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Dynamics of Localized Moments in Metals. II. Second-Order
Exchange Effects
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We have extended our previous microscopic treatment of the dynamic transverse susceptibility for a ran-
dom array of localized spins in a metal to include terms of second order in the exchange coupling constant J.
Lattice relaxation of the localized and conduction electrons is included, as before, in such a way as to ensure
relaxation to the instantaneous local field. The results, in the limit of equal conduction-electron and localized-
spin g values and no lattice damping, reduce to the correct ("bottlenecked") limit. The linewidth for fre-
quencies close to the localized-spin resonance frequency agrees with previous calculations. Bottlenecking of
both the longitudinal (frequency-modulation) (T2') and transverse (spin-flip) {T1') parts of the localized-
spin resonance linewidth is demonstrated for equal g values and no lattice relaxation. Similarly, the line-
width for frequencies close to the conduction-electron resonance frequency exhibits both T2'- and T1'-type
terms, and again bottleneck effects are present. The results are compared with previous macroscopic treat-
ments. It is demonstrated that it is unnecessary to introduce detailed balance conditions per se in the micro-
scopic theory. The relation between the conduction-electron-hole relaxation width and the one-electron width
calculated by Overhauser is examined in an appendix.

I. INTRODUCTION

E extend here the work of a previous paper' (to
be referred to as I) to include the effects of

localized-electron —conduction-electron exchange up to
second order in the exchange coupling constant J. We
include, as before, lattice relaxation of both spin species
in such a way that relaxation occurs to the instantaneous
value of the local Geld. The extension to O(J') is im-
portant for, as Hasegawa' demonstrated, linewidths due
to exchange efFects enter only to this order. Hasegawa's
treatment w'as, however, macroscopic and introduced a
T~-like broadening for both spin species (his Ta, and
T,q) We have .demonstrated in an earlier letter~ that in
general the localized-spin linew'idth w'as the sum of tw'o

terms, longitudinal (frequency modulation) (T2') and
transverse (spin-flip) (Tq') broadening, in the usual
resonance sense. Further, the spin resonance linewidth
1/T2= 1/Tm'+1/Tz' equalled 1/T& (=1/T&, ) only on
the energy shell (co=co,) and in the limit of isotropic g
values and high temperatures (kT»Ace. , the localized-
spin resonance frequency). Because of the different
character of T2' and TI', and because Hasegawa did not
treat the lattice relaxation correctly (i.e., he did not
require instantaneous local field relaxation) we have
developed a microscopic theory w'hich treats these
eAects properly. Also, very recently, Cottet et u/. 4 have
treated the macroscopic problem by forcing both the
lattice and exchange relaxation terms to relax to the
instantaneous local 6eld. We believe the latter to be
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artificial, though to O(J') this assumption has no effect
on the transverse susceptibility, a limitation of our
present treatment. Our treatment takes into account
the dynamical efFects of exchange in a microscopic
manner, and as we shall show exhibits the correct
limiting behavior without the necessity of explicit
introduction of a detailed balance condition, a feature
common to both the treatment of Hasegaw'a and
Cottet el al.

It should be mentioned here that, in an interesting
letter by Langreth et al. ,' macroscopic equations
identical to those of Cottet et al.4 are derived using "the
method of Kadano8 and Baym. "Unfortunately, how-
ever, no details of the derivation are given in this letter.
We are somewhat surprised by this result, because, as
will be demonstrated in Sec. III, the quantities T&, and
T,z are only approximate and imply energy shell-
restricted self energies. %e feel that our approach is
worthwhile on a number of grounds. First, the dynami-
cal efFects of exchange are included in a straightforward
way in our method, with no necessity for forcing the
introduction of local field relaxation into these terms as
proposed by Cottet et al. Second, the second-order ex-
change terms are not in general equivalent to T~-like
relaxation terms, as assumed by the above authors.
Indeed, we demonstrate explicitly a separation into
longitudinal (frequency modulation) and transverse
(spin-Qip) components and show that both (initially
surprising for us) are bottlenecked to an equal degree
under the appropriate circumstances. Thus, our
approach displays the microscopic dynamical features
of second-order exchange effects in a manner which we
feel justifies the lengths to which we have gone in the
present paper. In addition, quite apart from the specific
results obtained here, some innovations in the decou-
pling method (e.g. , symmetric decoupling, and com-

D. C. Langreth, D. L. Cowan, and J. W. Wilkins, Solid State
Commun. 6, 131 (1968).
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parison of the second-order equations for the higher-

order propagators with the first-order equations) are
presented, as well as a comparison between the one and
two conduction-electron linewidths.

Our results demonstrate that, for equal g values and
slow lattice relaxation, a "bottleneck" does in fact
obtain. This bottleneck is interesting, for it appears to
apply to both the T~'- and Ti'-type terms with equal
force. This result was unexpected, though the experi-
ments of Gossard et al. ' do demonstrate that in practice
such must be the case. Thus, our results in a certain
sense do demonstrate the essential validity of the
Hasegawa" -and Cottet et al. 4 approach, insofar as their
assumptions regarding the bottlenecking of exchange
relaxation are concerned. The similarities between the
conclusions of their papers and of the present work will

be described in detail in Sec. IV.
The basis of our approach is the double-time Green's

function method of Zubarev, ' as in I. In I only the
lowest- (first-) order terms in J were retained. We were
able to demonstrate that the eHect of the requirement
of instantaneous local field lattice relaxation was to
introduce an imaginary inhomogeneous "driving" field

term into the Kubo' response equations. In this paper,
we continue this approach, but work to higher order in J
before invoking the decoupling procedure. We have had
to be very careful about the decoupling, for higher-order
terms are known to be very dangerous. For example,
we found it necessary not to include higher-order Knight
shifts into the relaxation terms. ' The inclusion of such
terms destroys the first-order solution found in I. In
general, we have checked at. each stage of decoupling
that our results reduce to the first-order results of I in

the limit of small J. In addition, we have found it
necessary to symmetrize our Green's functions in order
to e6ect a decoupling which leads to what we believe are
physically correct results. This procedure is justified in

Appendix I and appears to be essential in problems of
this type, and in fact whenever high-order Green's
functions are important. In this way, we obtain line-
widths for localized and conduction-electron spins which

agree completely with the results of Spencer' and
Ref. 3. The conduction-electron spin linewidth is tricky
because previous calculations (e.g. , Overhauser") com-

puted only one-electron lifetimes. However, because the
transverse magnetisuhon is important in a magnetic
resonance experiment, the quantity which should be
calculated is a two-electron (electron-hole) linewidth.

6 A. C. Gossard, A. J.Heeger, and J.H. %ernick, J.Appl. Phys.
38, 1251 (1967).
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the theory of interacting spin waves, A discussion of this question
is contained in a paper by H. J. Spencer, Phys. Rev. 167, 434
(i968}.
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S. Doniach, Phys. Rev. I-etters 18, 994 (1967)."A. Overhauser, Phys. Rev. 89, 689 (1953).

%e find, to order J', that this quantity is simply the
sum of the particle-hole one-electron widths. '2 Because
of this question we have also solved for the one-particle
width using the Zubarev~ method. Our results, appro-
priate to a random array of impurities in a metallic
lattice, agree with those of Fullenbaum and Falk, "
and Spencer" in the limit of S=-,'. The work is sum-

marized in Appendix B, and the similarity to our result
for the two-electron width is pointed out in Sec. II of
this paper.

Section II of this paper begins with the equations
from which the higher-order Green's functions are
generated. The equation of motion for these new

propagators are derived in this section in the absence of
lattice damping, for simplicity, but, of course, using
different localized and conduction-electron g values. A

decoupling procedure is app1ied which we believe to be
correct to the second order in J.It is demonstrated that
the higher-order equations reduce to those of I in the
limit of small J. Spatial averaging, appropriate to a
random alloy, is then carried out, and the equations for
the Green's functions of primary interest are derived
and solved. The complex frequency-dependent trans-
verse susceptibility is then found from these quantities
for both the localized and conduction electrons. It is

shown that the total susceptibility, in the limit of equal

g values, reduces immediately to the uncoupled form.
For differing g values, the second-order shifts and widths
are found for both resonance roots.

In Sec. III, the dynamical equations are solved in the
presence of instantaneous local field lattice damping
and the full transverse susceptibility for both the
localized and conduction-electron spin systems is con-
structed. The sum of the two susceptibilities is demon-
strated to again reduce to the uncoupled form in the
limit of equal g values and no lattice damping. Limits
are taken which exhibit the character of the localized
and conduction-electron line shift and width,
respectively.

Section IV contains a comparison of our results with
those of Hasegawa' and Cottet e$ al. '

II. COUPLED EQUATIONS IN ABSENCE
OF LATTICE DAMPING

From I, the basic equations we must treat are

i(B/8t) M~= LM~ ac]
—ih, (M —X,(h +(2J/g. g,)m )) (2 I)

i(a/at)m = fm, Xj
ih.{m —X,(h +(—2J/g. g,)M )). (2.2)

"A similar result is also found for the localized spin linewidth
in a very recent paper by M. B. %alker, Phys. Rev. 176, 432
(1968), who used the Abrikosov technique (Ref. 16) to examine
the damping of the single pseudofermions propagators in this
model. Dr. C. B. Duke (private communication} informs us that,
to the order we are working, we could have expected nothing else."M. S. Fullenbaum and D. S. Falk, Phys. Rev. 157, 454 (1967).
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Here N and m are the a components of the magnetiza-
tions of the localized spins and the conduction electrons,
respectively, and, for simplicity, y~= 1.The Op and S;
are the usual second-quantized conduction-electron spin
operator (pp=p ) and the localized spin operator at the
jth site, respectively, and h represents the total (static
and rf) external magnetic fields acting on the spin
systems. The Hamiltonian K=BCp+BCi, where (h= 1),

(co, p—p)FR(pp)+2J(VR(pi) —WR(pi) }= —2c&VR, (2.9a)

(ip, pp)B—R(pi) 2J(—V!p(!p)—WR(pp) }=0, (2.9b)

(!p, pi—)ER(pi)+ 2J(MR(pp) N—R(pi) }= 2—Xt, (2.9c)

(pi, pp)—BR(pi) 2J—(MR(pi) N—R(pi) }=0, (2.9d)

where, defining,

Sk (q) = ak+q$ akf Sk,k*(q) = ak+p, x ak, x,
~p p pisSj +ppia&p +g (pk p!')ak, k ak, x (2 3)

we ave,
a,nd J

X = ——~ e—'q R~S"e .I ~ j q ~

Ea, ~

1

(2.4) V.(-)=—Z -'"«g.-(q)S;S, ». ,
E i, &, q»

The "bare" Zeeman energies co, and co, equal —g,hp

and —g.hp, respectively, w'here the static magnetic
field hp is taken parallel to the z direction. In Eqs. (2.1)
and (2.2), 6, and 6, are the lattice relaxation rates for
the localized and conduction electrons, respectively.
The quantities X, and X, are here assumed to be the
localized and conduction-electron static longitudinal
susceptibilities, respectively, which are equal to,

Ke have used

X = —g,'cR/(pi, —2Jt'),
x,= gP('/(p—i. 2cJR)—. (2.5)

M =(g /N) Q S, , pip =(g./2!V)op, (2.6)

so that |=(1/2-~')& o*&

In (2.5), c is the fractional concentration of the impurity
spin s.

For the remainder of this section, we shall omit for
simplicity the lattice damping terms w'hich occur on the
right-hand sides of (2.1) and (2.2). These terms will be
included in full, together with the inhomogeneous
imaginary driving term $e.g. , the rf component of h in

Eq. (2.1)j, in Sec. III. As in I, we define the various
( reen's functions using the notation,

WR(pi) =- — g e—'p R9 ((sk,k'(q)Si —,S;+)),
2g ~, I, q, k, x

N.( )= Z -'"«g.-(q)S;.o'&)-,
2V l, q, k

(2.10)

1 z
l, q, k, X

Note that VR(pi) and!VR(pi) have the same left-hand
structure, and so, apart from the averaged commutator
term, will have identical equations of motion. A similar
result obtains for WR(pi) and MR(pp). From (2.5), (2.9),
and (2.10) we can obtain two exact relationships
between the four propagators

(pp. pi)FR—(pi)+(pi. pi)BR—(pp) = —2cXR (2.11)
and

(!p, pi)BR(pi)+(pp, —pp)ER(pp) = —2—X( (2.12).

So far, all the equations presented have been exact.
The first-order results (molecular field) obtained in I
can be found in two ways, the second of which will be
of prime importance in this paper.

The first method is to decouple the quantities appear-
ing in (2.10) as in I. For example,

G,»(t) = pe(t) (LA (t),B(0)j)
-=((~(t);B)) (2.7)

1
VR(~)=—Z *''"&Si')((gk (q)»'))- (

CV i, &, q k

Ke shall require the four propagators

FR(t)=Z ((S' (t) S'))

B.(t) = l Z «S'-(t); .+»,

B„(t)= ,' g (&a;(t); S;+)), -

alld
KR(t) = -,'&(irp

—(t); op+».
(2.14)Q e ,, Ri(S(*) cRNbp p—

LUsing (2.1) and (2.2) as the basic equations of motion,
after Fourier transforming with respect to time w'e find
the following (exact) equations of motion for these four
propagators:

Using (2.14) in (2.13) we immediately obtain,

VR(pi) —cRBR(pi) . (2.15a)

Ke now introduce spatial averaging, appropriate to a
random array of impurity spins. This method of
averaging to O(J') distinguishes our results, for example,
from those of Fullenbaum and Falk" (who consider only

(2 g) a single impurity spin) but, of course, our final results
for physical quantities (e.g., electron lifetimes) will be
the same as theirs for quantities involving scattering
from essentially a single impurity (see Appendix 8).
%e write
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Wg(ru)=fF g(cv),

Mg(co)={Bg(td),

(2.15b)

(2.15c)

Similar treatments for the remainder of the quantities where

in (2.10) yield

y = —2' for 0.= 0'p+.y, =o

y, = —2R for n= S;+,
(2.16c)

Ng(co)=cRKg((d) . (2.15d)

It is a simple matter to insert (2.15) into (2.9) and ob-

tain the first-order results presented in I. The approxi-
mations given in (2.15), however, are not very useful

for the purposes of this paper because they do not
display the dynamical properties of the higher-order
Green's functions (2.10).It is possible to write down an

equivalent Grst-order set of equations for these quanti-
ties which reduces to (2.15) but which also displays a
form appropriate to an equation of motion result. These
can then be used to check that our second-order forms

(to be derived) for the quantities (2.10) reduce correctly

to the first-order result in the limit of small J. Such

checks are mandatory when utilizing an approximate
decoupling procedure. We have

2—Z .-"' «g,-(.)S',-».+ &,k, q

cEy,—(q0, —(u) ' +2cJR
4

XP&(( o; )).—2{'Z ((S; )) j (2 16a)

1
e *q't ((S, , (q)S;—;tk»„

lV /, k, q, X

(co, (o—) t{2—{y, 2J{—
XL.R«.;; )&.—2{ P «S;; &)j}, (2.16b)

This result is easy to prove. From (2.9) and (2.15)

Mt, M Op )G

h—.+2J{«((«;o)&- 2—{Z ((St o»-} (217)

Inserting (2.17) into (2.16a) immediately results in

2—p e 'q'a'&(g (q)S * tk&)„~cR((oq ', a)) (2.18)
S ~.k, q

which are exactly the results (2.15a) and (2.15d). An
identical argument for (2.16b) leads to (2.15b) and
(2.15c). In summary, (2.16) leads to the following set
of four first-order equations to which the higher-order
equations of motion for the quantities (2.10) must
reduce

((o, (u) Vg((—u)=2cJR{cRBg(~) fFg(co)—}, (2.19a)

(cu. «t) Wg (—co) 2cN—R{-
—2J{{cRBg((u) {Fg((u) },—(2.19b)

(td, s))M g(a)) —2J{{cRI—t g—(co) {'Bg(co) },— (2.19c)

(ca, (u)Ng(td)= —2cNR{-
+2cJR{cRKg(&o) $8g(st) }. (2—.19d)

In order to display the explicit decoupling procedure
which we use in the equations of motion for the higher-
order propagators (2.10), we examine the Green's func-
tion Vg(a&) in some detail. The equation of motion for
this quantity leads to the following exact result:

(qkt qk+qt ~)((gk (t1)S' Sj )) b'j(gk (tI)S' )

J
+ z~ ""(&g. (%)(S*+ . —S' +);S,+&)-

2g q'

J
+ p s (&Si Sl (ok+q+q't okt+ttk+qt ttk —q't) j Sj ))E &.q'

J——2 s " '"'«S; St (~k+q+q't okt ak+qt ok—q't)iSj &&ru ~ (2 20)
Q t, q'

We drop the inhomogeneous (first) term on the right
since we are at present ignoring magnetic Geld inde-
pendent Kondo terms as, for example, treated by
Nagaoka. " These enter anyway only to O(J'), and

"Y.Nagaoka, Phys. Rev. 13S, 11j.2A (1965); Pxogr. Theoret.
Phys. {Kyoto) 37, 13 {1967).

our O(J') perturbation procedure in the presence of a
Geld is certainly valid at high enough temperatures
(T&&Tg). We do, of course, obtain "Kondo-like" terms
to O(J') in the g-shift expressions" Lsee Eq. (4.5)).The
first part of the second term on the right is also dropped
for similar reasons. The remaining terms are approxi-
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defined in (2.10). We find

((S;Sc*ak+q+q ctakt, S;+))„
={(1-&' )&S")&S')+&*c&S."S*))

X &(ak+q+q c ak t ,'Si ))k
= {(s')&s')+b' L&(s')')- &s")'])

X ((ak+,+, c akt., S;+))., (2.21a)

«Si Sc (ak+q+q't ak't ak+qc ak—q'c) j Si ))cd

=(S|")((ak+q+q t akt —ak+qc ak q t))
X«S;;S,+)), (2.»b)

«&k (q)s. aq';s"))
=&{3.(q) .') )«s' 's'))-.

The hrst two decouplings are quite standard and need
not be discussed further, but (2.21c) represents an
interesting feature of the decoupling problem. The
subscript s represents a symmetric product. Such a
term would have arisen had we initially used a sym-
metric combination of operators on the left-hand side
of our original Green's function Vit(ru). The other
quantities appearing in (2.20) would not have been
changed by such a symmetrization. It is demonstrated
in Appendix A that we could have formulated the entire
problem in this manner, and that it makes a difference
only when the operators appearing in the yet higher-
order Green's function do not commute. The expecta-
tion value in (2.21c) is easily seen to equal

clq, —q'{fkt+fk+qC +fkt fk+qC+) q

Wit(ru')

——(c0,—co) '{2ccVRf'+2J{'[cRBit(cu)—f'Fit(ru)])
+-',J ( )F„( )——,'cJ{[((s;*)')+((S;)')]

XAr (cg)+(S;)Ar'(c0))Bcq(ca), (2.22b)

{fk, k+fk+q, k +fk, t fk+q, k+)

&k,X
—~k+q.X+. ——~g

(2.25)

Ar (co)=—Qg q 6k+ q
—6k+s —M —Zg

+
tk 6k+q+COtt CO Z'g

(2.26a)

1
Ar'(~) =—Z

iV q

(fk+qc' fk+qc )—

6k+ q 6k+ Gl8 Ca) 1'g

(fk+ t+ fk+qt )—
6k —6k& q+G)8 —

Ct)
—lQ

(2.26b)

The expressions (2.22a) and (2.22b) are approximate,
and can be generated in a satisfactory manner only
when ek is near the Fermi energy. They arise from
k-dependent terms of the follow'ing form:

where f = 1—f+ is the usual Fermi function. Inserting
these results into (2.20), spatially averaging as in (2.14),
dividing by the term in parenthesis on the left, multi-
plying by exp( —iq R;) and summing over i,j,k,q, we
obtain

Z Z &(k,q; ~)(&akcta», S,'))-,
k, j q

where

&(bs,:) )=«s,*) )-&s.*),

where P(k,q;co) represents the curly bracketed terms
appearing in (2.24) and (2.26). The sum over q of

V cc((u) (cd, a&) '2cJ—R{cR—Btc(kt) &Fit(ca))— S(k,q; c0) is found to be dependent only on the magni-
—iq J z,(c0)Ftc(cd)+i2c;J((gSp)t)Ac(cct)Bic(&), (2,22a) tude of k. The coupled resonance problem we are

considering in this paper involves the Green's function
Bit(co), (2.8), which in turn depends only on those wave
vectors whose length nearly equals the Fermi wave
vector k p. Thus we can separate the two terms to write

&k f 6k+ q4 N 1g

{fkt+fk+qc +fkt fk+qc+)

/2k q

(2.23) P %(k~,q;cd) g &(a»ta», S+))„=—g P(kc, q;co)Bcc(co).
k, j

and

1
Ac, (co) =—Q

&kt &k+ qI

&k-t-qt —~k l ——
&Q

(2.24)

where tt is a positive infinitesimal. The quantities (2.23)
and (2.24) will be evaluated later in this section, after
their physical meaning has become clear,

Using very similar methods, one can also obtain
expressions for the other higher-order propagators

Again, this approximation is only valid when
~
k

~
=k p,

so that the separation leading to the quantities A(~),
(2.24), and (2.26), is only an approximate one. Other-
wise, for ~k far from ~ p, it is in fact impossible to effect
such a separation of terms. As we shall see later in (2.39),
this limits the validity of the concept of a conduction-
electron exchange relaxa, tion rate, 1/T, q.

In addition to (2.22a) and (2.22b), we also find

Ncc(ki)= (cd, ki) '2J'{'(cRICa—(cu) —{Bcc(co)7-
+V=i(~)B~(~)—2~J{[&(S'*)')+&(s'")')7

XAr'(&o) —&S;)Ar'(&u))Ea(a) (2.22c)
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and

we 6nd
a= 2J( b= 2cJE. (2.28)

Fa((o) = —2cXR{(co,—(a—b)

X [((d,—(d+a)((d, —co+b) —ab]
—(c0,—co)(co,—(o)cJ'X(co) }D '((o), (2.29a)

B(c((o)= 2c "(Rfa[((o, co+a) (cg, —cg+b) ab—]-
+( .—)( .—)J'="( )}D '( ), (2.29b)

Ks(cv) = —2X{'{((d,—(d—a)
X P(co, co+a)((o. —co+b) ab—]-

—J'((a.—co)((d.—(a) - (cu) }D '((u), (2.29c}

B(c((d)= 2X{'fb[((d, (a+a)(co,—(o+b) a—b7-
+((o, (d)((d, cd)cJ—'c(c((o)}—D'((d) (2.29-d)

where

D((0)= {((d, (o a)((o,—(o—b) a—b}— —
X{((d, a)+a)((o. —(o+b) ab}—(co,——(o)(&v.——cu)

X{((d.—(d)J~((o)+((o,—(o)c7i((o)}. (2.30)

These rather formidable equations represent the
dynamical propagators in the absence of lattice damp-
ing. The localized and conduction-electron transverse
susceptibilities can be constructed from them, exactly
as in I. In particular,

x. (~)=(g'/2-~')fFa(~)+(g. /g. )Ba(~)}, (2.3«)

X, (co) = (g,'/2 ()fK(((co)+(g,/g, )Ba(co)}. (2.31b)

We do not write these quantities explicitly in this section
but rather wait until Sec. III ~here lattice damping is
introduced explicitly. It is interesting, however, to
examine the form of the four propagators given by
(2.29). As can be seen from (2.29} each propagator has
the same denominator, so that both components of
X ((o), given by (231),will also have the same denomin-

Ecc(co)= ' (—(d,—(o)

X f 2clVR& 2oJ—R[oRKa((d) {B—a(a&)7}
'J—=r-((u) B((((d)+ ', cJ(-(-b5 ) ')AI ((d)K R(c0) .

(2.22(1)

Comparing (2.22) with the first-order results (2.19), we
see that the eAect of going to higher order in J has been
to introduce the quantities "L„z and AL, ~ into the
equations for the fundamental propagators (2.9).
Dehning

"-()== ()+=. ( },
A(")= &(b5''*)')~ ( )+[&(5'' )')+((5''")')] (2 2t)

XAr (co)+(S,~)hr'(co),

the Kqs. (2.9) for the propagators defined in (2.8) can
be solved. Defining the quantities

ator. If we follow Tahir-Kheli'" and perform the follow-

ing manipulation, the second-order linewidths and shifts
caused by exchange will become evident. We note that
D(~), as given by (2.30), is accurate only to Q(J').
Hence, to this order, w'e may change the last term in

the expression for D((o) t.o

—J [(co (o—+a)((d, c—o+b) a—b]
X {((o —co)Z((0)+ ((0a c(t)cA(M)} (232)

Similarly, to the J' terms in the numerator, identical
additions can be made. Then the square-bracketed term
in (2.32) will exactly cancel against the numerator and
the equations will greatly simplify. This trick has the
e6ect of removing w'hat we believe to be spurious roots
in the denominator and is entirely consistent with our
stated accuracy. The denominator D((o) then becomes

D((d) = {((u, (o a—)(co—, co b—) a—b}—
—J {((o —(o) "((o)+((o,—(d}cA((o)}. (2.33)

We now have the expected quadratic equation to solve
in order to obtain the two resonant roots for X ((o).
Again, to O(J'), we may rearrange (2.33) to read

D((o) = {(o,—co—a—JU((u) }
X f(o,—(o—b —cJiL((o)}—ab. (2.34)

Finally, then, we see that the real parts of J~(~) and
cJ'X((o) represent the shif t of the localized and
conduction-electron resonant frequencies, respectively,
when c0, and (o. are well separated (i.e., when
~co,—(o,

~
&&a,b). Likewise, the imaginary parts of

J'"((o) and cJ'L((o) represent the linewidths for each
resonance under sim. ilar conditions. If, however, ~, and
co, are close to one another, then the full expression for
x—

((o), (2.31), must be examined, rather than just the
denominator (2.34). In the limit of equal g values, the
second-order widths and shifts present in the denomin-
ator cancel against the numerator. This cancellation,
which must occur physically, also takes place for the
original unsimplif(ed expressions (2.29) when inserted
into the sum of the expressions for the transverse
susceptibilities (2.31), fi.e., for X-((o) =X;((o)+X, (&a)

and not for I;((d) or X;(co) separately).
It is straightforward to evaluate .(co) and A((d). We

6nd, for the former quantity, using the explicit forms
(2.23) and (2.25): High-temperature limit (kT»(o, co,):

ya
r((o) =2p' (a 1+in +(0, ln2+ArkT, (2.35a)

~kT

f ~DE"s.((») = 2pi (c0 ru, ) 1+lnj —
~

+i7rkT . (2.35b)
E~kT/

Low-temperature limit (general result for imaginary

"R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962}:
127, 95 (1962};R. A. Tahir-Kheli, i'. 159, 439 (1967}.
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part; kT«cd, ~, required for real part):

r(a&) =2p'{cdI 1+lnID/c0I j+ar, ln2

+i7r2icd coth(2iPcd) }, (2.35c)

=i(~) =2p'f(~ —~ )31+»IsD/(~ —~ ) I j
+ iver —',(a)—cd,) coth-', P(co—ru, )}. (2.35d)

Ke have assumed a square-band model for the conduc-
tion electrons of width 2D centered at e p and constant
(one-spin) density of states p. In (2.35), y is Euler's
constant —0.58. This result is in agreement with
Spencer's" second-order results, and displays the
separability of " into the 1/T2'= 1mJ%c(co,) (frequency
modulation) and 1/Ti' ——Im r(co,) (spin flip) parts
found by Orbach and Spencer. ' It is interesting that
both contributions to the localized spin line width enter
the equations of the propagators on equal terms. This
implies that they are "bottlenecked" with equal
eS.ciency, when co, is near ao,.

The latter term L(c0) defined by (2.24), (2.26), and
(2.27), gives the second-order linewidth and shift for
the conduction electrons. Evaluating (2.24) and (2.26a)
under the same assumptions which were used in (2.35),
we find for all temperatures

Jiz(a&) = 2p(ln I (D+co,—co)/(D —cd,+co)
I +iir}, (2.36a)

Ar'(cd) = 2p(ln
I
(D+or, co)/(D c0,+—co) I

+i—ir} . (2.36b)

For high temperatures, kT&&ra,cd„co„(2.26b) becomes,

This is an interesting and quite new result. It implies
at T= 0 ((S,') ~ —5 as T~ 0 in our notation, since we
have taken co,= —g,h*) that ImX(co) ~0. As we shall
determine in Sec. III, cJ2 ImK(ra) under certain circum-
stances can be identified with 1/T, q. Previous treat-
ments'4 have used explicitly, or assumed implicitly, a
form for 1/T.& which is frequency and temperature-
independent. Clearly, this is not the case.

In the vanishing magnetic field (or, equivalently,
high-temperature) regime, (2.37) implies a conduction-
electron spin-resonance linewidth equal to

Dcd, 't2 cJ=' IniA(cd) = 2mS(5+1)cpJ, (23g)

which, for a localized-electron spin S=-,', equals,

—,'mcp J'.
This is just twice the one-electron width found by
Spencer" and Abrikosov" and derived by the present
method in Appendix B. It is very interesting that, to
order J', the two-electron propagator width appropriate
to the conduction-electron-spin-resonance signal is just
the sum of the individual electron-hole single electron
widths identified with the two terms which comprise
L(co) in (2.24) and (2.26). Our result is not necessarily
new for this type of problem, but it has not been
recognized until now for this specific application. It is
tempting to set

Ar'(co) = 2p 2 ln I+ln2')
Dr (&u, —cd+ 2i cd,)~—

D2 —(co,—(o) 2

1(/T2' cJ'((85;*)') ImA——I,(co,),
/Ti'= cJ'(L((5;*)')+((5;")')j Imctr'(cd, ) (2.39)

+(5 ) ImAr'(co. ).

+iir tanh~~P(c0, —ca+2icd, ) . (2.36c)

—ln
(~.—~+2~.)'

(2.36d)

The physical regime in which we are interested involves
frequencies co,co.,co.«D so that the real part of (2.36a)
and (2.36b) is negligible. However, a logarithmic
dependence on temperature is present in the real part
of (2.36c) which appears in the equation of motion
multiplied by the localized electron magnetization
(5, ) I see (2.27)).Hence, we find a Kondo-like logarith-
mic g shift for the conduction electrons similar to that
previously obtained for the localized spin, (2.35a) '
The imaginary part of X(co), using (2.36) in (2.27),
becomes

lmX(cd) = 2wp(5(5+ 1)—(S,*)'
+(5~) tanh2iP((u, —co+ i2co,)}. (2.37)

The imaginary part of (2.36c) is in fact valid for all
temperatures, whereas at low temperatures k T&&co,or„co,
the first two terms (the real part) in the curly brackets
are replaced by

D '
(cd ru)''-— —

This implies, in zero magnetic field, that 1/Ti'= 2/T2',
a somewhat strange result. It is caused by the fact that
a longitudinal fluctuation (1/T&') frequency shifts the
two electrons in opposite senses. The associated line-
widths are additive because they appear on the diagonal
of the energy matrix. The spin-Rip amplitude, however,
for a given spin must be added in the oG diagonal terms,
before squaring, to the amplitude of its partner in the
cro (t) term in the propagator. This effectively doubles
the efficacy of spin-Rip broadening for the two-particle
propagator as compared to frequency modulation in
the same circumstances. The result for the conduction-
electron resonance linewidth, (2.37), is magnetic field
dependent because of the saturation of (S;*) when
eu,»kT. It would be interesting to look for this effect
experimentally.

Before our results can be compared in detail with
previous work, ' 4 it is necessary to include the e8ects of
lattice damping. This inclusion is also necessary when
the g values of the localized and conduction electron are
close to one another, as otherwise bottlenecking occurs
and all of the above exchange terms will disappear in
the combined expression for X (cd).

"A. A. Abrikosov, Physics 2, 5 (1965).



179 D Yib AM I CS OF LOCALIZE 0 MOM ENTS. I I 697

IIL COUPLED EQUATIONS IN THE PRESENCE
OF LATTICE DAMPING

We return to the fundamental equations (2.1) and
(2.2) of this paper. If the equation of motion for the
propagators (2.8) are now developed using (2.1) and
(2.2), the exact results, analogous to (2.9) but including
lattice damping, are

(c», c» —zA—,)Fzz(c»)+2J(Vzc(c») —Wzc(c»))
= 2cA R iD,g—, 'X,2JBzc(c»), (3.1a)

(c», c» id—,)B—R(c») 2J( V—R(c») Wzc—(c») }
= —iA,g,

—'X,2JFcz(c»), (3.1b)

(c», c» —zA—.)Kzz(c»)+2J(M zz( ) i'z—z(c») }
= —2X( id.g,—zX,2JBzc(c»), (3.1c)

(c», c» i—A,)—Bzc(c») 2J(3—gzc(c») ~ zz(c») )'

iA,—g, 'X,2—JKzz(c») . (3.1d)

These equations reduce to Eqs. (2.9) in the case of zero
damping (A,=A, =O).

In (3.1) all the symbols are defined as in Sec. II.
Using (2.5), two exact equations relating the four
propagators may be found;

(c», c» zA, )F—zc(c»—)+(c», c» zA,)B—zc(c»—)

ih,a i~,b
2cAR+ F—cz(c»)+ Biz(c») (3 2)

and

(c», c» zlzz, )BR(c»)+—(c»~——c»—zd~)Kzz(N)

equations of motion, terms of the form i(A.+A,) which
will not reduce to the correct first-order result (3.4) in

the limit of small J. This result is probably correct to
order J' as we are, in our decoupling procedure, essen-

tially ignoring the dynamics of longitudinal motion.
Such an assumption is consistent with our use of the
static longitudinal susceptibilities, X, and X„ in the
fundamental equations of motion (2.1) and (2.2) in the
lattice-relaxation terms.

The equation of motion in the presence of lattice
damping for Vzc(c»), analogous to (2.20), is then found
to be

( ~
— + ——A.)«& (q)S**;S'))-

= g,,(s;(q)S;+)—«[s.-(q)S,',a,j;S,+)).

ih, a 1
+ —2 «S"Sc;S'&)- (3.6)

(c».—b) X c

Using (2.4) and decoupling exactly as in Sec. II, [see
(2.21)j we find, after a great deal of algebra,

Vzc(c»)=(c», c» iA—,) —'2cJRfcRBzz(c») f'Fzc(c—»))
',J.r(c—»+-iA. )Fzz(c»)+ ', cJ&(bS,~-)')

XAz. (c»+zA.)Biz(c»), (3.7a)

Wzz(c») —(c».—c»—zA, )
—'

X ( 2cii'R( 2J'f[c—RBzz(c») —
f F zz(c»)])—

+ ', J="L,(c»+i-A, )Fzc(c»)

J([&(S,*) )+&(S,') &jA,.( +z
&S,*)Ar'(c»+i—b, ,) }Bzc(c»), (3.7b)

iD,b
—=—2cV(+ Biz(c»)+ Kzc(c») .

OPg eos

Again, equivalent to (2.19) it can be shown that the
second-order propagators must, to first order in J,
satisfy the set of equations

(c», c» iA.) Vzc(c») —2c—JR(cRBzz(c»—) (Fzz(c») ), (3.4—a)'
4 zz(c»)—(c»g c» zing)

X ( 2c VR(+ 2c—JR[c;RKzz(c») fBzc(c»)])—
,'J.F(c»+i—A.—)+', cJ&(bS;)z)-

XAr(c»+in. )Kzz(c». ) . (3.7d)
(c»g c» zing) Wzz(c»)

——2clVRf 2J( f cRBzc(c») (—Fzc(c»)), (3.4b)—

(3.3) Ms(c») ——(c», c» zA,) '—2'—[c;RKzz(c») (Bzc(c»)j-
+ ', J=-c,(~+in-, )Bzc(~)
—-', cJ([((S;*)')+&(S,»)')jAr (c»+id, )

&S~)A—r'(c»+i A,))Kzc(c»), (3.7c)

(c» —c»—zA )3IIzz(c»)

2J('(cRKzc(c») (Bcc—(c»—)), (3.4c)—

(c», c» iA,)—.Vzz—(c»)

2cXR(+2cJR(cR—A—zc (c») (Bzc(c»)), (3..4d)—
where

R=Rf1—[zA,/(c», a)5);-
('=((1—[z~.i'(~.—b)]) . (3.5)

The utility of the first-order equations (3.4) can now
immediately be seen. They demonstrate that it is essen-
tial to regard only the transverse component of the
left-hand side of the second-order propagators (2.10) as
being damped. Otherwise, there will enter, in their

These expressions are formidable algebraically, but
their essential similarity to the analogous set (2.22) in
the absence of lattice damping is immediately seen. The
second-order terms J2 and cJ2A are now modified
because of the presence of the complex argument which
contains the lattice damping parameters. The evalua-
tion of the quantities Az, (c»+iA, ) and Ar'(c»+zA, ), de-
fined by comparison with (2.24) and (2.26a), will not
differ from (2.36a) and (2.36b) at high temperatures for
damping coefficients which are small compared to any
structure in the electronic density of states, as shown
below. The expressions for Ar'(c»+id, ) and (c») will be
a6ected, ho~ever, and will be discussed below.

Expressions for the propagators (2.8) derivable from
(3.1) and (3.7) will not be written down explicitly be-
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cause of their complexity and essential similarity to the
results presented in Sec.II, Eq. (2.29).One complicating
feature which arises now, but was absent in Sec. II, is
the effect of the imaginary driving terms on the right-
hand side of (2.1) and (2.2) which were extensively
discussed in I. They arise from the coupled equations

Mg Gag J /
S

Q)tt a

where

D'(co) = Dcu,
' a—) (co,

' b—) a—b)((u, 'cv, '+(u, 'b+ra, 'a]

i——u)+id, M t
~ ~

Bt
+ M, —ih,a—

cX' . (3.10c)
Catt

2J
=i~,x, .h„-(t)+—(m-(t))

gegs

g,J+ Z *"'(&, (t)~ *(t))—& *(t)~' (t)))
Q~ q, s

(3.8a)

These also are formidible equations, but they possess
the entirety of the dynamics of the lattice damped
coupled localized conduction-electron system to O(J').
It is easily demonstrated that, in the limit of equal g
values (&a,= re, =~0) and no lattice damping, the sum of
the susceptibilities (3.10a) and (3.10b) immediately
reduces to the result

i co—.+id. ~(m-(t))
ctt )

2J
= is,x, h„(t)+ (M--(t))

gege

gg——P.-' '((.;(t)S;*(t))—&a,*(t)S;-(t))&.
iV' ~s

(3.8b)

The first-order solutions of this set were discussed
in I. The second order follow in the same manner as do
the solutions for the propagators presented in this paper
and we shall not go through the algebra here. Defining,
for simplicity, (primed quantities include damping)

Ntt =(dtr 07 Zdg ~

I
GOg =COe Op fate)

our solutions for the transverse dynamic susceptibilities
are as follows:

x, ((u) = —(g,2cR

X((ru, ' b)(ca.'&u.'+co, '—b+co.'a) J'co 'co,'cX')—
ggggl P'(Ng Ng +~@b+~ g a)

+&a.'co.'cJ'X']'iD' '(co), (3.10a)

b=b 1—
GDg 6

Z (c0) —Zr(hl+zkq)+~~c(cd+$Dz) ~

~'( ) = &(bS; ) )t~, ( + ~.)+/&(S.*) )+&(S,') ))
XAp'(co+id, )+&S )Ar'(ru+iD, ); (3.9)

x-(ra) =x,—(co)+x,—((a) = —g'(cR+f')/((u, —(u), (3.11)

where all second-order terms have exactly cancelled.
The result (3.11) is exactly what one would obtain for a
coupled system of two spins with identical g values and
no external damping.

In order to examine this result in more detail we
perform the same trick as in Sec. II which led to
Eq. (2.33) for the resonance denominator. Namely, we
change all products ~,'co,' which multiply J~ terms to
(&a,'ru. '+~, 'b+co, 'a) This elim. inates the extra double
root which apparently is contained in D'(o&), (3.10c),
and is again valid to O(J2). Then (3.10) reduces to

x, (sr) = —(g, 'cR/co. '
b cJ'A'(—ru)]- .

—g.g*l Lb+cJ'X'(~)])D-'(~), (3.12a)

x. (~)= —
& VgI:~*' a 'J="(~-)]-

—g,g,cRLa+J%'(~)])D-'(~), (3.12b)
where

D(cv) = [(&a,
' a) ((a.' b) —ab]——

—J'L~.'=-'(~)+~.'ctt'(~)). (3.12c)

Ke have been forced to drop the imaginary terms
id'!(co, a)—and —ih—.a!(ao,—b) appearing as coeK-

cients of "' and X' in (3.10c) in order to remain con-
sistent to O(J'), since a and b (2.28) are proportional
to J. To this order, it is easy to see that, for co, very
difierent from ar, (i.e., a large difference between con-
duction and localized electron g values) J' ' and cJ'X'
represent the frequency-dependent second-order widths
and shifts for the localized and conduction electrons,
respectively. To establish a connection with other
authors, notably Hasegawa and Cottet et al. ,4 respec-
tively, we identify,

x. (~)= —(g.'f'
XE(m, —a)(w, ao, +u, 'b+co, 'a) —au, 'co,'J "']

g,g,cR/a(co, '(—a,'+a), 'b+(g, 'a)

+~.'~.' %J'])D' '(~), (3.10b)

1/Tg, = b;.=J' Im-'(ru)

1!T,a= b„=cJ' ImX'(a)). . (3.13)

These equalities are somewhat misleading for a num-
ber of reasons, some of which w'e have already set out
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in this and a previous paper. The quantities "' and A'

contain contributions from both frequency modulation

and spin-Hip terms so the meanings of the symbols

1/Te, and 1/T, e (h;. and 8„) in this context seem to us

to be obscure.
Some coniments are also in order about the character

of ' and A'. As can be seen from (2.35) and (2.36), both
quantities in the absence of damping are quite frequency-
dependent. Thus, it is not correct to assume that Tg,
and T,& are frequency-independent terms proportional
to, and independent of, 1g'kT, respectively. Only at high

temperatures, zero field, and in the absence of lattice
damping is 1/ T~,= lmJ'"' and j//T, ~= ImcJ A'.

We examine first the situation for "(cd). From (3.9)
it is seen that the relevant quantities are

:-'(co)==, (a)+id, )+ "r,(id+i A,) . (3.14)

A glance at the explicit form of r(&o) and "r.(a&), (2.23)
and (2.25), demonstrates that the presence of the damp-

ing terms A„h, complicates their evaluation greatly.
The imaginary part of ' is essentially unaltered from

(2.35) as long as A„A,«kT. When the converse is true

(an unlikely situation), " becomes temperature-
independent and

Im=r(cv+iA. ) =2p' A, ln
2(A 2+~2) 1l2

+(0 tan ' —,(3.15a)

Im-r, (co+iA, ) =2p' A, in
2(D '+((a —co )'-)'"

Cd Gll)
+(co—a„) tan i

~

. (3 15b)
A, )

We have not been able to evaluate the real parts of "'
in the presence of lattice damping.

%e see, therefore, that one must be very careful using
the idea of a Td, . Even in the presence of lattice damp-

ing, the expression for "' which can be related to an
effective Te, (or 6,,), is strongly frequency-dependent.
Thus, the absorption line shape will be altered from that
derived by Hasegawa, ' or Cottet et at. ,

' and it is neces-
sary to evaluate '(co) at the specific frequency (or
field) in question in order to arrive at an appropriate
magnitude for the absorption linewidth.

The situation for A'(cu) and hence the meaning of T,e
(or 8„) is quite similar. The imaginary parts of Az, (ru)

and A '(cv)r, asseen from (2.36a) and (2.36b) in the
absence of damping, are frequency-independent. Thus,
letting co~au+iD. and co+iA„respectively, in (2.36)
does not alter their value as long as any structure in
the density of states at the Fermi surface does not
take place within energy widths ~& A„A,. Such varia-
tions are highly unlikely, and would represent an

extreniely pathological situation which we shall not
consider further. The evaluation of ImAz'(rd+iA, ) is
unaltered from (2.36c) as long as d,«kT. When the
converse is true, an even more unlikely situation than
for "(since A, is usually &A,), ImAr'(co+iA, ) becomes
teniperature-independent. Ke find, for 5,&k T,

/ ~a+ (&u,/2) —ru

ImA&'(~+i A,) = 4p tan '~
— . (3.16)

The real part of A'(cd) (3.9) can be evaluated in a
similar manner. The first two components, Al. and A~,
are always small in the absence of damping (2.36a) and
(2.36b). In the presence of damping

A,2+ (D+co,—cd) 2

ReAg(c0+i,A.) =pln, (3.17a)
A,2+ (D (»,+co)'—

A*'+( .+( ./2) —)'
=2p ln

A, '+ (D—ca, +(o)'-
(3.17c)

Comparing this result with (2.36c), we see that in the
limit that h.))kT the localized spin lattice damping
has "smoothed out" the frequency dependence of
ReAr '(co) and eliminated the logarithmic-temperature
dependence, for aB values of cu, or„and ao, .

IV. DISCUSSION

It is interesting to compare our solutions (3.12) for
X (ca) with those of Hasegawa' and Cottet et al. ' to see
what differences exist between these approaches and
our own. The most instructive method is to examine the
resonance denominator D(cd) given by (3.12c) with the
corresponding expressions of these two diHerent
(macroscopic) approaches. We shall, for our purposes,
generalize Hasegawa's treatment to allow for g,~g„
and also admit a term representing lattice damping of
the localized spin, ih, . Defining

(4.1)

and setting D(&u) =0, (3.12c) results in the following
secular equation (with the coupling constant

A, '+ (D+(u, s&)'—
ReAr (id+iA, ) =p ln . (3.17b)

&P +(D (u, +ra) i—

Most assuredly h.,h,&&D, so that these two terms
remain small in the presence of damping. The ReA~
vanishes at co= co, while the ReAp is at best of the order
of L(cv,—cv)/Dj' or [6,/D]', and hence negligible. The
last term, Ar~(co) in the expression for A'(id), (3.9), is
essentially unaltered for D,((kT. ln the opposite limit,

ReAr'(id+iA, )
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~= 2J/(g. g.)):
c»'—c»(c»,"+c»,"—J%'(c»)—cJ'A'(c») )

—c»,"cJ'X'(c») )=0. (4.2)

The corresponding expression of Hasegawa Drom his

Eqs. (4.26) and (4.27)$, where he allows only the z

component of the localized electron magnetization to
polarize the conduction electrons, re-expressed in our

notation, and retaining terms only of O(J'), is

'l,

M GO COg +G)gll ll

Tgd ~ dg

'l

+ c»,"c»,"—2J$2cJR— c»,
"— c»,

" =0 . (4.3)
Tdg Tgd

We see that, if we make the identification (3.13) and
absorb the real parts of ' and A.

' into au,
" and co,",

respectively, that (4.2) and (4.3) differ only in the
second-order terms A.'co,"co,"X,X, and 2J$2cJE, respec-
tively. Rewriting the former, we have to O(J'),

i~,
XgXs 2J)2CJE 1 1 e 4o4

GDg (dg —8

Hence, the resonance denominators differ to this degree,
the importance of which will depend on the experimental
situation. There is an important additional difference,
of course, and that has to do with the numerators of our
expressions for X. (c») and x. (c»), (3.12a) and (3.12b).
These will be quite different from Hasegawa's (un-

fortunately, he did not evaluate these quantities
explicitly in his paper) because of his neglect of instan-

taneous local field relaxation. As shown in I, this

neglect is a serious matter, causing grave difFiculties in

the limiting behavior of X (c») at zero frequency.
The approach of Cottet et al.4 does not suffer from

this diQiculty, in that relaxation to the instantaneous
local field is put in everywhere. We are not happy about
forcing the second-order exchange terms in this manner,
but until Langreth eI, al. ' have published the details of
their proof of this point, we are not really in a position
to comment on its use. The denominator for I—

(c») given

by Cottet et al. 4 in our notation, and including only
terms of second order in J, is identical to (4.2) if we

again make the identification (3.13) and absorb the real

parts of ™rand A.
' into co,

" and ar,", respectively. An

intriguing point is that Hasegawa s case B Lhis Eq. (5.6),
where he allows for instantaneous local 6eld relaxation
by setting m=X, (h*+XM)) does in fact lead to the
same expression (to 0(J')j for D(c») as their result, and,
of course, our (4.2). We believe that Hasegawa's result,
insofar as the numerator of his expressions are con-
cerned, is still wrong for the reasons outlined above, but
it is interesting that the resoance roots in his second
case are the same as those of Cottet et al.4 and ourselves.

Ag, (c») =Rehp-'J'-'(c»)

=2c,s) (c.+-) i-i.( )

hc», '"(c»)= ImJ2" '(c»)

—g, ln2, (4.5a)

(co)
=m.(pJ)' c» coth(

(2kT)

+ (c»—c»,) coth, (4.5b)
2kT

hg. (c») = Rehp-'cJ'A'(c»)

D+c», c»—
= 2cpJPhp i ((1i'S'')P) ln

D c»~+c»

D+Ms —(O

+((S;*)'+(Sp) ') ln
Ms+CO

hc» ' "(c»)= ImcJ'X(c»)

~kT
+2(S,')ln, (4.5c)

27D

=2wcpJ' S(S+1)—(S *)'

c»,+ (c»,/2) —c»

+(S,*) tanh . (4.5d)
2kT

Our notation, again, sets co,= —g,hp, co = —g hp so that,
for example, for S=—'„(S,*)= —-', tanh(c», /2k T) and cp is
negative at the resonances. Thus, in (4.5a), when c»=c»,
the first term in parenthesis equals g,. The g shifts in
(4.5) are appropriate to kT&&co,c»„c», while the half-
widths are correct for all T. The low-temperature forms,
kT&&co,ar„eo„ for the g shifts can be found immediately
by using (2.35c) and (2.36d), and (2.36a), (2.36b), and
(2.36d) in (4.5a) and (4.5c), respectively, using the
definitions of (3.9). We have gone to the trouble of
exhibiting these results in order to emphasize the fre-
quency and temperature dependences of the resonance
shifts and widths. These are new results, and cannot be
obtained from the usual macroscopic formulations
utilizing T~, and T,~.

In summation, it would be very interesting to see if
the points of difference betw'een this paper and that of

Cottet et a/. 4 could be observed experimentally. In
particular, it would be worthw'hile to look for the
exchange g shifts and linewidths near the Knight
shifted localized and conduction-electron resonance
frequencies as a function of field and temperature.
Summarizing our results of Sec. II, as we believe that
for all practical purposes A„A.,«k T, these are,
respectively,
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&([~,JJ7; 21)&-— (& ~; JI&)-= &[~,K&. (A2)

It can be readily shown that the SGF also satisfies a
similar equation, namely,

«[{.4,C}.,H7; JI».—&({~,C}.; JI&)„
= &[{.4,C}.,B7), (A3)

where
[{.4,C}„87={[:1C,B7},, etc. (A4)

"Peter Fulde and Alan Luther, Phys. Rev. 175, 337 (1968).

There is one other point which should be made con-
cerning the underlying assumptions in this p;iper (anil
in I). As can be seen from (2.1) and (2.2), and also in

(3.6), we have assumed a frequency- and wave-vector-
independent lattice relaxation mechanism for the con-
duction electrons. %'e believe this to be the weakest part
of our formulation. The algebraic complexity of treating
this interaction explicitly by introducing yet another
field, the phonons (and/or impurities), has prevented
us thus far from pushing this part of the problem
further. A very interesting recent paper by Fulde and
Luther, "however, demonstrates that, in the long wave-

length, low'-frequency limit, it is possible to treat spin-
orbit relaxation of the conduction-electron spin
properly. Their result exhibits relaxation towards the
instantaneous local field without the necessity of its
explicit introduction, as we have been forced to do in

(2.1) and (2.2). Their approach clearly leads to the next
step in the analysis of this problem. However, it will be
necessary to extend their method to arbitrary wave
vector, as the quantities "and A' involve sums over-all
electron wave vectors, even at low frequencies. Again,
our approach appears to be limited by the necessity of
assuming an "external" relaxation width and thereby
having to force instantaneous local field relaxation for
such terms. We do not believe, however, that lifting
this assumption will seriously modify the results of this
paper.

APPENDIX A: SYMMETRIZED
GREEN'S FUNCTIONS

In the equations of motion method for double-time
Green's functions (GF) higher-order GFs are introduced
with products of operators whose order depends on the
original order of the operators in the simpler GF. In
many cases the operators in the simpler C'F commute
so their order is unimportant. However, upon evaluating
the commutator in the equation of motion (q.i.) it may
occur that the new set of operators do not commute.
This is especially important when subsequent decou-
plings are performed. The introduction of symmetrized
Green's functions (SGF) ensures that no asymmetric
decoupling is performed. Thus if two operators 3 and C
commute we can define the (equal-time) symmetrized
product by

{:f,C}.= -', (.1C+C.4) . (A1)

If we use the same notation as in Kq. (2.7) for the
retarded GF, then this GF satisfies

This procedure removes the degree of arbitrariness
present in the standard (unssmmetrized) analyses of
equations of motion. In the present paper, SGFs are
important when we have more than one transverse
operator of the same species appearing in the analysis.
The resulting symmetric decoupling corresponds to the
noncommutivity of the positive and negative time
orderings in the self-energies of the GF's.

J
= b» k +—P exp{—iq R,}

Ãq, J

X&({a»+a, »S,
—"+&ak+, »S,*};ak. i,')). (B1)

We thus define three Green's functions

Gkk', k(~) ((ak,k j ak', k ))a) j

j.
4'(co) =—P exp( —iq R,)

Eq, ~

X((ak+, , »S,*;ak, it))„; (B2b)
1

C(cd)= —P exp( —iq R,)
Xq, J

X((ak+, , i,S,-";ak kt))„. (B2c)

The equations of motion for the higher-order Green's
functions 4'(ki) and C (co) are derived in exactly the same
manner as in (2.20). After decoupling using the same
technique as exhibited in (2.21), and then spatially
averaging as in (2.14), we 6nd

0'(ki)= {bk k +XcJRG»k, k(ki)}
(Ek, k K)

+AcJ{((8S,*)'&}Rk(ki)G»k k(ki), (B3a)

4'(~)—:cJ{((S'*)'&+((S'")')}R-k(~—».)Gkk .k(~)

where
—l~cJR%»(c0—»,)Gkk. ,k(ki), (B3b)

1
Rk(~)= —Z (~k, k

—~) ',
E k

&k(~)=—Q (fk, k+—fk, i, )/(~k, i,
—~). (B4)

k

Being careful about the first-order solution, as discussed
in Sec. II, we find for the second-order solution for the

APPENDIX B: ONE-ELECTRON PROBLEM

In this Appendix, we examine the one-electron fre-
quency shift and linewidth mentioned in the introduc-
tion for the coupled localized conduction-electron spin
system. Using (2.4), the one-electron propagator
satisfies the equation of motion, (A2)

(Ck, k Cd) «ak, k j ak', k ))co
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Green's function Gi, q i(ce), using (83) and (84) in (81), and for zero magnetic field,

(&cc.x ce) Gcccc',x(ce)=~k, k'(&h. x ~)
+AcJR{hie g~+XeJRGiccc,x(ce) }
+eJ'(e~, x—~){((~5'*)')Rx(~)
+D(5'*)'&+((5'")'&)R- ( —lc *)

—XcJRSx(ca—he, ) }Gi,g. x(ce) . (85)

The first two terms on the right-hand side of (85) give
the correct first-order limit, and the third the second-
order correction. This can be verified by using the first-
order decoupling procedure (2.15) immediately upon
+(ce) and C (c0) as defined in (82) and then inserting the
resulting expressions in (81).

Equation (85) is the final result for Gkc, ,z(ce) to
second order in J.To compare with previous work, and
to Eq. (2.37) of this paper which gives the two-electron
width, cJ ImA(ce), we rewrite Eq. (85) in the limit of
equal g values [so that R &,(ce—Xco,)=Rx(ce) which
allows us to combine the appropriate two second-order
terms in (85))
Ggg~ x(cci)=kg, i~{eg, x co+XcJR}

)& {[ec,x—c0—XcJR)[ec,, x
—co+AcJR)

—(e.,x
—~)e Vx"'(~) } ', (86)

where we have used Spencer's" notation. We have in
our case

Vx(&)(~)

J'i {5(5+1)—(5 *)'—X(Sc*)(fc,, z+—fk, x )}

(87)

whereas Spencer finds, for S=~, the identical result
with S(5+1), of course, replaced by ~3. This result is
also Abrikosov's" lowest-order result, for (S;)=0.
Evaluation'0 of the imaginary part (87) on the energy
shell at the Fermi surface, p pi (note that here ce refers
to the one-electron excitation energy, including the
Zeeman energy yXce„so that ce= -', he, ) leads to

ImVi &'i(~cence,)= s pJ'{S(S+1)—(S,")'
+(5~) tanh[(ce, —2ce,)/2kT)}, (Bga)

lm Vxc"(0)= -'a pJ'. (Bgb)

Both results are just half the two-electron widths given
by Eqs. (2.37) and (2.38) evaluated on the appropriate
energy shells, namely, co, and zero, respectively. It is
interesting that such equalities are also true for the
real parts of Vx&"(ce) and A(ce). In particular, from (87)
we find a logarithmic g shift near co=0,

In fact, this is a quite general result for the two-particle
propagator if the frequencies in the corresponding self-
energies are put onto their appropriate energy shells.
Thus, the one-particle linewidths are addztive while the
difference in the g shifts are taken for the total resonance
g shift; i.e.,

Im P Vx(-,'Xcu, +ig) = ImJ'A(ce, ), (811)

and
Re Q X Vx(-,'Xco.) =ReJ'A((a, ) .

The real and imaginary parts of "(co) are in agreement
with the results of Spencer. "
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Re Vx"'(0) = 2XpJ"-(5 *) ln(irk T/2yD), (89)

which for S= 2 agrees with the results of Spencer. "This
is to be compared with our results for the real part of
J'A(co) given by Eqs. (2.27) a,nd (2.36)

ReJ'A(0) = 4pJ'(5 *) in(vrkT/2yD) . (810)


