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Low-Frequency Magnetoacoustic Effects in Elastic Solids*
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(Received 7 October 1968)

The magnetic field dependence of the stiGness and attenuation are computed in the low-frequency limit
for an elastic solid. The direct interaction of the field with the lattice ions is determined by including the
Lorentz forces in a derivation of the elastic equations. The results lead to mode coupling, but the inQuence

of the Geld on the magnitude of the complex elasticity in conducting solids is negligible compared to mea-

sured results. The contribution of the conduction electrons to the elasticity is computed using the self-

consistent electric Geld resulting from the ion motion and electron reaction. Substantial agreement is found
between the magnetic field dependence and magnitude of the computed values and measured changes in
the complex elasticity for a longitudinal wave propagating in polycrystalline tantalum and in niobium.
Expressions for the Geld dependence of the propagation parameters for transverse waves with di«rent
polarizations are also obtained. The anisotropy of the change in loss factor for a single crystal of niobium is
used to indicate relative average Fermi velocities in various crystal planes.

I. INTRODUCTION

'HE magnetic Geld dependence of the elastic
properties of metals refiect the interaction of the

lattice ions and charge carriers with the magnetic Geld
and with each other. A Lorentz force acts on the moving
lattice ions in addition to an internal electric field
resulting from the reaction of the electrons to the ion
motion and the magnetic Geld. The elastic properties
are investigated by determining the velocity and atten-
uation of an acoustic wave propagating in the metal
in the presence of a magnetic 6eld. From these param-
eters the 6eld dependence of the adiabatic sti6'ness and
loss factor can be obtained.

Of particular interest is wave propagation in an
isotropic medium at frequencies much lower than the
cyclotron frequency and the scattering frequency of the
charge carriers. The change in elastic properties due to
motion of the lattice ions in the Geld is determined by
computing the reaction to motion in the magnetic Geld
of a charged elastic continuum, having a charge density
equal to the ion density. Coupling of longitudinal and
transverse displacements occurs in the presence of the
field and modifies the pure mode directions in anisotropic
solids. The 6eld dependence of the elastic modulus and
loss factor resulting from direct interaction of the
magnetic 6eld with the lattice ions is computed in
Sec. II for an isotropic propagation medium.

The electronic contribution to the field dependence
of the complex modulus is determined by using a self-
consistent electric Geld which results from the motion
of the lattice during the passage of the sound wave. This
self-consistent electric 6eld, as calculated from the
development by Cohen, Harrison, and Harrison, ' acts
on the lattice ions as well as the charge carriers. The
free-charge-carrier contribution to the total Geld
dependence of the complex modulus is shown in Sec. II
to be the major portion of the observed changes. Com-
parison with observed field dependence of the stiGness

* This work is supported by the National Science Foundation.' M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.
117, 937 (1960).

and attenuation is presented in Sec. III for niobium and
tantalum.

II. LATTICE ELASTICITY

In separating the eGects of a magnetic field on the
elasticity of a metal, the lattice is represented as a
charged elastic continuum. As an elastic wave prop-
agates in the lattice, each of the lattice ions moves
periodically with the velocity amplitude of the wave.
If a magnetic field is applied, a Lorentz force acts on

the lattice ion which is in addition to the normal elastic
restoring resulting from the ion displacement. The
stress introduced by the presence of the magnetic field
is proportional to the propagation direction and
polarization of the elastic wave. Of particular interest
in this investigation are low-frequency waves propagat-
ing perpendicular to the magnetic field in an isotropic
medium with particle displacements (8,$,() in the
(x,y,z) directions. If the wave propagates in the z

direction with the Geld (8) in the y direction, the net
stress acting on an elemental elastic volume is the sum
of the static elastic reaction forces and the Lorentz
force. The magnetic 6eld couples the displacements of
the simple modes, so that a shearing stress results from
the passage of a longitudinal wave, and a compressional
stress from a shear displacement in the x direction.
Elastic deformations and their associated accelerations
do not include body forces, since these forces lead to
acceleration of the elastic element as a whole and do not
eGect the propagation of a wave. The Lorentz force,
which eGects the elastic reaction of the ions, is included
as part of the stress whose spatial derivative is asso-
ciated with the elastic accelerating forces. The self-
consistent stresses for a wave propagating in the s
direction, including stresses generated by the Lorentz
forces, are given approximately by

S.= So.+ Q(88/Bt) B-,
S,= So,+Q(8&/Bt)B—,
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~p/p= Q'B'/4''p, (4)

where 2 is the longitudinal elastic modulus and p, is
the shear modulus.

If B is given in gauss, then Q=(e/c)(p/M)2' with
c the velocity of light, e the electronic charge, and N
the mass of the ion. The factor Q is of the order of 10 '
to 10 '. The observed fractional change in modulus for
aluminum in a 10-kG fie1d is 10 ', while the value
calculated from Eq. (3) is at the most 10 ".The ratio
(10') between the measured and computed changes is
large enough to indicate that the direct action of the
magnetic field on the lattice ions is not the dominant
inhuence on the elastic properties of metals in a magnetic
field. However, it might be in semiconductors or in-
sulators if techniques could be devised to observe such
small changes in the elastic properties.

The coupling of the differential equations leads to
two modes which are not purely transverse or longi-
tudinal. The ratio of the transverse to longitudinal dis-

where Q is the charge per unit area, with each ion
assumed to have one electronic charge and S0, is the
field-independent stress proportional to the strain. The
resulting elastic equations, derived by equating the
derivative of the stress to the accelerating forces which
are not associated with body forces, are

8'f QB 8'8 8'$
2 +
BS2 p BtBS Bt2

8'8 QB 8'g 8'8
p 2 +

BX2 p BXBt BP

()2f j2f
2

By2 BP

where p is the mass density.
For zero magnetic 6eld these are the wave equations

for an isotropic medium describing the propagation of
one longitudinal wave (&) and two shear waves (8,&) in
the s direction with a velocity of zL, for the longitudinal
wave or e„ for the shear waves. The magnetic field
couples the longitudinal wave with shear displacement
perpendicular to the 6eld, so that these simple pure
modes do not propagate independently. Only the shear
wave with the ion displacements parallel to the magnetic
6eld is unaffected when the electron currents are ignored.
The dispersion relation with a magnetic 6eld present
is obtained by substituting the plane-wave displace-
ments in the s and x directions (&,8) in the first two
simultaneous equations and solving the resulting
determinant of the coeScients. The resulting second-
order equation in v' can be simplified for QB(1 (which
is the pertinent experimental limit) to give the frac-
tional change in elastic modulus as a function of field as

A2/2 =Q2B2/4v L~p (3)

III. ELECTRON INTERACTION

Passage of the sound wave through the lattice per-
turbs the local charge-carrier distribution, with its
reaction to the lattice displacement contributing to the
stiffness of the metal. The presence of a magnetic field
alters the charge-carrier reaction to the lattice motion
and leads to what is the major contribution to the field
dependence of the elastic properties. The net stiffness
of the metal is represented to a first approximation by
the sum of the stiffness due to the interactions of the
lattice ions (1.) and the stiffness due to the reaction of
the charge carrier to the displacements of the ions (E).
The complex elastic constant for a metal is treated as the
sum of complex moduli due to the lattice and the
charge carriers. The elastic constant of the charge
carriers is computed by determining the velocity of
sound in an isolated gas acted on by the same self-
consistent field generated by the passage of the acoustic
wave. The reaction of the charge carriers to the wave is
coupled to the lattice by this same electric 6eld. The
fractional change in elastic modulus, consistent with the
negligible direct effect of the field on the lattice elas-
ticity, is given by

DZ/2 = RehE'/pvo2, (6)

where vo is the zero-field wave velocity, p the density,
and hE' the change in the electron modulus as a func-
tion of applied magnetic field. The change in the loss

' E. J. Skudrzyk, Simple and Complex Vibratory Systems
(Pennsylvania State University Press, University Park, Pa. ,
1968), pp. 103, 105.

placements for these modes is determined by substitut-
ing one of the roots into the differential equation. The
mode of interest in this investigation travels at a rate
close to the longitudinal velocity, giving a ratio of
transverse to longitudinal displacement amplitudes as

8/$= QB/pvr, (10 ' at 10 kG.

This particular mode has a transverse component
much smaller than the longitudinal displacement, even
in the maximum magnetic fields considered, and is
assumed in the following to be purely longitudinal in
displacement.

The change in the lattice component of the attenua-
tion is computed by considering the rnoduli of Eqs. (3)
and (4) to be complex and by decomposing the imagin-
ary parts into the losses associated with the complex
Lame's constants. ' The change in attenuation as a
function of field results from an increase in the shear
component, but is of negligible magnitude compared to
the observed values even at the maximum fields. The
direct interaction of the lattice ions with the 6eld is thus
a negligible contribution to the field dependence of the
complex modulus, and the observed changes in elasticity
appear to result from the interaction of the field with
the conduction electrons.
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factor due to the presence of the Geld is given by

&g!go = ImhE'/E p, (7)

the material'
cog Rej h

Rey�—=
=2� 2p8&uu

where the contribution of the charge-carrier damping of
the sound wave is assumed to be larger than the
attenuation of the lattice even at zero 6eld, and is
given by ImEo/ReEo.

The self-consistent 6eld which acts on the charge
carriers due to the passage of the sound wave was
calculated by Cohen, Harrison, and Harrison' using the
Boltzmann equation in conjunction with Maxwell's
equations. Equations relating the components of the
electric 6eld to the ion displacements are given in the
Appendix for a wave propagating in the z direction
with the magnetic field in the y direction. These equa-
tions use the notation of Rodriguez, ' and are derived on
the assumption that the electron relaxation time r is
much less than 1, as is the product of the cyclotron
resonance frequency s&,= eB/mc and the electron relaxa-
tion time.

The internal held generated for a longitudinal wave
propagating along the z direction in a magnetic field in
the y direction is given approximately by

co'e p'mr 1 eoPrc'B'
1——+2' 2 gpT 16~2~o 2p 4

mo poco (uor ) cureBP

I, (8)
2col' 4pr~o ~ 4pro, '~om

where m is the mass of the electron, e~ is the fermi
velocity, o.p is the zero-6eld conductivity, e, is the sound
velocity, and I is the complex velocity amplitude of the
ion in the z direction. As shown previously, the polariza-
tion of the lattice displacement for a low-frequency
longitudinal wave does not change appreciably in a
magnetic 6eld and the displacement of the ion in the
x and y directions induced by the presence of the field
is ignored.

The stiffness and losses due to the charge carriers
are computed by determining' the complex propagation
constant y for a wave propagating in a medium acted
on by the self-consistent electric ffeld given in Kq. (8).
The complex propagation constant is given by the
ratio of the power per unit volume of the wave to the
power per unit area. The power per unit area is the
product of the stress times the strain' and is given by
peuu*. The power density is j 8, where j is the current
density and is given by neu*, with n the number of
particles per unit volume. The real part of the propaga-
tion constant is proportional to the loss factor (y) of

3 S. Rodriguez, Phys. Rev. 130, 1778 (1963).
4 The complex propagation constant is given by p=n+iq,

where 0. is the attenuation coe%cient and q =~jv is the wave vector.' G. B.Thurston and S. Ku, J.Acoust. Soc. Am. 34, 653 (1962).

The loss factor is then given by

Mo pm'5 p' j.
1— +

2pe eP ~ps 16~'po.pv, 2
(10)

The 6rst term is field-independent and equivalent to
the low-frequency attenuation calculated by Pippard'
for a spherical fermi surface. The additional terms
exhibit a squared 6eld dependence, with no lower-order
terms appearing in the calculation.

The imaginary part of the propagation constant is
the wave vector and is given by

Imp =ca/o, .

The square of the velocity of the longitudinal wave in
the electron gas is then

mor'/ co'r 82—1+
2M (4xo.p 4' (12)

8%,2o-p2m2p F2~ 2
(14)

' The loss factor is proportional to the ratio of the energy loss
per cycle to the energy stored per cycle, and is p =2'/co, with the
attenuation coeScient (e) in nepers.' A. B. Pippard, Phil. Mag. 46, 1104 (1955).'C. Kittel, Quaetgm Theory of Solids (John EViley @ pons,Inc., New York, 1963), pp. 142, 144.' S. Rodriguez, Phys. Letters 2, 271 (1962).

where M is the lattice-ion mass. The first factor in the
velocity (mo&'/2M) is the velocity computed for the
"jellium" model of a metal.

The fractional change in elasticity of a wave travel-
ing in the complete solid is dependent on the charge-
carrier contribution to the total stiffness and is deter-
mined from Kq. (12). The ffeld dependence is obtained
by substituting the electron stiffness into the Kq. (6)
and is

AZ/2 =B'/4~pop',

a result which exhibits a squared field dependence but
is independent of both the frequency and conductivity
in the low-frequency approximation. The next higher-
order approximation (10 ' smaller than the above
terms) is also dependent on the square of the held and
independent of the conductivity but does have a fourth-
order frequency dependence. Similar results' were ob-
tained fortuitously by adding the I,orentz force to the
elastic equation as a body force.

The field dependence of the fractional change in loss
factor is determined from Kq. (7), assuming that the
major contribution to the attenuation at zero 6eld is
due to the charge carriers, and is

e2g2B2
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which exhibits the squared field dependence similar to
the longitudinal mode. The loss factor is

(16rr'~02 c' )
q = r~'/~pv, '~

Ql 'v

(16)

which is proportional to the square of the field and in-

versely proportional to the square of the conductivity.
Similar procedures are used to determine the velocity

and loss factor for the two transverse modes traveling
in the z direction. For the wave with a particle dis-

placement (8) perpendicular to the field direction the
charge-carrier gas velocity is

a)cn B' qv2= 1—
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again with a squared 6eld dependence.
For ion displacement (g) in the direction of the field,

the charge-carrier gas velocity is

(sc' eeB )
!1—

4mo. o 8m pea 0)

exhibiting only a linear dependence on field, but with
the same zero-field value as for the transverse wave with
polarization perpendicular to the field. The loss factor is

(167r a p' c' )
g = 2nec~/copv

M 'v ~l

with a linear 6eld dependence similar to that of the
velocity.

IV. EXPEMMENTAL RESULTS

The magnetic 6eld dependence of the complex
elasticity is observed through measurement of the field
dependence of the resonance frequency ( 40 kHz) and
decay time of a longitudinally driven rod (~2 in. &(~ in.
diam). The end of the rod is capacitively driven and
the vibration amplitude detected by an FM receiver.
The resolution of the fractional change in resonance
frequency is proportional to the loss factor and is
typically better than one-half part per million. Mea-
surements were made at 77 K in fields to 13 kG.

A squared magnetic field dependence of the fractional
change in modulus is observed in polycrystalline
niobium and tantalum (Fig. 1), in agreement with
previous observations" and with the field dependence
predicted by Eq. (13). The calculated and observed
coeScient of B' is shown in Table I to be in substantial
agreement for the 6eld dependence of the modulus of
niobium and in very close agreement for tantalum.
Determination of the 6eld dependence of the stiGness
of the material does not provide any more information
concerning the microscopic state of the charge carriers

1' G. A. Alers and P. A. I'leury, Phys. Rqv. l29, 242$ (1963).

FIG. 1. The magnetic field dependence of the fractional change
in stiffness in polycrystalline niobium (a) and tantalum (b) at
77'K. The dashed line depends on the square of the field with a
coeScient adjusted to fit the measured values and appearing in
Table I.

TAazx I. Comparison of measured and calculated coefEicient of 8~.

Niobium
Tantalum

Calculated
coef5.cient
(ppm/kG )

0.84
0.42

Observed
coefEcient
(pI mAG')

0.68
0.44

"G. K. White and S.B.Woods, Phil. Trans. Roy. Soc. (London)
Ser. A251, 273 (1959).

~ E. Fawcett, W. A. Reed, and R. R. Soden, Phys. Rev. 159,
533 {1967).

than is obtained at zero field but does substantiate the
procedure used in the calculation. However, the atten-
uation of the wave calculated by this same procedure
does reRect the microscopic state of the charge carriers
LEq. (14)] through the conductivity, charge-carrier
mass, and Fermi velocity.

The observed 6eld dependence of the fractional
change in the loss factor of polycrystalline niobium and
tantalum (Fig. 2) exhibits a squared dependence similar
to the stiffness and in agreement with Eq. (14). The
magnitude of the fractional change is determined by
using measured values of the zero-6eld conductivity"
and the sound velocity, and assuming the charge-
carrier mass to be the electron mass. The remaining
parameter needed to calculate the loss factor is the
Fermi velocity spatially averaged over all the crystal,
since the results shown in Fig. 2 are for polycrystalline
materials. The values of the Fermi velocity to 6t the
measured 6eld dependence are shown in Table IT.
For comparison the Fermi velocity for a free-charge-
carrier gas is also presented. This calculation assumes
that one hole per atom is contributed on the average, "
and is in reasonable agreement with the measured
values determined from Fig. 2.
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Niobium Tantalum

TABLE II. Comparison of calculated Fermi velocity from Eq. {14)
and for a free-charge-carrier gas.
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Niobium
Tantalum

Measured Fermi
velocity

(10' cm/sec}

1.56
2.49

Free-charge-
carrier gas

Fermi velocity
(20' cm/sec)

1.86
2.87

even there it is only 15%%. The general isotropy of the
fractional change in modulus suggests that the internal
electric fields, generated transverse to the ion motion, do
not induce an appreciable transverse ion displacement.

The fractional change in loss factor for the single

crystal also exhibits a squared magnetic field dependence

Fro. 2. The magnetic field dependence of the fractional change
in loss factor for polycrystalline niobium (a) and tantalum {b)
at 77'K. The dashed curve depends on the square of the field and
is adjusted to fit the experimental values consistent with the
measured conductivity, charge-carrier mass, and sound velocity
to give the Fermi velocity in Table II.

I
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The fractional change in modulus for a single crystal
of niobium exhibits the same general behavior as the
polycrystalline material. A squared field dependence of
the change in modulus is observed for diGerent mag-
netic field directions which are perpendicular to the
displacement and propagation direction of the wave
(Fig. 3). A slight anisotropy noted in the fractional
change in modulus at 13 kG is exhibited in the polar
plot of Fig. 4. The deviation from isotropy is at a
maximum with the 6eld in the L110] direction, but
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FIG. 4. The fractional change in modulus at a magnetic field of
13 kG as a function of field direction. The changes in modulus are
approximately isotropic, indicating a minimal transverse ion dis-
placement due to the presence of the magnetic field.

similar to the polycrystalline niobium. The anisotropy
in the magnitude of the change in loss factor is shown

in Fig. 5 by the separation of the curves for the I 110],
L111],and t 100] field directions. The anisotropy of the
fractional change in loss factor is more obvious in the
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Frc. 3. The fractional change in elastic modulus in a single
crystal of niobium as a function of direction and magnitude of the
magnetic field. The modulus changes are almost identical for the
magnetic field in the L222) (~), L002j (~), and 1220j (0) direc-
tions and perpendicular to the direction of the ion displacement
(—L2IOj. A squared field dependence similar to the polycrystal-
line niobium is obtained.

Fro. 5. The fractional change
in loss factor in a single crystal
of niobium as a function of the
magnitude and direction of the
field. A quadratic field de-
pendence is observed similar to
that of the polycrystalline
niobium. The magnitude of the
change in loss factor is aniso-
tropic and largest for the field
in the L220j (o) direction com-
pared to the I 222j {~) and
002) {g) directions.
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FIG. 6. The fractional change in loss factor at a Geld of 13 kG
as a function of magnetic field orientation. A decided anisotropy
is noted, with the minimum change for the field in the L111)
direction.

polar plot of Fig. 6 for a field of 13 kG oriented in a
variety of directions. If the induced transverse dis-

placement is small, as is indicated by the isotropy of
the change in modulus, the expression for the fractional
change in loss factor t Eq. (14)j derived for an isotropic
medium can be used as a first approximation for the
single crystal if the Fermi velocity is assumed to be
anisotropic. The fractional change in the loss factor is
then a function of the Fermi velocity which is an average
over the plane perpendicular to the field direction. The
average Fermi velocity determined from Fig. 5 is
largest in the (111) plane compared to the (110) and
(100) planes. The average Fermi velocities computed
from Fig. 5 and Eq. (14) are seen in Table III to be the
order of magnitude expected and comparable to the
polycrystalline values. The values determined from the
fractional change in attenuation would tend to be an
upper limit, since the measured zero-Geld loss factor
includes contributions from support losses and lattice
attenuation. The relative magnitude of the average
fermi velocity for various field directions is not affected
by the zero-field values, and can be determined
accurately.

TABLE III. The average Fermi velocity in a plane perpendicular
to the magnetic Geld, computed from Fig. 5 and Eq. (14).

V, CONCLUSIONS

The direct interaction of the magnetic Geld with the
lattice ions is negligible compared to the observed field
dependence of the complex elasticity. The charge-
carrier contribution to the field dependence of the
elasticity is calculated using a low-frequency approxi-
mation and is seen to agree with the observed changes
in the niobium and tantalum. From the field depend-
ence of the loss factor an average fermi velocity can be
computed, which for polycrystalline niobium and
tantalum is close to the fermi gas approximation.
Application of the isotropic calculation to single-crystal
niobium provides a means of determining the fermi
velocity averaged over a plane perpendicular to the
magnetic field direction.
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APPENDIK

icosa, r neiaxo, r
b.(i-ip)-$,

4m.(rp
(19)

8„(1 iP) = (—nei(a jao)],

i' (1 i(or)xiii"co'——b,iso,r+ S.-~ 1+
4irso 2e(1+(d'r')ii '

(20)

The self-consistent electric field generated by lattice-
ion motion and the associated charge-carrier reaction
was calculated by Cohen, Harrison, and Harrison. This
development requires knowledge of the resistivity
tensor which at low frequencies represents the electron
as being driven in phase or resistively by the ion motion.
The simultaneous equations relating the ion displace-
ments to the electric fields for a wave propagating in
the s direction are given in the following, using the
notation of Rodriguez:

Plane

(001)
{100)
{111)

Average Fermi velocity
(10' cm/sec)

1.28
1.12
1.41

neiman

(P Hco, r), (21)—
&o

where p=c'&o/v, 24ir00 and the magnetic field is in the
y direction.


