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The dynamic transverse susceptibility x (co) is calculated microscopically for a random array of localized
spins in a metal. Relaxation of both local and conduction-electron spins towards their respective instan-
taneous local fields is included using a new formalism for such instantaneous relaxation. The resulting equa-
tions for the relevant propagators are solved to first order in the exchange coupling constant J, and it is
demonstrated that to this order, the results are identical to those obtained using a molecular-field Inodel.
Careful attention is paid to the correct analytic form of the spin propagators and to the sum rules which they
must satisfy. It is shown that in this formalism an additional inhomogenous contribution to x (ca) arises
from the requirement of relaxation to the local field. When this term is added to the usual Lorentzian form
for the spin propagators, a form for x (ao) results which is distinctly non-Lorentzian, but which satisfies the
physical requirement that the static limit (co =0) of the transverse susceptibility equal the longitudinal value.

1. INTRODUCTION
' 'N this paper we examine the dynamics of coupled
~ ~ spin systems, explicitly including in their equations
of motion relaxation to an instantaneous self-consistent
local field. Previous work on this problem, notably that
of Peter et cl.,' utilized a macroscopic molecular-field
approach. Their results exhibited the physical require-
ment that in the static limit, the transverse and longi-
tudinal spin susceptibilities were identical. They also
discussed the significance of their result and its applica-
tion to a wide variety of physical systems. %e demon-
strate here, by means of a microscopic calculation, the
validity of their result to lowest order in the exchange
coupling. In addition, we generate a framework which
will enable methods of quantum field theory to be
applied to the general problem of lattice relaxation in
spin systems. In particular, we believe this method can
be applied to extend the present calculation to higher
order in the coupling strength. Other recent work,
notably that of Giovannini et ul. , has also investigated
the microscopic behavior of these systems, but they
were forced to introduce an ad hoc modification of the
usual Lorentzian spin Green function in order to obtain
a correct' physical form for the transverse dynamic
susceptibility, X (co). We show in Sec. 4 that this
modification, in fact, violates a fundamental sum rule
which can always be constructed for any "one-particle"
propagator. How'ever, in Secs. 2 and 3 we demonstrate
that the Lorentzian form of the Green's function need
not be modified, but rather an inhomogeneous term
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must be added to the usual Kubo4 linear response
formula for the magnetization, which then yields the
correct' form.

The starting point of this paper is the explicit intro-
duction, into the quantum-mechanical operator equa-
tions of motion of the spin system, of a term correspond-
ing to the relaxation of the system to the direction of
the instantaneous local field. This technique somewhat
artificially separates the relaxation term from the
Hamiltonian which describes the dynamics of the spin
system when no damping is present —the usual
Heisenberg equation of motion. Thus, we regard the
relaxation term as an "external" perturbation, the
remainder of the dynamics we assume to be governed
by the "internal" Hamiltonian. Although in principle
such terms could be included in a complete "internal"
Hamiltonian, eventually one must introduce contact
with a heat bath in order to achieve thermodynamic
equilibrium. %e feel that it is easier, and more physical,
to make the separation at this stage. These equations
are an interpolation of the Heisenberg equations of
motion for spin operators when no damping is present
and the phenomenological Bloch" equations describing
the dynamics of the average magnetizations driven by
an effective magnetic field and undergoing "external"
relaxation.

In Sec. 2, these equations are analyzed (for sim-
plicity), for a single-spin system interacting with a
coherent rf magnetic Geld in the presence of an external
static magnetic field along the s axis. The results will be
compared, at each stage, with corresponding expressions
which only consider relaxation to the static magnetic
6eld (z direction). Obviously the results for the dynamic
transverse susceptibility must diGer substantially be-
tween the two cases. As stated above, a fundamental
physical requirement for the transverse susceptibility
is that in the static limit it must reduce to the longi-
tudinal susceptibility. This essentially follows from the

' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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long-time requirement (zero frequency) that the mag-
netization must follow vectorially the external field

regardless of the relaxation rate. It is a simple matter'
to show then that this results in an equality of static
transverse and longitudinal susceptibilities.

Now, a Lorentzian result for the dynamic transverse
susceptibility, which we show to obtain under the
assumption of relaxation to only the external static
magnetic-field direction, does not in fact reduce to the
longitudinal susceptibility at zero frequency. In the case
of a precessing free spin (after all transients have died

away) this occurs because there is no preferred direction
in the transverse plane. However, the requirement of
relaxation to the instantaneous local field will be show'n

to result in a modified Lorentzian form for the trans-
verse susceptibility which, in fact, reduces immediately
to the longitudinal result in the static limit. Again, for
the free-spin case, relaxation towards the instantaneous
field defines (at any instant) a unique direction in the
transverse plane and produces a net moment (complex)
proportional to the perturbing field. This vanishes as
the damping disappears but behaves like a static com-
ponent as the damping becomes infinite. This contribu-
tion is really a coherence eRect which extracts a net
transverse component from the precessing motion of
the magnetic moment around the static field. At the
same time this additional transverse field is creating an
extra transverse component b& inducing spin flips of
the actual s component of the moment, and for small
fields this is given by the usual Kubo formalism. How-
ever, it is just this additional coherent contribution
which modifies the basic Lorentzian Kubo result.

In Sec. 3, we treat the problem of a random collection
of localized spins in a metal, interacting with the
conduction-electron spins via a zero-range exchange
coupling. We work to only first order in this couplingv
and include the eRects of "lattice" damping for both
systems using the methods introduced in Sec. 2. %e
then solve the coupled dynamic susceptibilities and
demonstrate their equality with the molecular-field
results.

Section 4 contains a discussion of our results and of
sum rules which must be satisfied bp a Creen's function.
I t is shov n that part of the susceptibility which can be
expressed as a retarded Green's function, as derived in

Secs. 2 and 3, does satisfy the appropriate sum rule but
the other part, originating from the assumption of
relaxation to the instantaneous local field, does not
belong in the propagator sum rule, and in fact, would

destroy it if forcibly introduced into the propagator
expressions. '

'C. P. Slichter, JIageetic A'esoeeuce (Harper and Row Pub-
lishers, Inc. , New York, 1963},especially p. 39.

7 Although results quoted in this paper include terms of order J',
these arise from linear approximations in two coupled equations.
Using the general methods derived in this paper, we have extended
our treatment self-consistently to the next order in J; see following
paper, Phys. I~ev. 179, 690 (1969},

2. RELAXATION EQUATIONS

In order to illustrate the ideas which are applied in
Sec. 3 to the case of two coupled spin systems in a
metal, we restrict ourselves in this section to the simple
example of a single localized magnetic moment M or
its quantum mechanical spin operator S (M= ps) which
is part of a system described by a Hamiltonian X, and
assumed to be a6'ected by an external relaxation
mechanism, characterized by a single inverse relaxation
time D. In the absence of damping the dynamics of the
moment is described by the Heisenberg equation of
motion (with a=1,2,3)

where
i(d/«)5 (&) = Es (t),x7,

ES,S'7=i 2 ~-s~S"

(2.1)

(2.2)

where (S ),„,is a canonical average with respect to the
exact eigenstates of the total Hamiltonian, BC+X, ~,

but weighted by the corresponding Boltzman factor
containing only the energy eigenvalues of K (since the
original population distributions are assumed not to
have changed). Moreover, (5 ) are canonical averages
with respect to the original Hamiltonian X.The change
in the operator average is defined by

(ss.(t)).„,= (5.(t)),,—(s.(&)) . (2.4)

We assume that X. contains a large static magnetic
field hp, and that the s axis of spin quantization is taken
parallel to the direction of ho. We then impress on the
system a small rf rotating transverse magnetic field
resulting in a driving term

se...(&) = —qs h, ,(&).

Thus Eq. (2.3) takes the explicit form

(2.5)

(5 (~)&- =(5 ( ))t+lv «'F (f f')&. (~'), (2 6)—

where the retarded spin-flip props. gator Fa(t t') is-
defined by

Fa(t —f') = ie(t —i') (ES-(t),5+(f')7), (2.7)

where 8(i) =1 if 3)0, and vanishes otherwise. Fourier
transforming (2.6) according to the following conven-
tion, for any arbitrary function A (t):

(2.8)

If an additional perturbation is applied adiabatically
at t=o, the change in the averaged components of the
spin are given by the usual Kubo linear response
formula4

(85 (t)),„,= i —dt'(Es (t),Bc, (i')7), (2.3)
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(2 12)

We assume an adiabatic "switching on" of the driving
ficl(l,

h, c+(t) = lime '~ "hie+'"'
tt p+

(2.13)

we define a transverse susceptibility function X (c0) by
the equation

y-'X-(&u) h, i
—

(c0) = (5-(&e)).„,
= (5 ( ))+l»' ( )h. ( ) (2.9)

It is now necessary to introduce the irreversible relaxa-
tion of the spin system to the lattice. We write, as a
generalization of (2.1),

i(d/dt)S. (t) = tt5.(t),X]
ia—.(5.(t) q —'x,-h. (t) j, (2.10)

where Xp is the usual static susceptibility, b is an
inverse relaxation time for the n component of spin,
and h (t) is the component of total external magnetic
field (i.e. , both static and rf) along that direction. In
future we do not distinguish between the various 6;
in Bloch s notation this is equivalent to taking Ti= T2
=-1/5, which for the purposes of the following section,
is certainly legitimate. Equation (2.10) forces the spin
to relax to an equilibrium value (and direction) appro-
priate to the instantaneous local field.

In (2.10), 3C includes all the other interaction terms
in the Hamiltonian Lexcept, of course, the rf driving
field whose lossless dynamic driving effect has already
been included in (2.6) and (2.9)], which describes the
lossless dynamics of the spin system. We believe this
separation to be a physical one, and we find it difFicult
to imagine the spin system relaxing in a different manner
to the lattice. Similar arguments, though in a quite
diHerent context, have been advanced by Wangsness. '
The integra, tion of (2.10) will then yield explicitly the
"inhomogeneous" driving term (S (t)) in the Kubo
equations (2.6) and (2.9).Such terms are usually absent
from these equations. In fact, when we consider what
happens shouM we neglect the driving term in the
relaxation part of (2.10), so that relaxation occurs to
the direction of the static magnetic field, viz. ,

i(d/dt)5. (t) =
C
5-(t),X]

—

iaaf

5 (t) y 'Xphob—3—}, (2.11)

we would find that indeed this "extra" term would
vanish. This is demonstrated below.

We now assume that the dynamics of the non-
interacting isolated moment are described by the
7eeman Hamiltonian Xp=~p5', where ~p= —yhp. We
first solve these equations for the transverse component
of spin 5 (t), (5+=5'&i5"), given by the driving
Eq. (2.10). After canonically averaging this equation
and taking the Pourier transform we find

(5 (t))=— (2.15)

It is easily shown that, for an instantaneous applied
perturbation, h, c+(t) =8(t)hie+' ', one obtains a result
identical with (2.15) for times long compared to 1/6
(i.e., when transients have been allowed to die away).

Now, had we not insisted on relaxation to the local
field, then we should have integrated (2.11) instead of
(2.10). This equation has the averaged solution

(2.16)

Thus, even if for some reason (S (0)) were nonzero,
after a time t»1/6, (5 (t)) would vanish, and (S (t)), &

would be given by the usual result

X-(ce)= —,'y'F R(cv) . (2.17)

Thus, we see that the requirement of relaxation to the
instantaneous local field introduces into the usual Kubo
expression for (5 (t)),,c an additional "inhomogeneous"
term. This contribution results from an extra transverse
imaginary driving field made necessary by the equi-
librium condition for lattice relaxation, i.e., the factor
id' 'X,h„c(t) in (2.10). It vanishes when the damping
6 vanishes, so that (S (t)) in (2.6) thereby vanishes
and one is left with the usual Kubo formula. It is
interesting to note that, as 6—+ ~ this extra term
becomes real Lsee (2.15)] and one obtains a constant
value for the length of the transverse magnetization,
parallel to the driving field and always in phase with it.
The second term in (2.6), as we show below, vanishes in
this limit. This is what one would expect, of course, for
the transverse magnetization in this limit, since the
longitudinal magnetization has been "decoupled" from
it by the assumption of instantaneous relaxation.

To complete this section, v e calculate the usual Kubo
term in (2.6). The equation of motion defined by (2.7)
for FR(t) is simply

i(a, 'at)FR(t) = 28(t)(5*)

+ i8(t) ([i(a/at) 5 (t),S+]) (—2.18).
We are only considering the hnear response of the

spin system, so that we can use either (2.10) or (2.11)
to compute S (t) in (2.18); that is, we can ignore that
part of the relaxa. tion term containing h, c (t).

We have then,

(i(a, at) inc )FR(t) = 28(t)—(5*)
+i8(t) (LPS-(t),X,],5+]), (2.19)

where again JCO ——cooS'. The Fourier-transformed solu-

which has the transform

h, c (co') = 2ir8(cd'ace)hi. (2.14)

Using (2.14) in (2.12) and taking the inverse Fourjer
transform defined in (2.8) we obtain for the "local field
relaxation" part of (S (t)):
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tion is simply

Fg(pp) = —2(S*)(pop —iA —co) ', (2.20)

tonian K =3Cp+Xi, where

3.'p ——Q pp, S,'+-', pp~p'+P (qp —qF)ap )tap), (3.1)

which is, as mentioned earlier, just the usual Lorentzian
form for the propagator. Using (2.20), and (2.12) in (2.9)
we obtain for the over-all spin susceptibility,

and J
3'-i= —ZP e"'-S~,"e

q.

E e
(3.2)

happ
—zA

x, .
kpdp q6 pp

(2.21)

(2.22)x—
(p~) = (pip/pi p i' p—i)xp—

In the (static) limit of zero driving frequency pp, this
reduces immediately to Xo, as stated in the Introduction.
Had we not demanded relaxation to the instantaneous
local field, i.e., had we used (2.16) so that the last term
in the numerator of (2.21) would not have been present,
we would have obtained the simple I.orentzian for x—

(pp),

namely

By construction, we are limiting ourselves to a 8-
function range of the exchange coupling. Though this
restrictive form is not necessary at this stage, it turns
out later that, in order to eGect the necessary decou-

pling of the Green's functions, an equivalent assumption
would have to be made. In Eqs. (3.1) and (3.2) e are
the Pauli matrices and

p q E op+qx& k, imp'l' ~,
p, XX'

(3 3)

It is straightforward to verify the commutation rela-
tions [compare with (2.2)j:

[eq )eq' 3= i Z peeve'q+q'

It should be noted in comparing (2.21) and (2.22)
that, in the limit of infinite damping, the Lorentzian
form (2.22) vanishes, whereas the modified I.orentzian
(2.21) reduces to the static limit, for all frequencies.
Eq. (2.21) reflects the decoupling of the transverse spin
component from the longitudinal component for very
rapid relaxation to the instantaneous field. Moreover,
in the zero-frequency (&v=0) limit, x (0)Wxp for the
Lorentzian, whereas this is the correct limit for (2.21).

Thus, this section exhibits our central point. The
propaguIor for the spin susceptibility in the presence of
instantaneous local field damping does have the usual
Lorentzian form, but to it must be added an inhomo-
geneous (complex) term arising from the rf driving field.
The combination yields a distinctly non-Lorentzian form
for the susceptibility itself. In the absence of the assump-
tion of relaxation towards the instantaneous local field,
such an additional term is not present, and the suscep-
tibility is directly proportional to the propagator
(Lorentzian form), a. result we believe to be incorrect.

3. LOCALIZED CONDUCTION-ELECTRON
EXCHANGE MODEL

XVe are now able, using the simple formalism develop-
ed in Sec. 2, to compute the self-consistent coupled
local conduction-electron magnetic susceptibility in
the presence of lattice damping of both systems. Ke
formulate the solution in powers of J, the exchange
coupling constant, and, in this paper, work to only first
order in J.' %e, thus, consider a system of conduction
electrons in an iV-point lattice interacting with a finite
number n (=cX) of randomly situated localized mag-
netic inipurities located at lattice sites R,. Microscopi-
cally, the combined system is described by the Hamil-

Ke define, for convenience, an average localized spin
moment per atom M and an average conduction-
electron moment m as, respectively,

geM~= —Q5~
E ~

m =(g./2X)«,
(3 4)

where for simplicity we have set pg= 1. I'or notational
convenience we also define the canonical averages

where

R= (S,*),

f =(2-~) '&«*),

s= gtt~a p
e= ge~o ~

(3.5)

where 6, ' and 6, ' are, respectively, the impurity
spin-lattice and electron spin-lattice relaxation times
and &, and &. are the appropriate static susceptibilities.
The coupling constant X appearing in (3.6) is easily seen
to be equal to

x=27(g,g,) '

from the detinition of the exchange coupling (3.2).

(3 g)

We must now extract the equivalent of (2.15) for the
coupled case treated in this section. That is, we must
calculate the "inhomogeneous" term introduced by the
requirement of relaxation towards the instantaneous
local field for the coupled spin systems. The relaxation
equations analogous to (2.10) are

t(8'itt)M =[M 3c] i'..(M x—.(k +7m—)} (3.6)

i(it/Bt)m = [m,Kj—i4, (m —X,(h +KM )), (3.7)
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Had we included in the Hamiltonian 3C in (3.7) the rf

driving term as weQ as converting 3C into an effective
molecular 6eld, the canonical averages of these equations
would be formally identical to those of Peter et cl.' It is
our purpose here, however, to formulate the problem in
such a way that it will be possible to go consistently
beyond Grst order in J, and thus to extend the analysis
bevond that of the molecular 6eld. ' In addition, by
isolating the external driving term as we have done in
Sec. 2, it is possible to derive an acceptable form for
the propagators (in the sense of the sum rules of Sec. 4)
and yet still obtain a correct physical result for the
dynamic susceptibility.

It is necessary to first calculate the static z-component
averages of the two-system magnetizations to first order

but to 0(J) [Kqs. (3.4), (3.5)$, &m*(t)&=g,f'; whence,

in steady state (t»h '),

g, (M'& = —x,(c»,—2J{').

Similarly, from (3.7),

g, (m*)= —x.(c»,—2cJR) .

(3.10)

(3.11)

These results will be used in our subsequent analysis.
We now evaluate the commutator in (3.6) and canoni-

cally average. %e find

in J (or X). From (3.6)

[(8/ctt)+b, ](M*(t)&=b X {hp+X(m (t))} (3.9)

g,J
L (&/&t)- .+ &.l(M-(t))='~. {h.-(t)+&& -(t)&}- Z -"'{(;S;-)-&;S;)}.E' q~'

(3.12)

&;S;&=&;)&S,*). (3.13)

It should be pointed out that terms in (3.13) like (S; (t) )
are here nonzero because of the presence of the driving
term in the relaxation part of the equations of motion.
Because the impurities are distributed at random, the
sum over j in (3.12) vanishes unless @=0 (alternatively,
since the driving 6eld is assumed spatially uniform,
(», & vanishes unless q=0). Hence, performing this
separation, Fourier transforming (3.12) and inserting

The molecular-field result is recovered by a simple
decoupling, viz. ,

(3.10) we obtain

(c»—c»,+2Jg+ih, )(M (c»))= ih, x,h, c (c»)

+ (g,/g. )2cJR[1—(ih, /(c», 2Jl—))g&m (c»)) . (3.14)

An entirely similar analysis for the conduction-electron
magnetization yields

(c» c»,+2c;J—R+ia,)&m (c»))=i'„X,h, c (c»)

+(g,/g, )2J{[1—(ittc,/&c», 2cJR—))J(M (c»)&. (3.15)

Note that these two coupled equations have imaginary
inhomogeneous terms which are entirely equivalent to
those discussed in Sec. 2. These equations have the
solutions

and

ih, c (c»){E,X,(c», 2cJR iA, c») —A,x,(g—,/g. )—2cJR—}
{(c», 2Jt ih, —c»)(c», —2cJR— ih, —c») 2J—f2cJ—R)— '

&M-(-))=—

ih, (

(c»){ted&,

(c», 2' iA, —c») —B,x,(—g,/g—,)2')
&m (~)&=-

{(c», 2cJR iD—. c»)(c»—, 2J—t inc,—c») —2cJR—2J{}—

(3.16)

(3.17)

and where

R=R 1—,f={ 1—'
(d,—2Jf a),—2cJE

(3.18)

Note that Kqs. (3.16) and (3.17) reduce immediately
to (2.12) when J=O. Thus, we have now found the
"inhomogeneous" terms in our calculation of the
response of the coupled systems, introduced by the
requirement of instantaneous local 6eld relaxation.
Next, it is necessary to treat the second (propagator)
part of the Kubo equation, exactly as we did in Sec. 2.
The analogous driving Hamiltonian to that of Sec. 2,
Kq. (2.5) for the coupled system, is

3C,~c(t)= —
p V{h,c (t)(M++m+)+H. c.}. (3.19)

This will result in four retarded propagators since there
will now be two equations analogous to (2.5), one for
M (t) and one for m (t). We de6ne these propagators
using a modi6ed form of the Zubarev' notation. Thus
for any two operators (in the Heisenberg picture) A,B
we define

G,"'(t)=ie(t)([A(t),a(0)j&=—(&A(t) 8». (3 20)

Then the four propagators we need are

Fa(t) =P ((S;-(t);S;+)), Rtp(t) =-,'(&~;(t); ~,+&),

(3.21)

2t (t)=k Z (&S* (t)'~o+&) & (t)=-'Z(&~p (t)'S+&&.

' D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960} LEnglish transl. :
Soviet Phys. —Usp. 3, 320 (1960)j.
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Using (3.19) and the fundamental relation (2.3) we can
find expressions for the driven magnetizations in ternis
of the propagators (3.21). After Fourier transforming,
we 6nd

&31-(~)&.„,= (m-(~) &

+ (2 V)
—'{g,'F ii(~d)+g, g,Bs((o))h, i-(cv) (3.22)

&m (co)&„„i——(m ((o)&

+ (2 'i ). ''{g,'Kii(a))+g, g,Bii(cv) }h,i (co) . (3.231

The equations of motion for these four propagators are
easily derived in. a manner identical to that which led
to (2.18). Again, we omit the relaxation term propor-
t.ional to h, i (t) since we are constructing only a linear
theory t see the discussion following (2.18)j.Thus, for
the local moment propagator FR(t) we 6nd

We see that this propagator equation couples B(t)
to F(l) and introduces the two new Green's functions in

the curly brackets. We treat these latter terms in this

paper to lowest order (since they are multiplied by the
coupling constant J) and decouple them as follows:

«~,*S (t);S"»=&~.'&&&Si (t);S'&& &3 25)

On Fourier transforming we have

(co v.—+2J/+i h, )Fii(u&) = 2nR+2c JRBii(cd) . (3.26)

The exact equation of motion for the propagator B(o&) is

(
a ) g.

ia. ~B,(t) =iS.—X~.J', (t)
at ) g.

J
{((S,*;(t);S,+))

S ~&a -«..'S-(t);S »). (3»)
~ ~
8 ge

i ~,+is—, F (t) =2nRa(t)+is, xx,B&—(t)
gs

The same higher-order propagators appear in this
expression as in that for F(t). We decouple in the same

manner to obtain, after Fourier transforming,
J——P -* "{((,*S;(t);S,+&)
E i&q

(a& o&,+2cJR—+id.)Bii(&o)=2J/Fii(co). (3.28)

Thus, inserting (3.28) into (3.26), we obtain the
—((0'~ Si'(t); Si+)&} . (3.24) localized spin propagator

2ttR(cu, 2cJR—id, —s&)—
Fii(~d) =—

{(~.—2J{ i&. co) (cu—, 2c—JR i/i—, id) —2J{2c—JR)—
(3.29)

A similar procedure completes the quartet; we 6nd

and

((u cu,+2Jr+id—,)Bg(a&) = 2cJRKri(co)

(cg —cd,—2cJR i 6,)Kii (cd) =—2)V{+2Jt'Bg (~);

(3.30)

(3.31)

so that, for example, the conduction-electron spin propagator K(co) equals

2E{((a, 2J{ id, co)— — —
Kg(u) =—

{(~, 2qJR i—D, co) (—~, 2—Jf id—, co) 2J{2cJ—R)— — (3.32)

Ily definition (M (co)&, ,=X,—(~)h„—(~), so that by use of (3.22), the relaxation driven term (3.16), and our
expressions for F(a) in Eq. (3.29), and B(co) from Eq. (3.28), we can evaluate x,—(co). We find

g, 'cR((u, 2cJ—R iA, co—)+g,g {—2cJR—
x* (~)=

{((, 2J{ iA, —co)((d—, 2c—JR iA—, (0) —2Jf2c—JR)— '
(3.33)

Similar arguments for (m (co)&, , yield

g, 'f'(co, 2jt i—d, ill)+—g,g,2J—{cR—
x,—((g) =

{((a, 2J{ id, co) ((a—, 2cJ—R ih—, (u) —2J—{2cJR—)— (3.34)
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V,'riting co.'=co,—2cJR—~'b, „~,'=co.-—2'—iA, to
conform to the notation of Peter et al. ' we And

and (3.37)
x;(0)= (1+XX,)x,!(1—X'X.X,)

are identical to the expression for the longitudinal
susceptibility easily derivable from (3.10) and (3.11).
Hence, our solutions still obey the physical requirement
of isotropy in the static limit.

4. DISCUSSION

We shall not consider in detail the results we have
obtained. here using the concept of instantaneous relaxa-
tion to the local 6eld. We refer the reader to the work
of Wangsness' who gave a detailed discussion of x. (4d)

for the case of isolated spins, comparing expressions
equivalent to (2.21) and (2.22). The molecular-field
result for the coupled system (3.37) has been extensively
studied bv Peter et a/. ' However, we reiterate that our
results for the isolated spin and coupled spin systems
both reduce to the longitudinal result in the static
(4d =0) limit, viz. ,

X (0)=X (0)=X' (4.1)

The damped Lorentzian (2.22) fails to reduce to this
limit and, in fact, vanishes for A&&coo. In order to con-
trast these de'erences, we display the simple result for
the transverse susceptibility function for an undamped
freely precessing spin

x-(cd) = lim xp.
Cdo —6)—ZS

(4.2)

4dg (4dg 4d+7xigidg)Xg
x,—(cd) = (3.35)

{(4dg Cd)(ldg PP) XxgMg XXgidg }
and

4d, '(4d, '—id+) X,id, ')X.
x,—(4d) = . (3.36)

{(4d.
'—PP) (4d.

'—4d) —XX~.'XX,cd. '}

These results are identical to those of Peter et al. ' and
demonstrate the connection between the modi6ed Kubo
approach Lto O(J)] and the molecular-field result. The
application of these equations to various physical
problems was carried out extensively by Peter et al. '

and we shall not go into such questions here. Before
6nishing this section, it should be noted, as was done at
the end of Sec. 2, that the zero-frequency (static) limit
of (335) and (3.36),

x;(0)= (Iyxx.)x,&'(1—X x,x,)

t, "learly, when the damping vanishes, the Lorentzian

(2.22) and the modified Lorentzian (2.21) are in-

distinguishable from (4.2).
The 6nal point of this section is concerned with the

actual form of the spin propagators discussed. in Secs. 2

and 3. Using a Lehman spectral representation for the
I'ourier transform of a general "one-particle" Green's

function, as defined by (3.20), one can always prove the
following sum rule, valid for 8=3 t:

d~ lmG, -4&( ) =(E~,fl)}. (43)

It turns out that all three forms for X—
(&d), naniely,

(4.2), (2.21), and (2.22) satisfy casuality, i.e., the
Kramers-Kronig dispersion rule,

(P du'
ReGg" s(4d) =—

I
oo G7 07

ImGg 4s(pp') (4.4)
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However, only (4.2) and (2.22) satisfy (4.3).Hence only
the simple Lorentzian form for X (4d) satisfies the general
requirement of (4.3). Thus, since we know that in the
presence of damping only (2.2) gives the physically cor-
rect result for X

—
(&d), then this cannot be represented by

a simple propagator. We have seen in Secs. 2 and 3 that
indeed the propagator part of X (4d) for relaxation to the
instantaneous local field is of the form (2.22), so that
the derived Green's function does, in fact, satisfy the
sum rule (4.3). It is only when we add the necessary
inhomogeneous term Le.g., (2.15) or (3.16)] to the
propagator that the form for X (&d) is altered to (2.21).
Hence, we see that it is not possible to represent relaxa-
tion to the instantaneous local 6eld by simply altering
the usual Lorentzian form of the propagator as was done
bx Ciovannini et al. Instead, the equations of motion
dictate that, to the propagator contribution to x (pp),

one must add an additional driving term which, in fact,
cannot be put into correct propagator form if one de-
scribes the lattice damping phenomenologically. Thus
we believe our present approach is essentially correct
and is powerful enough to be useful in several compli-
cated systems.


