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a mechanism to doniinat. e at all temperatures. Hot. h the
dislocation nsodel and the "vacancy" niodel of Peart
and Askill can account for a small correlation factor.
However, the authors are somewhat more disposed
toward the dislocation model, particularly since it can
explain the analogous thern~omi~«l ation and elt.ct.io-
migration observed in y-I'e. '" Low values for. Do2 and
Q2 also find an easy explanation in the dislocation model.
The weakness of this hypothesis is the need to postulate
an extensive dislocation network formed during the
phase transformation and unexpectedly stable under

annealing treatnient. Until there is direct experiment, ;tl

observation to the contrary, we are inclined to hold t.&~

this explanation, although the single vacancy, divacancy
model" is also still a possibility.
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An expression for the pressure of a Hartree-I'ock-Slater solid is derived. It is shown that for this expression
only those forms of the local exchange potential that are rigorously derived from the variational principle
will give meaningful results in pressure calculations.

I. INTRODUCTION
~ 'N a large number of the calculations made for the
~ - electronic energy levels of atoms and solids, a modi-
fied form of the Hartree-Fock equations is used. The
modification is generally that of replacing the nonlocal
Hartree-Fock exchange terms, which are di6icult to
calculate, by a local exchange potential V,„(r), which
is proportional to the -', power of the local electron
density p(r), or V,„(r)= C[p(r)]' t.3In the Kohn-Sham
approximation, ' C is (3/vr)'~', and in the Slater approxi-
mation' it is larger by —,'.

The present paper treats the problem of calculating
pressure for a system described by the modified Hartree-
Fock equations and, in particular, considers just what
bearing the derivation of the one-electron exchange
term has on the rigorously correct formulation of the
pressure.

It will be shown that the pressure of a solid may be
determined by the modified Hartree-Fock method, using
a form of the virial theorem in which PV=3T+3L.'.
The terms P, V, T, and U are, respectively, pressure,
volume, average kinetic, and potential energy for the
solid. For the case of free atoms, 2T= —V.

It will also be shown that this theorem can give mean-
ingful results only when applied to those cases in which
the one-electron eigenvalue equations have been de-
rived from the expression for the total energy, using the
variational principle rigorously. This is so in the case of
the Kohn-Sham approximation, and consequently re-
sults of calculations using this approximation obey the
virial theorem. In the case of Slater exchange, an ap-
proximation is made in the application of the variational
principle, and as a result the thermodynamic states
obtained are not the true equilibrium states for the
modified Hartree-Fock system, so that calculations
based on the Slater approximation do not obey the
virial theorem.

II. CALCULATION OF ENERGY AND
PRESSURE

Consider a system of a very large volume V, con-
taining E electrons. The total energy of this system for
the modified form of the Hartree-Fock equations may
be written as

r f;*(r~)p;(r~)p, (ru)p(r~)drjdr~ I 3 3~') '"
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*Work performed under the auspices of the U. S. Atomic Energy Commission.' W. Kohn and I.. J. Sham, Phys. Rev. 140, A1133 (1965); R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).' J. C. Slater, Phys. Rev. 81, 385 (1951).
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0 (r)=Z
t 1/2

(2)

where K is a vector in the reciprocal-lattice space of the
unit crystallographic cell and k; is the wave vector of
the ith electron satisfying the periodic boundary con-

The first tern& is the kinetic enerrry of al& the electrons.
'the second term is the ('oulonib repulsion between all
electrons. The third and fourth terms are the free-
electron approximation to the electron exchange inter-
action for spin-up and spin-down states, with the sums
over only the sanie spins. The fifth term is the inter-
action between all electrons and nuclei. The last term
is the interaction between all nuclei. The nuclei are
assumed to be stationary. The wave functions |f)(r),

,P)v(r) for the A electrons are the usual one-particle
functions satisfying the Bloch conditions, and may be
written in the form

ei(K+K, ). r

ditions. In order to calculate the pressure fron1 the
energy, it will be convenient to define a reduced co-
ordinate system where

~ = r/V"" and K+4,= g, .

Because g; is expressed in terms of the reciprocal lattice,
it leads to a dimensionless quantity in (g,"r), which is
proportional to l~!. Then the one-particle wave func-
tions may be written as

P;(r) =y, (~,A)/ V'(',
where

y.,(~,A) =p l „,e*o' .

The term A represents the set of A„, and @(~,A) repre-
sents the set of @,(~,A). The expression for the total
energy in terms of the reduced coordinate system then
becomes

E=P (,t*—(~„A), ,'V'(t) ,(~—()A)d.~(+
V2/3 s g 0 0

—p p z.
' p,*(~(,A)(t;(~),A)d~( ZrxZp

+o Z 2 — —. (5)
V'('f~. —., f

- s V'&'f. —., f

We will now review the application of the variational
principle to the total energy (5) to show its relationship
to the proper calculation of pressure of an equilibrium
solid.

To determine the equilibrium state for a given
volume, the variational principle is applied along with
the constraint that the number of electrons in each state
j'p;P;dr remains fixed. The term —p, is the Lagrange
multiplier for each state. Then

which leads to the set of one-electron Schrodinger equa-
tions which must be solved self-consistently.

1 V' ' (t,*(~o)y,(~o)d~o—+ZV"' 2 ' o V I(~(,—o, f

2 5~) '"LZ'(» 4*(~()4*(~()]'"

4) V1/3

'f BEq 'fB@
o &Be,'i vo, ~ o &By i vo,

and
1

—Z ( 'B 4'*4*d~=O,
0

(7)

where bp, is an infinitesimal variation in the wave func-
tion about the equilibrium configuration at a fixed
volume, and (BE/B@,)v, o,. represents the partial de-
rivative of the energy with respect to the ith-electron
wave function holding the volume and the remaining
wave functions Q, constant.

Combining (6) and (7), we may write

—~' 4*(»)=o (9)

The exchange term is for electrons with the same
spin directions as @;(~,A) and has been derived pre-
viously. ' p; is seen to be the one-electron eigenvalue.

In applying the variational principle to the total
energy in (5), to obtain (9) the partial derivative of the
total local exchange energy V,„with respect to the
wave function is taken. If instead of taking the partial
derivative, the averaged exchange energy is taken, then

2V, (t;(r)

Z *(() 4 '*(r)4 *(r)

BE —p,p; 8$;*+c.c.=O,
which results in a set of one-electron equations which
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are identical to (9) except that the exchange term is
larger by +. This is the Slater approximation to ex-
change. This procedure does not satisfy the variational
principle as has been pointed out by others. "What
has been done by taking the averaged exchange is
equivalent to the case in thermodynamics in which one
minimized the molar free energy rather than the partial
molar free energy. This leads to the calculation of wave
functions and eigenvalues which are not the lowest
energy states of the original energy expression (5).
Consequently, these wave functions and eigenvalues
will result in energies or pressures that are not the
correct equilibrium values for this energy expression.

In order to derive an expression for the pressure let
us consider a system at T=O'K which undergoes an
infinitesimal change in volume, dV. In Eq. (5), the
energy is a function only of the volume V and p(~,A).
We may then write the change in energy as

t'8 BE
dE=~

~

dV+P
(8v) q c 0 Bus~& v, yg

1 8
+Q

~
dp;d~, (10)

e 84i~ v, gg

where (BE/BV)z is the partial derivative holding all
qh's constant, and dP; represents a change in the wave
function in going reversibly between two equilibrium
states separated by the infinitesimal volume dV. It is
not to be confused with Q;. However, (BE/8@;)v,~,is.
the same quantity in both (8) and (6).

Since

(BE/84;*)v, e; u.y'= o, —

then substituting in (10),

8 1 1

dE= —
~
dV+P I., y,'~dv+g p;

aV) p 0

(11)
(8

dE=
I I

d V++ p,d P,*p,dr,
EBVi,

where dJ'(p,*P,)dr=de; is the change in the number
of electrons in the zth state for a change in volume of
d V, and is not to be confused with bg,+;) of Eq. (7).

Following conventional notation, ' we de6ne the pres-
sure P as

I'= —(BE/BV)p.

Then (11)becomes

dE= —pd V++ p,dn,

' R. D. Cowan ef aI., Phys. Rev. 144, 5 (1966}.
4H. 3. CaHen, Thermodynamics (John Wiley & Sons, Inc. ,

New York, 1960}.

This is simply the general condition of equilibrium
for chemical reactions in homogeneous systems, and the
promotion of an electron from one eigenstate to another
is formally equivalent to the conversion of one chemical
species to another.

We may write (5) in the following familiar concise
notation:

E=T+U,
U=U.,+U +U, +U

Then by straightforward differentiation of (5),

V(BE/BV), =,—*r+gU (12)

PV = 3T+3U. (13)

This formalism may be applied to solids or liquids.
In the case of the latter, each crystallographic unit cell
can be considered to be made up of a very large number
of disordered atoms, i.e., liquid. Expressions similar to
(12) have been derived by others, but to the author' s
knowledge, not explicitly for the present case.

If (13) were applied to cases in which the wave func-
tions were not correctly minimized by the variational
principle, then spurious thermodynamic properties will
be calculated, as will be demonstrated in Sec. III, by
making calculations for the free atom.

III. APPLICATION TO ATOMS

The formalism of Sec. II may be extended to atoms
by considering the case in which the lattice parameter
becomes large but not necessarily in&vite, and all elec-
tions are localized on isolated atoms and so do not inter-
act with neighbors. The large lattice parameter allows
the solution of the Schrodinger equation to be extended
far enough away from the nucleus so as to go to zero
at large distances and satisfy the atomic boundary con-
dition of the wave function. In this limit PV —+ 0 and
we obtain the well-known result 2T= —U. This result
may be derived rigorously for an atom' using the varia-

~ V. Fock, Z. Physik 63, 1930 (1930); W. Kauzmann, Qeaettcm
Chemistry (Academic Press Inc. , New York, 1957}.

This expression is formally identical to the change in
energy during a reversible process of a system of E
chemical species. It also shows that we may consider
each electron in each eigenstate to be equivalent to a
distinct chemical species, and that their one-electron
eigenvalues are then equal to their chemical potentials.

For the case of electrons, de; can only be 0 or &1,
and will depend on the occupation number of the state.
At O'K dn;=0 and dE= —PdV, unless an occupied
energy state crosses an unoccupied state, in which case
the equilibrium condition to be satis6ed at constant
volume is

N

Q p,dn, =0
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Tmxx I. Results of atomic calculations for E=$T+$U.'

Kohn-Sham

—480.694—0.309X10 '

—f049.035—0.397X10 '

—5493.729—0.1251+10 '

—24 447.306—0.293X10 '

Slater

Aluminum
—480.458

5.638

Argon
—1048.714

9.472

Krypton
—5493.039

29.952

Xenon
—24 446.355

57.447

Slater'

—497.372—0.214X10 '

—1077.130—0.992XfO '

—5582.900—0.192X10 '

—14 618.707—0.403X10 '

a A11 units are in Ry.

tional principle, in which case it can be shown that
2T= —U only if the wave function is minimized for
the energy expression.

Using the programs of Herman and Skillman, ' atomic
calculations were made for the total energy E, and
sT+$U for the atom using the two forms of the ex-
change. These results are shown in the first two columns
of Table I. In these calculations, we have not used the
tail correction for the atomic potential proposed by
Herman and Skillman. It is seen for the isolated atom
that to within the order of numerical accuracy the cal-
culations made with Kohn-Sham exchange obey the
virial theorem and those made with the Slater exchange
do not because the wave functions are not correctly
mlnlmlzed.

Inasmuch as the Slater exchange is so widely used, it
is worthwhile to ask the question: For what total energy
expression are the wave functions generated by the one-
eleetron Slater exchange equations the correctly mini-
mized ones' This can be shown for the expression of the
total energy in which the exchange energy has been in-
creased by $. Calculating the pressure as before, the
results are shown in the last column of Table I labeled

Slater'. In this model, the exchange term is rigorously
derivable from the total energy by the variational
method and obeys the virial theorem, but the total
energy is now much lower than even the Hartree-Fock
energies. This is, of course, due to the fact that the
Coulomb interaction in the exchange integral is now &

larger than the same term in Hartree-Fock calculations.

IV. SUMMARY

The chief purpose of this paper has been to call at-
tention to the need for internal self-consistency in the
calculation of those thermodynamic properties of the
solid such as pressure which depend extremely sen-
sitively upon the balance of energies. As an example, a
PV of 0.2 Ry in solid aluminum at normal density
results in a pressure of approximately 230 kbar. Con-
sequently, it is crucial that the correct equilibrium
state be calculated by the proper application of the
variational principle to the total energy expression when
deriving the one-electron equations.

It is of interest to note that a similar problem arises
in molecular quantum mechanics' wherein calculations
of molecular energy are made as a function of inter-
nuclear separation, usually using approximate wave
functions. In order not to obtain spurious results for
bond-force constants, it is necessary to force the wave
functions to obey the virial theorem by introducing
a variational parameter and requiring the wave func-
tions to minimize the total energy expression. This func-
tion will generally not be the correct wave function for
for the Hamiltonian which is the Hartree-Fock function,
but it will minimize the energy as is required by the
variational principle.
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