to add a
phase shift to the scattered wave but also to dis-
tort the waves by introducing an r-dependent loga-
rithmic term in the phase; so the standard treat-
ment of the singularity in the integral equations
does not suffice in this instance. The Coulomb
potential also causes a logarithmic divergence of
the interaction matrix elements, a fact which has
prevented a perturbation-theory treatment in the
past. '

In the next section the modifications to the usual
treatment of the integral equations are given which
make their solution possible for long-range inter-
actions. The pure Coulomb case, i. e. , the expan-
sion of a Coulomb wave with one charge in terms
of Coulomb waves with another, is then given as
an example in Sec. III. The integral equations for
arbitrary short-range interactions with Coulomb
tails are written down in Sec. IV and methods are
given which reduce these equations to a linear
algebraic set. Finally in Sec. V, the extension to
several open channels is described.

II. THEORY

In this section and throughout the paper a partial-wave decomposition is assumed. Thus in the one
channel case, we deal only with a radial function, which is a standing wave asymptotically, associated
with a particular angular momentum. (To simplify notation the angular momentum label will not be
carried. ) The basis functions are solutions of
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The basis set may also include discrete states. These will play no direct role in the discussion so they
will not be specifically noted but are implicitly included in any sum over states. %e wish to find the solu-
tion of

(H k'/-2)T(k, r) =(H, + V-k'/2)T(k, r)=0.
A formal expression for T(k, r) is

T(k, r)= (k'/2 H,—)-'VT(k, r),
and this is written as an integral equation by introducing the set S(k, r) giving

(2)

with

T(k, r)= 2fk'dk'S(k', r)K j(k'- k")

K,= fdrs(k', r)VT(k, r)kk''

(4)

For short-range interactions, Kkk& is an element of the reaction matrix, but we consider it here just an
expansion amplitude.

If the interaction V drops off faster than 1/r, the effect of the integral on the right-hand side of Eq. (4)
is just to add a phase shift to S(k, r) as r-~. This is accomplished by writing

(k —k') '=P(k —k') '+ JM(k —k'), (6)

where P indicates the principal part and p is a normalization constant. The singular kernel in Eq. (4) is
defined by Eq. (6), and equations for Kkk~ can be found and solved. If the interaction has a Coulomb tail,
however, then the asymptotic forms of S(k, r) and T(k, r}are given by

S(k, r) - (2/vk }'fr ' cos[kr+ (Z '/k) ln2kr ——,
' v(l + 1)—argI'(I + 1+f Z '/k) + 6S]

= (2/vk)'&r-'cos[I(Z', k, r)+ 6 ], (7a)

T(k, r) - (2/vk}'r r ' cos[kr+ (Z/k) ln2kr —,'v(l+ 1) —a-rgI'(I +1+iZ/k)+ 6 ]

= (2/vk)'~r 'cos[f-(Z, k, r)+ 6 ], (7b)

where 5g and 5Z are phase shifts which arise from the departure of the potential from the Coulomb form
at short distances, f(Z, k, r) is the Coulomb phase, and Z' and Z are the asymptotic charges. In this case
the effect of the integral in Eq. (4) is to add a phase shift and also to correct the coefficient of the loga-
rithmic term in the phase. Further, the integral in Eq. (5) fails to converge for k=k'. Thus the pre-
scription given by Eq. (6}fails because neither term is defined when multiplied by Kkk~.

As will be seen explicitly in the next sation, Kkk~ has a branch point at k = k'' for Coulomb potentials so
the singularity in Eq. (4) is a pole plus a branch point. The proper contour around this singularity can be
found by introducing a convergence factor e qr for rl arbitrarily small in the integrand of Eq. (5) thus
defining Kkk~ for k= O'. This is equivalent to giving k a small positive imaginary part ip; thus the contour
in Eq. (4) goes below the singularity and the branch cut must therefore be in the upper half plane. Intro-
ducing the symbol (P to denote this contour (see Fig. I) we have

T(k, r) = 26' fk 'dk 'S(k', r)K,/(k' —k").

To get an equation for Kkk~, Eq. (8) is multiplied by S(k', r)V and integrated over r giving

(8)

,=2sfk"dk "V, „K „/(k'-k"') (9)

where Vk ~k ~~ is the matrix element of V within the basis set S(k, r).
For the pure Coulomb case, Kkk is known exactly and Eq. (8) will be made explicit for this case in the

next section. For an arbitrary interaction, methods of reducing Eq. (9) to a linear algebraic set which issuitable for numerical solution will be given in Sec. IV.
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X PLANE

4. FIG. 1. The contour (P. There is a branch cut along
the positive imaginary axis. The variable x'= (k' -k)//2k.

III. THE PURE COULOMB INTERACTION

pre denote the Coulomb wave with charge Z ' by SZ '(k, r) and the Coulomb wave with charge Z by TZ(k, r)
to conform to our previous notation. Then

(H, -k /2)S, (k, r)=O, (1Oa)

and (H —k /2)T (k, r)=(H, + V —k /2)T (k, r)=0,C 2 C C 2 (lob)

where H& is the hydrogenic Hamiltonian and

V =(Z' Z)/r=-n. Z/rC

Equation (8) now reads

T (k, r)= 25' fk'dk'SZ, (k', r)K k,/(k' —k")

or as r-~,

(2/vk)'~'r 'cost (Z, k, r-) = 26' fk 'dk '[K,/(k' —k")](2/vk ')'I'r ' cosf (Z', k ', r).

The integral expression for Kkk~ in Eq. (5) can be evaluated exactly in this instance giving'

b(z'Ia' z/a) —-~,
~~

iR'/a' -zlzz)-
K Be k'+ k

I'(- z(Z'/k '- Z/k))F(f+ 1 —iZ/k, l+ 1+ iZ '/k', 1+ i(Z '/k' —Z/k), [(k —k)/(k' +k)] '
expi[argl (l+ 1+iZ/k) —argI'(l+ 1+iZ'/k')] (14)

where F(a, b, c, x) is the hypergeometric function. Because the cosine term on the right-hand side of Eq.
(13) oscillates rapidly for large r, the only region in the integration which will contribute is the neighbor-
hood of k'= k. Thus we introduce the variable

x'= (k'- k)/2k,

and write Eq. (13) to the lowest order in x';
(15)
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cosl'(Z, k, r}=—(n'e ' /2v)

tt, , „in'- 1, i[2krx'+ f(Z', k, r)) —i[2krx'+ r( ', k, r)]]
expi argF l+1+iZ k —argF l+1+iZ' k

(16)

where n'=&Z/k. We now evaluate the integral over x' along the contour in Fig. 1. There is a branch cut
from the origin along the positive imaginary axis. The limits are extended to + ~ for convenience, but no
contribution is added to the integral by so doing because of the oscillating cosine. In Eq. (16) the cosine
has been written as a sum of exponentials; the integral over the first exponential gives

~in'- 1 2ikyx'

With the variable change

t = —2ikxx',

the integral becomes

—,'nn' —in'ln2kr +i~,in'- 1 —tI=e' e dt( f) e-
g 00

(17)

(18)

(19)

Note that the variable change provided a scale factor which will correct the logarithmic term in the phase
of the Coulomb wave. The remaining integral can be deformed into Hankels expression for a gamma
function' giving finall. y

~ vn ' —in ' ln2kr
(20)

A similar treatment for the second exponential in Eq. (16) gives an expression like Eq. (19) except e+ f
appears in the integrand rather than e t. This allows the contour to be closed on the left-hand side of
the t plane over a region with no singularities; thus the integral is equal to zero, and this second term
does not contribute to the right-hand side of Eq. (16). When Eq. (20} is inserted into Eq. (16), the phase
factors just transform ei~(Z, k, r) into eif(Z, k, r) while the other factors reduce to unity so the right side
becomes just cosf(Z, k, r).

By this exercise we have seen how the integral in Eq. (12) establishes the correct Coulomb phase. The
important property of Kkk & is its behavior as k -k, but this behavior is a direct consequence of the long
range of VC, so for any interaction with a Coulomb tail, we expect that

~ ]
Ek, -Re{8[(k' —k)/2k] ), for k'-k, (21)

where C is a complex function of k.

IV. TREATMENT OF AN ARBITRARY INTERACTION

We consider here the problem of finding the expansion amplitude Kkk ~for a function T(k, r) where

(H —k'/2) T(k, r) = (HZ, + V- k'/2) T(k, r) = 0.

The Hamiltonians HZ and HZ~ contain arbitrary short-range potentials (different) with Coulomb tails
—Z/r and —Z'/r, respectively. The basis set S(k, r} is given as solutions of

(H, —k'/2)S(k, r) = 0.

(22)

(23)

The asymptotic forms of S(k, r) and T(k, r) are given by Eqs. ('la) and (7b). We see from Eq. (8) and the
last section that as k'-k

I p
p /Paln'e

kk'

i(6 -6 )
I'(- in')e [(k '- k)/2k]'"

(expi[argl'(1 + 1 + iZ/k) —argI'(l + 1 + iZ '/k)] (24)

This form of Hkk'assures the asymptotic form in Eq. (7b). The factor containing 6S and 6T just adds 6Tand removes 6S from the asymptotic form of T(k, r) while the remaining factors correct the Coulomb phase.
Equation (9) is to be solved then with the boundary condition in Eq. (24). In general, Vklk» is known only

numerically so the task is to treat only the singularities in Eq. (9) analytically, resulting in a set of equa-
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tions which can be handled numerically. In fact we will outline a, procedure which reduces Eq. (9) to a
linear set of algebraic equations.

The singularities in Eq. (9) occur in Kkk(, 1/(k' —k"), and Vk~k«as their arguments become equal.

By studying the long-range contribution to Vk~k~~ which becomes dominant as k -k', it is found that

V„,kii- —(&Z/2vk')In[(k" —k')/2k']', for k"-k'. (25}

Because of these singularities it is not possible to represent Kkk~ or Vkik» solely by their values at mesh

points, which is the usual numerical treatment. '& 4 Rather, in the region k'-k which we imagine to be
bounded by two mesh points such that (x'i is small in the region, we represent Kkk~ by

~ Jrc, tc(x') R=e((
')='" 2 (*')" ~ Z ( ( ')

n nn=o n=l
(26)

This form contains the dominant singularity, (x')&" for x' in the neighborhood of zero. This is of course
the factor which corrects the logarithmic term in the Coulomb phase of the basis set to that of the wave
function T(k, r) The .function of the two power series then is to represent all the slowly varying factors
some of which are associated with the Coulomb interaction, and some will arise from the short-range
interaction; because the second series begins with x'it does not contribute to T(k, r} asymptotically. An

actual expansion around x'= 0 of Kkk( for the pure Coulomb interaction gives a, series multiplying (x')f~
which contains powers of x' and x'lnx'. These latter terms are not analytic as x'-0 but in that limit the
ratio of their contribution to that of the first term in the series (which is (x')fs }goes to zero. Thus for
the sake of simplicity, only the power series is retained and the assumption is that it represents Kkk&

adequately. The number of terms in each series will be discussed below. The an are complex constants
while the bn are real. Similarly in the region k"-k', but neither close to k, we represent Vkg, » by

where

V, „=V(y)= —(&Z/2vk')iny Q c y,2 n

n=O "
y = (k"- k')/2k',

(27)

(29)

c,=1, and enough terms are taken for an accurate representation. Finally we must consider the case
when k, k', and k" are all close together. In this region it is advantageous to introduce the variable

x"= (k" k)/2k, -
and write

V, „=V(x', x")= —(n'/ 2)lxn(x"- x') Q d (x') (x")
m, n=O"

(29)

(30)

where d„= 1. Note that the c„and ds~ are found from computation of the matrix elements and are part
of the input data.

Altogether then the unknowns are the an and bn and the value of Kkk~ at mesh points. By putting k' equal
to each of the mesh points, the integral on the right-hand side of Eq. (9}can be evaluated by the same
general techniques as used in Refs. (3) and (4). The procedure is not exactly the s me because of the
more complicated nature of Kkk~ and VkIkII, but the net result will be one linear equation, involving the
an, bn, and KkkI, for each mesh point. This is not a sufficient number of equations, however, and must
be supplemented by two equations for each az retained (two because a~ is complex) and one equation for
each bn retained.

These additional relations are found by considering the region ix"), I x'I & p where p is small, and we
assume that the region is bounded by mesh points. In this region we have power series representations
of Kkk& and Vk~k», and Eq. (9) can be written

Re x' a x' + b x' =I x' —{P dx"V x', x» K x" e x") x",

where I&(x') represents the integral over the remaining interval (and the sum over bound states) and
may be expressed as

I (x')= Q / (x')",
p =On

i. e. , a Taylor series around x'=0. The series with coefficients en appears because the variable change
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from k" to x" leaves a factor 2k "/(k+k") which must then be expanded in terms of x". Note that eo= 1.
The singula, rity in V(x', x"}given by Eq. (30) is integrable. Thus in evaluating an integral containing

V(x', x"}the neighborhood of the singularity does not contribute so all paths of integration in this neighbor-
hood give the same result. However, we are going to evaluate the integral in Eq. (31)by an integration by
parts so a specification for the singularity is necessary, and we choose, for convenience, to treat it as a
principal part.

The program is now (1) to substitute the expressions in Eqs. (26) and (30) into the integrand in Eq. (31);
(2) perform the integration which will result in two power series in x', one beginning with («')fs and one
beginning with (x'); (3) equate coefficients of equal powers of x' on both sides thus obtaining new linear
relations between the an, bn, and Kyy I. ' The procedure will be illustrated by evaluating the integral in
Eq. (31) only to lowest order in x' and x". This will reveal the method that can be used for each higher
term. %e have

8= (n'/2w)Re[ao(P f dx "ln(x"- x') (x") ].
The path is below the branch point at x"=0
evaluation proceeds by a partial integration

~ p' 2m"' in zn'~ p

as in Fig. 1, and a principal part is taken at x"=x'. The
glvlng

+p zn'
ss( n)

J (x"-x')
g—P

In the first term the principal part has been taken. In the second term, writing the principal part integral.
as a sum of two contour integrals along S and S' as shown in Fig. 2 gives

~ C ~ f

~ p SI
(36)

where the first term on the right is the contribution from the contour S, and the second integral is along
S '. Finally

~ I ~ f ~ (

,)fn' p ln(p —x ') —(- p) ln( p+ x ')
~a dx "(x")J=Re ao x' +ao I/ I

2mi zw (« -«) (36)

X PL ANE

()
x=x

4.
%J

S

x=p
FIG. 2. The principal-part integral along the solid

line is replaced by the contours S and S'.

Since we have specified Ix'I & p, we use x'/p as an expansion parameter and express the second and
third terms on the right-hand side of Eq. (36) as power series. This is possible for the third term be-
cause Ix" I=p all along S'. The final result for J, then is one term with (x')&s and a power series in x'
beginning with (x') . The contributions to the integral in Eq. (31) of higher members of the series for
E(x")or V(x', x") give other series beginning with (x') as well as terms of the form (x')fs'+~.
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In practice, of course, the series for K(x") must be truncated —say at N terms (including ao) for the
series beginning with (x&)«' and N terms for the series beginning with x&. Linear equations are then es-
tablished by comparing coefficients of powers of x~ up to (x~}in'+N- 1 and (x')N on both sides of Eq. (31).
The number of relations then appears to be 2N+¹, however, as we have seen above in Eq. (36), the equa-
tion for the coefficient of (x~)in is satisfied identially so the number of meaningful equations is reduced
by 2. But there is a coefficient of (x~) on the right-hand side of Eq. (31}which must be zero because the
series on the left begins with x&, so this relation leaves the final number of equations obtained from the
region Ix& I & p at 2K+X'- 1. Adding M equations found at M mesh points gives a total of 2X+~'- 1+M.
On the other hand, the number of unknowns is

2N (a to a )+N'(b, to b )+M(K at the mesh points).

Since there is one more unknown than there are equations, a solution exists and is unique except for nor-
malization. After a solution has been found, the modulus and phase of a, are compared with Eq. (24} to
find the phase shift and the correct normalization.

The detailed establishment of the algebraic equations follows directly from the above procedures, al-
though there are a number of questions of numerical detail which will not be discussed here. Numerical
applications are underway to demonstrate the feasibility of this approach.

V. EXTENSION TO MANY CHANNELS

In this section, the procedure for solving Eq. (9) for one channel is generalized to the many channel
case. This extension appears to proceed without difficulty and will only be briefly described here. Re-
call that a partial-wave decomposition is assumed and for simplicity we will not write any angular factors.

In an N channel situation, N-degenerate wave functions must be found for each energy. If Ti(Z, E) is
one such function for an energy E, a convenient boundary condition to impose is

T.(Z, E) —Q y. (2/vk. )'&[5.. cosg(Z, k. , r)+ JC .. sing(Z, k. , r)],j j j
as r-~ where ~ is the coordinate of the scattered particle, y are the target eigenstates, k is the wavey

number of the particle scattered in the jth channel, and 3li is an element of the reaction matrix.
To determine the Ti(Z, E) by expanding in basis functions Si(Z ', k ) which have the asymptotic form.

S.(Z ', k.) -X.(2/vk. )'+r ' cos[r(Z ', k., r)+ 5.],
2. 'i 2 2 2' 2' (38)

Eqs. (8) and (9) are generalized to give

T.(Z, E)=+25' J kdk. K. .(E, k ,)S,(Z', k. )/(E. —&. —k.'/2),
2

' j j j2j 'j j 'j j j (39)

and

K. (E, k )=+.25' Jk dk jC (E,k.)V. (k. ., k )./. (E e. —k.'/2-),iE ' l j j j ij ' j jl j' l j j (40)

where e& are the energies of the target states yj. Equation (40) must be solved subject to the boundary
condition

1 I
p 2wBEn

K ,(E, k )-.il ' l m
Re

F(-in ')e i(x ) I (5. —iX. )
E l il il

e xip[ rag(Fl+ 1+ iZ/x ) —argI'(l+ 1+iZ'/k )]l l
(41)

as kf-xI= [2(E- ef)]' . Since Vjf(kj, kf) has a singularity only for j=f and k -x, Eq. (40) can be handled
similarly to the one channel case. In the sum over target states, the term j = l will have to be treated as
in the last section while the other terms which do not contain a confluence of singularities raise no new
problems.

After the reaction matrix is found, cross sections are computed by combining this matrix with the
Coulomb scattering as shown, e.g. , by Burke, McVicar, and Smith. '
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Total elastic and total spin-exchange cross sections have been calculated numerically
for low-energy electrons incident on rubidium atoms. The effects of electron exchange
and of target distortion are treated through the use of the adiabatic exchange approximation
and the method of polarized orbitals.

I. INTRODUCTION

Several authors have, in recent years, com-
puted elastic scattering cross sections for elec-
tron-alkali atom collisions at low energies. Of
these, the calculations by Garrett' for sodium
and lithium appear to be the most successful.
His calculated cross sections are in excellent
agreement with the experimental data of Brode'
and with that of Perel, et al. ' in the energy range
0.25-16.0 eV. In addition, optical-pumping ex-
periments4 ' yield a spin-exchange cross section

for electron-sodium collisions at thermal ener-
gies in good agreement with Garrett's results.

The optical-pumping data is useful because it
gives information about the phase shifts at ex-
tremely low energies. At the lowest energies,
the theoretical phase shifts are particularly sen-
sitive to the approximations made in the calcula-
tion.

Recently, it has become feasible to carry out
spin-exchange optical-pumping experiments over
a wide range of thermal energies. ' It appears
reasonable that the energy dependence of alkali


