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A method is given for representing the energy of a metal as sums of one-, two-, three-, and four-body
atomic interactions in the Hartree-Fock approximation by the use of Wannier functions. This method puts
the energy in a form well suited for cohesive and structural studies. The differential equation that must be

satisfied by the Wannier functions for the Hartree-Fock approximation is shown to be a generalization of
that previously obtained by Koster, and explicit relations are obtained among localization of the Wannier

functions, bandwidth, and effective mass. For full bands, it is shown that only pairwise forces exist, so that
three- and four-body forces arise only from interactions involving partially full bands. An extension of
Wannier-Bloch theory is outlined for elastically strained systems, showing that the quantum theory of
perfect crystals can be adapted to strained crystals by a proper choice of coordinates.

I. INTRODUCTION

TUDIES of the cohesive and defect properties of
metals have often been based on the assumption

that the crystal consists of atoms interacting according
to a pairwise force law in spite of the fact that the degree
of validity of this assumption has not been rigorously
determined. "The reason for this is that the usual
quantum-mechanical calculations are dificult and
have an indirect connection with structure, whereas
calculations based on semiempirical atomic interactions
are relatively simple and are directly related to structure
through lattice sums.

Recent work based on pseudopotential theory' —' has

improved the situation somewhat by allowing ion-ion

pairwise potentials to be computed from model pseudo-
potentials. The degree of accuracy of these pair poten-
tials is not definitely established. While there is approx-
imate agreement between theoretical and experimental
values of the elastic constants, "the ion-ion potential
computed for sodium does not agree with that obtained
from experimental phonon spectra. "Furthermore, the
niost recent pseudopotential calculations for sodium4 5

give a pair potential with its first minimum beyond the
second-nearest-neighbor distance. Calculations based
on experimental scattering amplitudes, however, give
a pair potential for sodium with a first minimum at a
position less than the first-nearest-neighbor distance. '

The application of the pseudopotential method to the
theory of cohesive properties of metals is usually based
on second-order perturbation theory. In this form, the
theory cannot give any information on three- or four-

body forces. In order to estimate the contributions of

' L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).
' See, for example, A. C. Damask and G. J. Dienes, Point

Defects in Metals (Gordon and Breach, Science Publishers, Inc. ,
New York, 1963), Chap. I.

'%. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc. , New York, 1966).

4 Wei-Mei Shyu and G. D. Gaspari, Phys. Rev. 163, 667 (1967).
M. H. Cohen, in Metallic Solid Solutions, edited by J. Friedel

and A. Guinier (W. A. Benjamin, Inc. , New York, 1963),p. XI-1.
6 Wei-Mei Shyu and G. D. Gaspari, Phys. Rev. 170, 687 (1968).' A. Meyer, W. H. Young, and J. M. Dickey, J. Phys. C1, 486

(1968)~

three- and four-body forces from pseudopotential
theory, it would be necessary to consider higher-order
perturbation theory. This has been done by Benne-
mann, s ' who applied the T-matrix formalism to
pseudopotential theory. The perturbation Hamiltonian
was expressed as a sum of contributions over the atomic
nuclei of the crystal, so that the multiple scattering
represented by the T matrix gave rise to n-body
contributions to the energy, where n is any integer. In
this formalism, the existence of n-body interactions for
all n is primarily a result of the formalism itself and
does not depend on the existence of higher-order
interactions among electrons in the Hamiltonian of the
wave equation.

In view of this situation, it is of interest to investigate
the validity of the statement that the energy of a metal
can be represented as sums of atomic interactions by an
alternative method. It is the purpose of this paper to
point out that, at least within the limits of the Hartree-
Fock (HF) approximation, such a representation can
indeed be constructed in which the energy consists of
one-, two-, three-, and four-body interactions.

The approach adopted in this paper is to express HF
theory in terms of Wannier functions. These functions
were introduced by Wannier in a study of excitation
levels in insulating crystals, "and their properties have
been investigated by a number of authors. " "For our
purposes, the important property of the Wannier
functions is their localization on atomic sites. This has
the effect of permitting the HF energy to be written as
sums over atomic positions, thereby making it possible
to define atomic interaction potentials. The e6ect of
structure appears explicitly in this formulation in the
form of generalized structure factors.

K H Bennemann, Phys Rev 133 A1045 (1964)' K. H. Bennemann, Phys. Rev. 137, A1497 (1965).' K. H. Bennemann, Phys. Rev. 139, A482 (1965).
"Gregory H. Wannier, Phys. Rev. 52, 191 (1937).
L' G. F. Koster, Phys. Rev. 89, 67 (1953).
» W. Kohn, Phys. Rev. 115, 809 (1959)."Gregory H. Wannier, Rev. Mod. Phys. 34, 645 (1962).
' E. I. Blount, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1962), pp. 319-
335.
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The fact that n-body interactions for n) 4 do not
occur in the Wannier representation is a direct result of
the fact that the HF Hamiltonian contains two-
electron interactions. If higher-order electronic interac-
tions existed in the Hamiltonian, higher n-body
interactions would occur in the crystal energy —this is,
in contrast to the T-matrix method, in which interac-
tions of all orders always occur in the crystal energy.

Unfortunately, the correlation energy is not included
in this method. The status of correlation theory is such
that reasonable estimates of the correlation energy are
available only for the uniform electron gas. Xio satisfac-
tory method exists for determining the eRect of struc-
tures on the correlation energy. AVe will therefore
take the correlation energy into account by adding a
term to the HF energy that depends only on volume,
leaving open the question of how it varies with structure.

Kannier functions can be identified in terms of the
Hloch states by

sz
Ze ""'lk),

P yak all j)

The Wannier function
I j) is centered on the atom at R,.

and falls o8 exponentially at large distances from this
atom. "There is some lack of uniqueness in the definition
of Wannier functions in that they may be multiplied by
a phase factor periodic in k. However, this does not
aRect our present problem, since the phase factors
multiply to unity when (7) and (8) are substituted
into (2). The result of this substitution is

+i(F 2 F(j i)&ilHo—lj &+4 2 B.-"&ijlQInm& (»
t, j, TE, m

B„„'&=2F (n i)F(m —j) F(m— i—)F (n —j), (—10)

II. WANNIER REPRESENTATION OP
HARTREE-FOCK THEORY

where
We consider a monatomic one-electron metal and

write its energy as
g2

F.=E((F+-', Q' — +E,(V),
IR,—R, f

where EHF is the HF energy of the conduction electrons,
the double sum is the interaction energy of all the ion
cores at positions R;, and E,(V) is the correlation energy
which we assume depends only on the volume V. The
HF energy is given by

2
F(/) = Q haik

R(

X k

B„'i=2F (i j) F(j i)—=F—(i j)—,
—

the sum being over all occupied k states. Note that, from
(11),

Enr ——2 P(kIIIolk&+2 P (kk'IQlkk'&
k, k'

—E (kk'I Qlk'k&, (2)

F(0)=1,

F(f)=F(—f),

(12a)

(12b)

where

aild

k, k'

Q—="iI
ri- ro

I

Ifo=——(6'/2m) V'+ V(r) . (4)

V(r) is the potential of an electron in the field of all
ion cores, which can be written

and that Eq. (10) gives the following symmetry
relations:

(13)

A trivial rearrangement of the terms in Kq. (9) shows
how EH+ can explicitly be written as a sum of one-,
two-, three-, and four-body atomic interactions. To do
this, rewrite (9), using (4) and (5), as

V, (r) being the potential of an electron in the field of
the jth ion core.

The second and third terms in (2) contain the
Hartree and exchange matrix elements, respectively,
and all sums are over occupied k states The Ik) .are
the Bloch states that minimize EHF and are determined
by the HF equation

Ifolk&+22&k'IQlk'&I "&—2&k'IQlk)lk'&=oklk&, (6)

+-,' P B..'(ijIQInm& (14).
4, j, fc, m

Now collect terms of the type for which (i=j= n =m),(i' =n=m), (i4 jWn=m), and (i&j Wn&m), re-
spectively, thereby converting (14) to the form

Par —Q P.(()+P' f(. .(2)+ Q' P. . (o)

where &k is the energy required to remove an electron in
state k from the crystal. + 2' U*i.-(", (15)

st jl +I m
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where
A' .

U, &'&= —— &il &7oli)+(iI V;li)+ —(iilQlii),
2m'

(16)

be made more transparent by defining 8~ as

&"=—&.+ZF(j —')
& IQI j&

—l&'IQlil
I

(24)

~,;"'=——F(j—i)(il ~'I j)+F(j—i)(&il v'I j&
2tn

+&il v;I j&+&il v, Ii&)+', (B; '&iil Qljj&

+B"'&V IQlii&+&"'&V IQlio&)

+a, '(iilQlij), (17)

and rewriting the sum on the right of (22) as

Q (g;rli)=Q 8;oil+i)

Thus, (22) becomes

8~Ii&=P b,.It+i&,

(25)

(26)

U„„('=F(j—i)&il v„l j)+-.(a -"&iilQI j~&

+a,„'&(ijlQli~&+a„,'&1'q
I Ql ~i&

+B-"&ijlQ I «&+»."&ijlQl j~&

+~.&"&ijlQl ~j&) (»)

] BZ
b o

———Q ooe~'a'
N j

(27)

which has the same form as Koster's Eq. (16). The h, o

are given by

v... «&=-;a. "&ijlQI~~). (19) and are the coeKcients of the Fourier expansion of the
energy, i.e.,

The primes on the multiple sums in (15) indicate that
(oWj ), (i' Woo), and (i' Woo/ol), respectively

These equations show explicitly that, in addition to
volume-dependent and two-body forces, three-, and
four-body forces exist in a metal. Also, at least within
the HF approximation, there are no direct interactions
involving five or more atoms.

III. HARTREE-POCK BAND THEORY IN
THE W'ANNIER REPRESENTATION

To convert the HF equation to VVannier form, 6rst
substitute (7) and (8) into (6). The result is

(Aolj)+ 2 F(j—i)e'~'a"&ilQI j&In)
popo tl

—
o 2 F(~—i)e*' "&iIQlj&l~&

—P h.~-it Ri

as is readily seen from (27) and the orthogonality
relation

Q e'& '&' (=1Vi&o o
j

(29)

where

An alternative expression of the HF equation in the
Wannier representation is obtained by multiplying (20)
by e 'a'a( and summing over all occuPied lt states.
Using the definitions (10) and (11), this gives, after
some rearrangement of subscripts,

2 F(j o)&olj &+4 2 B—-'"&&&I QI o&o&l j&
go TL, sos

=2 l ' I j) (3o)

=., Z e~ "li&. (20)
OCC

X;,—=—Q ooe' '(
N e

(31)

Now multiply (20) by e '~'a' and sum on 1& over the Using the orthogonality relation (29) (31) gives
Brillouin zone (BZ), using the orthogonality relation

oo 1 P &&o.e-ih ~ R/ (32)BZ

Q e(o (R(—Rl&

The result is

&o li&+2 F(j—i) (&il Ql j& li&
—

o&il Q li& I j&)

(21)
so that —,'Xo; are the coeKcients of the Fourier expansion
of the energy. The relation between the X;; and the 8;;
can be found as follows: Multiply (22) by F(l oo), —
sum on /, and rearrange subscripts, to get

where
f BZ

g. p o eio ~ (Ri-R&& (23)
Comparison of (33) and (30) gives

=2 &(&li) ~ (22) P F(j i)8ol j&+4—2»' '"&oolQlol&l j
p) ss, tR

=Q F(n —i)h I j). (33)

Equation (22) is just a generalization of Koster's
equation" to the case of a HF Hamiltonian. This can 2 4~1 j&=Z F(~—i)hi. l j&. (34)
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Since the l j) are an orthogonal set, this gives From the deanition of the effective-mass tensor,

X;;=+F(n —i)$; . (35) 1 1 82eg

m p* A'Bk Bkp
(43)

a
= ——P R. R.e&ol8 ln),

m p* A' ~(~)
p=P F(n)8p„ (36)

From (31), we see that Xop is the average energy of the Eq (41) g' es

conduction electrons o, so that setting i= j=o in (35)
gives an expansion of the average energy in terms of
the ts'0, i.e.,

(44)

where R„(a=1, 2, 3) are the components of R .
Equation (44) shows explicitly how the effective massFrom 36, the average energy can be written in terms
increases with increasing localization of the Wannier

~ ~ ~ ~ ~

of the matrix elements of ~, since multiplying 26 on
functions, and also relates the anisotropy of the
effective mass to the crystal structure through the E„.

h)p ——hp) = &0 l8'l I&. (37)
IV. THEOREM FOR FULL BANDS

Because of the localized nature of the Wannier
functions, the matrix element with l=0 is expected to
be considerably larger than those with l/0, and b&&

decreases monotonically as / increases. It is instructive
to write (36) as

o=&OI&'IO&+ Z F(n)&OI&'ln&,
a(y-'0)

The theory thus far has been developed for a one-
electron metal. An interesting result is obtained if a
full band is considered. The HF energy in the Wannier
representation is still given by an equation similar to
(9), except that the structure factors are sums over the
full Brillouin zone. This is,

RH~= Z S(j—i)&il&pl j&

S(m —i)S(n —j)&ijl Qlnm), (45)

which displays the average energy as an integral
centered on one unit cell, plus a series of two-body +-,' Q 2S(n i)S(—m j)(ij—lQlnm)
terms that decrease as the distance from the central
atom increases.

Koster" has pointed out how the degree of localiza-
tion of the Wannier functions controls the bandwidths.
In our notation, this is evident from (28) and (37), ~h~~e the Sg) are structure facto~~ define
which enable us to write

op
——&0[8)'lo&+ g e—'~ a"&ol8 ln). (39)

2 Bz
Sg)— P ee) ~ R)

S (46)

f =QS(m n)—lm&—.

In the case of extreme localization, when &old~ l n) for Now consider the sum f„defined by
n/0 are negligible, ej,=~ for all k and the band is
infinitely narrow. In general, (39) gives, for the width
of the occupied portion of the band,

(47)

o„—oo= P(1——e- -)&old ln),
a(y-0)

(40) Using (46), this becomes

~here k~ is the wave-number vector at the Fermi
surface.

The effective-mass approximation in the Wannier
representation is obtained by expanding the exponential
in (39) to the second order in k. The result is

BZ

f =—Q Q e)p (a~ aa) lm)—
g m

(48)

But, using the relation between Bloch and Wannier
functions, this becomes

op= oo—~p p (k R )o&ol~~ln&,
a (y-'0)

(41)
BZ

g e )+'R" lk)=2ln), (49)

where the ground-state energy of the conduction band is so that we have

.,=&0[8&[0&+ Z &ol8~ln) (42) P S(m n)lm)=2—ln).
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In the deformed coordinates, we write the HF
equation as"

Putting this result in (45) gives

&»= 2K&iI&oli&+Z(2&ijlQI'j& &ijlQl ji&) (51)
A 1 t9

Okapi

+C.(g)e =~+., (53)
2n& gg 8& Bta

Thus, for full bands, three- and four-body forces do not
exist, the energy being a sum of one- and two-body where g & is the contravariant metric tensor for the
interactions, at least in the HF approximation. deformed coordinate system, related to the covariant

metric tensor g p by

V. ELECTRONIC STATES AND WANNIER
DESCRIPTION OF STRAINED CRYSTALS

C ~g~~=~ ~

g'=G'/g.

(54)

(55)
The theory developed thus far is applicable to

crystals that are homogeneously deformed, since all
that is necessary to define Bloch and Wannier functions
is translational periodicity. However, the strain does
not enter directly, and the theory is not valid for non-
homogeneous deformations.

In this section, we apply a method used by Gubanov"
for liquid systems to the case of a strained system. We
restrict ourselves to small strains so that linear elastic-
ity theory is applicable.

Gubanov" points out that all that is necessary to
apply the apparatus of Bloch theory is to find a coor-
dinate system in which the potential of an electron is
periodic. In fact, it is sufhcient to find a coordinate
system in which the electron-ion core potential is
periodic, since then Bloch functions can be defined that
produce a periodic self-consistent field potential in the
HF equation. Gubanov states that a deformed coor-
dinate system that conforms to the strain is such a
system. This is rigorously true for any ion core potential
if the strains are homogeneous. It is also true for
nonhomogeneous strains if the potential of an electron
is given by its interaction with the ion core in the unit
cell containing the electron, i.e., if the interaction of the
electron with ion cores in other unit cells is zero. If
these interactions are not zero, then the periodicity in
the deformed coordinate system is only approximate.
However, the approximation to periodicity is much
better in the deformed coordinate system than in an
undeformed system. We will thus develop the theory in
the deformed coordinates, taking the potential to be
periodic in these coordinates, with the understanding
that the results are approximate in the case of non-
homogeneous strains.

Consider a crystal in which the strain matrix is e p.
The deformed coordinates $ are rela. ted to the initial
Cartesian coordinates x by

ge&&=4&&+2&'a» & (57)

0'~ are the wave functions in the deformed coordinate
system, and C~ is the HF potential, taken as periodic
with respect to lattice translations in the deformed
system. The eigenfunctions are labeled by the vectors
q, which are wave-number vectors in the deformed
wave-vector space which is reciprocal to the deformed
coordinate system (.

The lattice points in the undeformed crystal are
given by

R„o=n;ao&;&, (n; integers) (5g)

where a'(, ) are the undeformed basis vectors. In the
deformed crystal, the lattice vectors are given by a
form similar to (58), provided they are written in the
deformed coordinate system:

R„=n;a(;) . (59)

The deformed basis vectors a(;) are related to those in
the initial undeformed coordinates by

Q(i)a a(;) ~+cap~ (i) ~
. 0 1 0 . &8 (60)

Since, in the deformed coordinate system, the lattice
vectors are given by (59), a reciprocal lattice is readily
defined by the basis vectors 1("given by

a(;) b(') =2xb-' (61)

In these equations 8 ~ is the Kronecker 8, g is the
determinant

(56)

and t" & is the cofactor of the element g ~ in the deter-
minant g. The metric tensor is given by the strain as

dE =(3x +e p($xt', (52)
b"= (2&r/&&)a&, &Xa&», (i, j, k in cyclic order) (62)

where e is the volume of the unit cell in the deformed
where we adopt the usual convention that repeated crystal and the reciprocal-lattice vectors in the deformed
indices are summed. system are

'6 A. I. Guhanov, Quantum J'lectr on Theory of .4 mor phous
Cond'(clors (Consultants Bureau Enterprises, Inc. , Yew York,
1965), Chaps, IV anti P.

K'= l'b "&, (l' integers) . (63)

"See, for example, I. S. SokolnihofF, Tensor Analysis (John
9'iley R Sons, Inc. , New York, 1951), Chaps. 2 and 6.



%ANNI ER REP RESENTATION 0 F E NERGY I N M ETALS 62i

The q vectors are obtained from the periodic boundary and the total band energy of the electrons is
conditions applied to the deformed coordinate system:

V

q= h'b &'&, (h' rational fractions) . (64) Az'= 6qdq ~

8~'
(7o)

It is clear that in the deformed coordinate system a
method for the classification of wave functions and
energy levels in terms of wave vectors can be con-
structed that is formally identical to the k-vector scheme
for undeformed crystals. Also, this method readily
gives the e6'ect of strain on the wave vector, as is
readily seen by expressing the b"' and then q in the
undeformed coordinate system. To do this, first sub-
stitute (60) into (62) to get, for the &kth component,

pp (r) pk (e e) ~ (71)

To obtain a density of states for the deformed energies
in the undeformed coordinate system, we recall that

where e„ the energy of the qth state referred to the
deformed coordinates, is the solution of Eq. (53).
Referred to the initial coordinates, the energy 6q

becomes a function of k and position through Eq. (69),
so that we get

b&" = (vp/v) (1+eee+e»)bp&'& ee«bp—&'&e

—e, bp&"" (no sums). (65)
V= (1+e)d Vp, (72)

In arriving at this equation, terms quadratic in the
strains were neglected, and use was made of the relation
between the reciprocal-lattice basis vectors bp(" and
the real basis vectors a . In (65) the indices &k, p, and y
are in cyclic order, there are no sums on repeated
indices, and vp is the unit-cell volume of the undeformed
crystal. To first order in the strains,

so that a local density of states can be defined by

1+e
dkd Vp.

8~'
(73)

Thus, the total band energy can be written in the
laboratory frame as

vp/v=1/(1+e) =1—e,

where e is the dilatation given by

(66)
pk(e &&)(1+e)dkdVp. (74)

Combining (66) and (65) gives the simple form

b(i)a b (s)a e ab (i)P
7 (67)

where the repeated indices now indicate summation.
Equation (67) shows how the reciprocal lattice deforms.
Substitution into (64) gives

Since an electron sees an identical environment at
corresponding points in the deformed lattice, the
kinetic as well as the potential energy are invariant with
respect to lattice translations in the deformed coordinate
system. Thus, the entire apparatus of Bloch and
Wannier theory can be adopted in the deformed coor-
dinate system. In particular, Bloch and Wannier
functions can be written as

OT

q«=h'(b "'«—e «b &"e) (68) +,(4)—=
I q) =e*"U,(5),

~a Pa e age (69)

where k are the components of the wave vector k in
the undeformed crystal. Equation (69) provides a
relation between the q and k energy descriptions. In
the deformed coordinate system, the Brillouin zone is
invariant throughout the crystal, and the q vectors, and
therefore the energy, are independent of position.
When referred to the initial undeformed coordinate
system (the laboratory frame), however, the Brillouin-
zone size and shape vary throughout the crystal
according to the variation of the basis vectors given by
(67). The wave vectors vary according to (69), and
therefore the energy is a function of position.

In the deformed coordinate system, the density of
states is

a((—R„)—= I n)t
sz

R«I q)
X a

(76)

2 e""'Ii)t.x ~

(77)

The results of this section show that there is no
difficulty in defining Bloch and Wannier functions in
elastically deformed systems, provided that an approp-
riate coordinate system is chosen. Thus, just as for the
perfect crystal, HF theory can be developed in the
Wannier representation and one-, two-, three-, and
four-body forces can be defined. This theory gives
results formally analogous to those for the undeformed
crystal, except that all matrix elements are integrals
in the deformed space. However, these can readily be
translated to the undeformed coordinate system using
the Jacobian of the transformation defined by (52).
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Thus, for matrix elements of one- and two-electron
operators 0& and 02, respectively, we can write

a"((~—R;)O~a((~ —R;)d(~

a~(r~—R0le e)O~a(r~ —R;0le e)J~dr, (78)

a*(g,—R;)a*(g —R;)02a((,—R.)a(g —R„)d g&d g

a*(rq —R0le e)a*(r2—RPle e)02a(r~ —R„'le e)

Equations (78) and (79) show how the Wannier theory
can be used to construct localized atomic interactions
for strained crystals. Although the theory was developed
for small strains, there is no essential difBculty in
extending it to 6nite deformations. The resulting equa-
tions would, of course, be considerably more complicated
than those given here.

VI. SUMMARY AND CONCLUSIONS

The Wannier functions provide a convenient and
conceptually satisfying basis for the description of the
cohesive properties of metals. By their use, an explicit
reciprocal connection is readily established between the
band and the bond approach to metallic cohesion. An
ideal bond description would assign invariant pair poten-
tials to atoms from which all cohesive properties could
be computed. The Wannier formalism shows to what
extent this can be done. The results show that pair
potentials can indeed be constructed for metals, but
that they do not comprise the entire energy. In addition
to the expected volume-dependent term, there are
terms that depend on the simultaneous interactions of
three and four atoms. From the localized nature of the
Wannier functions, it is clear that the three- and four-
body terms must be smaller than the pairwise terms,
so that to a 6rst approximation the energy of a metal
can be taken to be a sum of a volume-dependent term
and two-body interactions. An estimate of the accuracy

)&a(r2—R 'le e)JqJ2dr~drm, (79)

where the operators on the left-hand sides of these
equations are expressed in the deformed coordinate
system, whereas on the right-hand sides they are written
in the undeformed coordinates. The Jacobians J~ and
J2 are given by the determinant

of this approximation will depend on the magnitude of
the three- and four-body matrix elements relative to
those for the pair interactions.

A valuable feature of the formalism is that it depends
explicitly on structure. In Eqs. (14)-(19), this depend-
ence is manifest in the structure factors F and B. In
addition, of course, there is a more subtle structural
dependence in that the Wannier functions are solutions
of the structure-dependent equation (22). Clearly,
the formalism is well suited to investigate the rela-
tions among wave functions, structure, and cohesive
properties.

Several results first obtained by Koster" for a one-
electron Hamiltonian that was independent of structure
were generalized to the HF approximation. Koster's
differential equation for the Wannier functions was
shown to hold in the HF case, if an appropriate HF
operator in the Wannier representation is defined. Also,
Koster's results for the relation between localization
and bandwidth was generalized to the HF case, and
the dependence of effective mass on localization and
structure was obtained explicitly.

A theorem was derived which shows that in the HF
approximation, full bands give rise only to volume-
dependent terms and pairwise interactions. Thus, for
example, the HF approximation when applied to rare
gases justifies the use of two-body potentials, since the
volume-dependent and atom-atom correlation energies
are small in these systems.

One of the important applications of empirical inter-
atomic force laws in metals has been in the theory of
crystal defects, so that it is of interest to investigate
the applicability of the localized formalism to non-
periodic systems. This was done for the case of elastic-
ally deformed crystals using a procedure of Gubanov's"
in which the wave equation is referred to a deformed
coordinate system that conforms to the elastic strain.
It was thereby shown that for this case, Bloch and
Wannier functions can indeed be defined and the
entire apparatus of Bloch and Wannier theory can be
applied to strained crystals. Transforming the coor-
dinates back to a laboratory frame of reference intro-
duces the strains directly into the equations.

The major unsolved question involves, as usual, the
correlation energy. The localized formalism presented
here depends on the one-electron approximation, and
the theory of the correlation energy is not sufBciently
advanced to ascertain its relation to crystal structure.
It was assumed in the present paper that the correlation
energy depends only on volume. The validity of this
assumption must await detailed calculations using wave
functions for real metals and a comparison of the results
with experiment.


