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Anomaly-Free Variational Method for Inelastic Scattering
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Analysis, given in an earlier paper, of standard variational methods for elastic scattering
is extended to the case of several open channels. As in the case of elastic scattering, and

contrary to widespread expectation, the spurious singularities inherent in the Kohn formalism
are shown, for the general multichannel case, not to arise from the singularities of the linear
inhomogeneous system of equations common to standard variational methods. The Kohn for-
mula for elements of the R or E matrix, and its analog for the R matrix, are shown to vary
smoothly, without poles, as the energy parameter goes through eigenvalues of this system of
equations. The spurious singularities arise from isolated zeroes of determinants that occur
in the denominator of the Kohn formula and of its analog (the inverse Kohn formula) for R
The singularities in these formulas do not in general coincide, and a criterion is proposed for
alternative use of these formulas, resulting in a procedure free of spurious singularities.
This analysis is illustrated by calculations on a soluble two-channel-model problem. An

incidental result of the present formalism is a proof that the approximate R matrix given by

the Kohn formula is symmetric and real if the basis functions used are real.

I. INTRODUCTION

Several standard variational methods in elastic-
scattering theory, together with a new method pro-
posed by Harris, ' have recently been analyzed,
especially with regard to their behavior near sin-
gularities of the inhomogeneous system of linear
equations common to the various methods. ' This
analysis reached the somewhat unexpected conclu-
sion that these singularities exactly cancel out of
the Kohn formula' for the tangent of the phase
shift, which can be expressed as a ratio of two
functions with coincident simple poles at singular
values of the energy E (or wave vector k). The
spurious singularities inherent in the Kohn formula,
discussed most fully by Schwartz, 4 then must arise
from some other aspect of the formalism. It was
shown' that the Kohn formula can be expressed as
a ratio whose denominator, denoted by M» in the
single-channel problem, has isolated zeroes at
values of F. that are artifacts of the variational
method, since they depend on the particular choice
of basis functions used for linear expansion of a
trial wave function. These zeroes are the sources
of the spurious singularities in the Kohn formula.
The corresponding formula for the cotangent of the
phase shift, due to Hulthen and Rubinow, which
will be called the inverse Kohn formula here, can
also be expressed as a ratio whose denominator,
denoted by Mpp in the single-channel problem, has
isolated zeroes that depend on the choice of basis
function set. These zeroes cause spurious singu-
larities in the inverse Kohn formula. Since the
zeroes of Mpp and M» do not, in general, coincide,
the ratio IMQ, /M» I can be used as a criterion to
choose either the Kohn or inverse Kohn formula,
thus giving an anomaly-free variational procedure.

In the present paper these results are generalized
to the theory of inelastic scattering. The principal
result is the formulation of a variational procedure
that avoids all spurious singularities, works with
real numbers only, and obtains the reactance ma-
trix R or its inverse R ' by use of a suitable gen-
eralization of the Kohn or inverse Kohn methods,
respectively. ' The inhomogeneous linear system
of large dime@sion common to variational methods
is solved only once for each energy in the present
method, in contrast to iterated solution of such
equations inherent in some earlier methods.

The proposed method is applied to a soluble mod-
el problem, and results are compared with earlier
calculations on this model reported by Huck, ' who
used methods proposed by Moiseiwitsch' and by
Rubinow. ' The present results indicate that the
method proposed here converges rapidly, is free
of spurious singularities, and compares favorably
in terms of computational effort with earlier meth-
ods.

It is intended to apply this method to electron-
atom scattering, using a Bethe-Goldstone formal-
ism proposed earlier to deal with the many-particle
aspect of such calculations. '

II. VARIATIONAL FORMALISM

Consider the system of equations

Q (H —E5 )g =0,
pe pv

where indices P and q represent separate open
channels and run from 1 to N, the number of chan-
nels. The Hamiltonian Hp& is a matrix of operators
and gp is a vector whose components are wave func-
tions. For a spherically symmetric system, it is
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convenient to make a partial-wave expansion, and

to associate a wave number kp and angular mo-
mentum l p with each channel index p. An example
leading to equations of this form occurs in electron-
atom scattering, where the scattering atom has
several bound states with energy Ep, less than E.
Each such bound state defines at least one chan-
nel. If the state is not spherically symmetric,
there might be several channels with different l
values but the same value of k. In Hartree atomic
units

S = (1+ iR)/(1 —iR),

T = —2R/(1 —iR).

( 1)

(6)

dimensions np of the normalizable basis function
sets will be increased until the coefficients e are
seen to converge to a desired accuracy. In order
to avoid the use of complex numbers, the reactance
matrix R' (or K in another common usage), which
is real and symmetric in the channel indices, can
be computed directly. The scattering and transi-
tion matrices are given, respectively, by'

~k =E —E (2) The partial cross section for a transition from
channel p to channel q is, in atomic units,

p Opp lp p'
where S -sin(k r ——,'f z),

p p 'p'
C -cos(k r ——,'f m).

p p 'p'
(4)

In general, the coefficients & will be complex.
The form of Sp and Cp in the region of small r is
arbitrary, except that both functions should vanish
as r l+ 1; the exact form to be chosen is a matter
of computational convenience. Given specific
forms for these functions, the function gp can be
approximated by the linear expansion

where E& is the energy of the bound state associ-
ated with. channel p for the scattered electron.
Equations (1) are obtained by taking matrix ele-
ments of the many-electron Hamiltonian between
the various bound-state wave functions of the scat-
tering atom, and by expanding the wave function of
the scattered electron in partial waves. Alterna-
tively, the functions gp can be taken to be many-
particle functions defined by their asymptotic be-
havior as antisymmetrized products of a bound-
state eigenfunction and a one-electron continuum
function appropriate to parameters kp and lp.

If the channel wave functions gp are considered
as one-electron functions, the partial-wave de-
composition leads to equations of the form con-
sidered here for the separate radial functions. It
is convenient to multiply each wave function by r,
so that each gp vanishes at r=o, and can be chosen
to have the asymptotic form

q =(~/k ')ir
Pq P Pq

(7
Q 5

& q l,
&

~ ~ o &N&
Oq qo' (1O)

for each 0'= 1, .. . , N, then the computed values of
alq~ will be denoted by

0'=0
oq lq

The elements of the R matrix are defined in terms
of these coefficients to be'

R =(k /k )'~'y
Pq q P Pq

(12)

An alternative set of definitions leads directly
to the matrix R ', which must also be real and
symmetric. If the coefficients are required to
satisfy,

(ls)lq qa'

for each o'=1, . ~ . , N, then the computed values of
will be denoted by

0
I3 =n

(rq Oq
'

The elements of R ' are given by

(14)

= (4v/k ')1[R/(1 —iR)]
p Pq

If the coefficients of one of N degenerate solutions
Po of Eqs. (1) at given E are chosen to satisfy the
condition,

p p Opp lp p' (5) R '= (k /k )'+P
Pq q P Pq'

"p ppwhere P = 2 6 c
a=1

The functions gaP are normalizable basis functions
chosen from a countable set that becomes complete
(for finite r) as np is increased. Then p is also
normalizable and does not affect the asymptotic
behavior of gp.

Scattering cross sections depend only on the rel-
ative values of the coefficients n. In practice the

The coefficients in Eq. (6) are determined by
the condition that Eqs. (1) should have no compo-
nents in the Hilbert spaces spanned by the basis
functions gaP. This leads to the system of linear
equations of dimension Qnp, for p = 1, . . . , Ã and
a ly ~ ~ ~

p np)

s qb
ab b oq as 1q aC

(16)
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where M =(t7 IH —E5 I'qb ),Pq P
ab a Pq Pq b

Pq=(g IH —E5 IS },aS a pq pq q
'

M = (ri IH —E5 IC ).
aC a pq pq q

'

(17)

(16)

(19}

Equations (21) imply, for p, q= 1, . .. , N and
a=1 .. ~ n-,7

Q ('6 IH -E5 lg }=0,s a ps ps Oq

Q ('g IH —E5 lg )=0.s a ps ps 1q

(24)

The computations for an N-channel problem can
be greatly simplified, following the procedure used
by Schwartz for the single-channel problem, 4 by
observing that the coefficients cbq obtained by
solving Eqs. (16) depend linearly on the coefficients
o. In particular,

The variational methods to be considered here
can be described in terms of the matrix elements

r s

s sq Sq
b q Oq bS lqbC

where, for p= 1, ... , N and a = 1, . .. , np,

Ps sq Pq
a

(20)
=Q(S IH —E5 lg ),

p ps ps Oq

s

=Q(S IH —E5 lg ),
p ps ps 1qs

(25)

vr
ab bC aCs b

Solution of these equations reduces to successive
solution of 2N inhomogeneous linear systems of
dimension Qnp with a common homogeneous ma-
trix MsbPq, for each of the 2N inhomogeneous vec-
tors —MoSPq and —MnCPq. The solution of these
equations, of large dimensionality, is a common
starting point for all variational methods of de-
termining the coefficients o.'. Equations (20) and
(21) imply that Eqs. (16) are satisfied identically
for any arbitrary values of these coefficients.
Since Eqs. (21)do not involve the o. 's, they must
be solved only once for a given value of E, regard-
less of the specific method used subsequently to
determine the e's. Most of the computational
effort in any practical calculation occurs in the
solution of Eqs. (21).

Through Eqs. (21), each independent asymptotic
function, Sq or Cq, picks up a normalizable com-
plement denoted by (t)Sq or QCq, with components

or PCqs in each of the channels. This leads
to a set of functions corresponding to particular
solutions of the linear system of Eq. (21), with
components in channel s given by

s

=Q(C IH —E5 lg ),
s p ps ps Oq

r s

=Q(C IH —E5 lg ).
P PS PS Iq

The last term in each of these equations follows
from Eqs. (24}, since the normalizable part QSp"
or PCpr of each of the functions $0p or $1p is a
linear combination of the basis functions ga, and,
by Eqs. (24), does not contribute to the matrix
elements defined by Eqs. (25). In terms of the ma-
trix elements and coefficients defined by Eqs. (17),
(18), (19), and (21) above,

Pq=M Pq+ggM P'c
00 SS Sa aS ™SSr a

Pr( —1} rs sq
Sa ab bSrs ab

or

s s +SO
Oq Sq q qs'

s s +C 5
1q Cq q qs' s=1, ~ ~ ~,E,

s s sqwhere 4'Sq =~bqb cbS

s ~ s sq
and (t'C ~b~b cbC, s= 1, ~ ~ ~,+.

q

(22)

(23)

01 SC Sa aC SCr a

rs ab

M pq=M pq+QQM pr rq pq
10 CS Ca caS MCSr a

Z ZM (M ) MCa ab bSrs ab
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M =&VI +Q QM c =i&Pq Pq pr rq pq
11 CC Ca aC CCr a

P(M )Ca ab bCrs ab

( . ) or ( . },
2

'

where i, j= 0, 1. The exceptional case is

pp ~ pp M pp ~ pp
01 10 ™SC CS P

'

p 1
~

o 0 0 (27)

Because the operator 0 is Hermitian with respect
to normalizable functions, the matrix elements de-
fined by Eqs. (26) are real and, except for M, PP
and M„pp, symmetric in the index pairs

The matrix elements Mf~p&, defined by Eqs. (25),
above, are real if the basis functions gaP are
chosen to be real. While each of the integrals I~/
would vanish for an exact solution g~ of Eq. (1),
setting all of these integrals equal to zero would
give 2N homogeneous equations to determine the
2N unknown coefficients n in the variational trial
function gv. In general, for a finite set of basis
functions gap, these equations will be inconsistent.
The various variational methods that can be applied
to this problem represent different procedures for
combining these equations to reduce their number
and obtain a consistent set.

From Eqs. (25), (29), and (31), the variational
functional can be expressed in the form

= Q Qa. M . .~~n.
ip ij jqij pq

if the functions Sp and Cp satisfy Eqs. (4). This
result follows upon integrating the kinetic-energy
integral by parts and evaluating the resulting sur-
face integral. Equation (21) can also be written
in the form

M. . =M, . +2k 5 (5. 5. —5. 5. ),ij ji '
P Pq i0j1 i1 j0'

=ZZa.
sp zv

z p

Alternatively, from Eq. (28),

=Z Za. '
Pg '&. —,'k 5. .

ip ji p pqij pq

(33)

ij=0, 1; P, q=1, ... , N. (26)

Up to this point in the analysis the coefficients
nfp(i= 0, 1; p= 1, .. . , N) of Eq. (5}are as yet un-
determined, although the coefficients cap defined
by Eq. (6) are determined as linear functions of
the a's by Eqs. (20) and (21). For a variational
calculation this implies a trial function gv with
component in channel s given by

x(5. 5., —5.,5. )]n. '
i0 jl i1 jO jq

q*=Q K[I. + —,'k

x(5. a —5. a )]n.j1 Oq jO 1q jq
(34)

From these equations, if the coefficients &~ and
nv are independent,

where the functions g s are defined by Eqs. (22}.
Consider the variational functional

I =(P IH —Elf )
and

aI
vv p

iv
BQ

ip

=Z (( IH -E5 ly ).rs ar rs rs vs
' (30)

aI
0'v q+ O. Q gQ

=I +~k (5. .n0 —5.0al ).
v jcr q j1 Oq jO 1q

(36)

I. =Q (P. IH —E5 Iy )iv rs ip rs rs vs (31)

would vanish for each value of i = 0, 1 and
p=1, ~. .. ¹ In terms of the matrix elements de-
fined previously,

I P=QQM. .~qa, '. .
Jqj q

(32)

If gv were an exact solution of the Schrodinger
equation, Eq. (1), then Io„would vanish for arbi-
trary g. This condition, for IVV, is required as
a constraint on gv in the Hulthdn variational meth-
od. " If Eq. (1) were satisfied, the integrals

The first-order variation of I~v is given in gen-
eral by

=Q+5a. ' I. ~+++I ~ 5n. "
Q'v . gp gv . JG gqi p

q Oq 1q 1q Oq
(3V)

For exact solutions g~ and gv, since all of the
integrals IivP or I&~q vanish, this reduces to

5I =Q-,'k (n 5n —n 5n }. (38)
ov '

q Oq 1q 1q Oq
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III. THE KOHN AND INVERSE KOHN VARIATIONAL
METHODS

Equation (37) for the first variation of the varia-
tional functional simplifies considerably if the R
matrix is computed directly, using Eqs. (10), (11),
and (12). All coefficients o.'are real. Because
the values of o.opo or o'oqv are fixed (0 or 1), their
variations vanish, and Eq. (37) reduces to

Then Eq. (44), the Kohn formula, reduces to

—(2/k )I (r )
(o) q (o) (48)

vq vq q Ov vq

= y —(2/k )(M ++M y ).
vq q 00 01 vp

p
(47)

5I =+I 5n ++I 5a
crv 1v 1p 1o 1q

p q

1 v+2k 5a
o 1v'

=&I P5y +&I
1v 0'p 10' vq

q

+-,'u ~y
O' VO'

(38)

(4o)

Equation (32) has been used here to give an explicit
formula in terms of the matrix elements Mi .Pq.

A similar method can be used to compute ele-
ments of the R ' matrix. This will be called the
inverse Kohn method here, although in the single-
channel problem it reduces to a method proposed
by Hulthen and by Rubinow, sometimes referred
to as the second Hulthen method. ' In terms of
Eqs. (13), (14), and (15), the first variation of the
variational functional I~v becomes

v=1, ~ ~ ~, N; p=1, ~ ~ ~, N. (41)

For each index v, this is a set of N inhomogeneous
linear equations for N unknowns yvq'". The sys-
tem of equations has finite solutions unless

det(M» ) = 0. (42)

The integrals Ilg that occur in this equation can
all simultaneously be reduced to zero by an ap-
propriate choice of the coefficients Zvq, equivalent
to elements of the R matrix except for simple fac-
tors given in Eq. (12). These values of the coeffi-
cients will be denoted by yvq'" and satisfy the
equations, from Eq. (32),

Pq (0) Pv
11 vq 10

=Q I P5p +Z I q5p
crv 0 v Op q 00 vq

--,'u ~p
V Vo'

(48)

The integrals IO or IO in this equation can allp q.
be reduced to zero by solution of the inhomogen-
eous linear equations

Pqp (0) M Pv
00 vq 01

q

v=1, . . . , N; p=1, . .. , N (49)

This system of equations has finite solutions for
the coefficients P "', related to elements of the
R ' matrix by Eq. (15), unless

In the present context, the Kohn variational meth-
od, ' as applied to elements of the R matrix, '
makes use of Eq. (40) to compute first-order cor-
rections to the yvq~o&. From Eq. (40), if the inte-
grals I1VP or I1oq vanish,

5(I —,'k y )=O. — (43)

det(M«) =0.

From Eq. (37), if the integrals IO or Ioo
p p

vanish,

5(I + —,'k p )=0.
(7 V (7 V(T

(5o)

This gives approximately stationary values of the
coefficients

This gives approximately stationary values of the
coefficients

r =r "&-(2ik )I (y ")
vq vq q qv vq (44) P =P ""(2ik )I (P "&).

vq vq q qv vq
(52)

From Eqs. (10) and (33), when all Ilv vanish,

(r (o)
qv vq ) =Q Z&.

SP iV
z p

From Eqs. (13) and (33), when all Io vanish,p

(P )=Z Zo. . I
qv vq . ip iv

p

P q( (0))
Op Ov Ov vq

(45) P q( ())
1p 1v 1v vq

(53)
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+(2/k )f (0 )=0
vq vq q 1 v vq vq

+(2/k )(M +Q M P ). (54)

Equation (32) has been used to give an explicit
formula in terms of the matrix elements M"Pq.

U

Then Eq. (52), the inverse Kohn formula, , reduces
to p Q p p

"P
(56)

a
1

a ana=1
The P are eigenfunctions of the Hamiltonian within
the Hi bert space spanned by the basis functions
rIj'. The functions P&

s and QC& of Eq. (23)
can be expanded in terms of the function f and
eigenvalues E in the form

(z-z )

IV. AVOIDANCE OF SPURIOUS SINGULARITIES
(b =QP (E-E ) M

Cq e e e eC (57)

When applied to a single-channel problem, the
Kohn formula, Eq. (47), becomes a, formula for
the tangent of the elastic phase shift. Spurious
singularities, in the form of isolated poles whose
position as a function of E or k depends on the
choice of normalizable basis set, occur in this
formula and have been studied by Schwartz. 4

While these singularities were attributed by Sch-
wartz to the singular points of Eqs. (21), where
the determinant of M~b vanishes, it has been
shown more recently that the Kohn formula re-
mains smooth at such points, since it can be writ-
ten as the ratio of two functions with coincident
simple poles at these points. ' The spurious singu-
larities arise instead from the zeroes of Myy the
single-channel form of Eq. (42). These points
do not, in general, coincide with the zeroes of
M~, so the inverse Kohn formula, in which M~
occurs as a denominator, can be used to give
smooth results whenever I M~/M» I exceeds unity. '
This apparently gives an anomaly free variational
method for the single-channel problem.

With the formalism developed here, these re-
sults can easily be generalized to the multichannel
problem. Equations (26) show that each of the
matrix elements M~&Pq has a simple pole at an
eigenvalue Ee of the Hamiltonian matrix H~bPq,
where the determinant of M~bPq vanishes.
These eigenvalues will be assumed to be nonde-
generate, as they appear to be in simple examples
using an arbitrary finite basis function set.

The eigenvalues E and eigenvectors, with
components c& s, of the homogeneous part of
Eqs. (21) satis y the equations

where M =Q (P I H —E5 I S ),es P e Pq Pq q

M =Q(P IH —E5 IC ).eC P e Pq Pq q
(56)

P'+gM P(Z-Z ) M00 SS n Se e nS

Sn e eC

Pq+ g M ~(Z E)—10 CS n Ce n nS '

These matrix elements obviously have coincident
simple poles at the eigenvalues E . As E ap-e'
proaches a particular eigenvalue EpP

(E —E )M -M M
p, 00 Sp, pS

(E —E )M M M
p, 01 Sp, pC

These matrix elements are real and symmetric if
the basis functions g~P, Sq, and C are all real.
The matrix elements M;&P &, defined by Eqs. (25),
reduce to

+pa p'c '=E c
ab bn n ae (55) (E —E )M -M M

p, 10 Cp, p.S

The eigenvectors can be assumed to be orthonor-
mal. It should be noted that each eigenvector has
comyonents in all channels, so the index e does
not specify any particular channel. There are
Qnf, independent eigenvectors, each of which
corresponds to a normalized function with compo-
nent in channel P.

(E —E )M
11 Cp, p C (60)

These formulas will be used here to show that
the coefficients z, determined by Eqs. (41), or
by the Kohn formu/a, Eq. (47), can be expressed
as ratios of quantities with coincident simple notes
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at an eigenvalue E&, and hence that these eigen-
values do not introduce spurious poles in the com-
puted A matrix elements. A similar result holds
for the coefficients P q

and the inverse Kohn
formula for elements of the A ' matrix.

The solution of Eqs. (41) and the Kohn formula,
Eq. (4'I), can be expressed in terms of deter-
minants of submatrices of the matrix Mij, where
i, j =0, 1 and P, q=1, . .. , ¹

A convenient nota-
tion for such submatrices is

~here

f .(.E) = (E —E )M ..(E)/M .M . , (65)
SJ P zg ~P P2

Pq(E}
ij (66)

and the symbol detn denotes a determinant of or-
der n .Here M. P denotes MS P if i =0 and Mc&P
if i =1. From kqs. (60), as approaches E

px ps
ik il

where n, the order of the submatrix, is the num-
ber of pairs of upper and lower indices in each
part of the bracket symbol.

In this notation, the solution of Eqs. (41) is

(1 q N

! ~ ~ ~ ~ ~ ~

1 1 1
(o)

vq (1 q N
~ ~ 0 0 0 ~

I 1 1

1 v

~ ~ ~ ~ ~ ~

0

1 q N)
!

s ~ 0 ~ ~ ~

I 1 1 j
(62)

q 1 N v 1

0 1 1 0 1 1

vq vq k (1 N I N )
(I 1 I 1 j

Similar formulas can be written for P~q'", the
solution of Eqs. (49), and for the inverse Kohn
formula, Eq. (54), for Pvq.

To examine the behavior of a determinant of the
kind indicated by Eq. (61), near an eigenvalue

E& of the finite matrix HsbPq, Eqs. (59) can be
used to write Eq. (61) in the form

=(E-E ) "M. PM. '
~ ~ ~ ~ ~ ~ ~

i j ul P ZP gP
n

x ~ ~ ~ M M det [f.. (E)],s
n U

(64)

If it is recognized that the second term in Eq. (47)
is equivalent to the expansion by minors of a de-
terminant of order N+1, this equation, the Kohn
formula, can be expressed in the form

Then det„[f~&pq(E&)] is the determinant of a ma-
trix of order n, all of whose elements are unity.
Such a matrix is of rank one. A theorem proved
in matrix theory" states that if n(A. ) is the de-
terminant of a matrix of order n, whose elements
are functions of &, and if for some ~~ the matrix
becomes singular, of rank r, then (A. —Xs)n 'r is
a factor of A(X). It follows immediately from this
theorem since ff&

f q(E&) is a matrix of rank one,
that (E —E&)" 1 is a factor of det„[f~&l q(E)].
Hence any determinant of the form given by Eq.
(64) or Eq. (61) has a simple pole at E, unless
one or more of the matrix elements Mz& shouldPp
vanish at E&. Because Q& is a normalized func-
tion, these matrix elements are finite. In the
example considered later in this paper, they do
not vanish at E&, and there appears to be no
general reason for such matrix elements to vanish
when a finite set of basis functions is used. It can
be concluded that determinants of submatrices of
Mi Pq, of any order n &2N, will in general have
simple poles at each eigenvalue E

Since y q"' and the Kohn formuIa for yvq can
be expressed as ratios of such determinants, as
in Eqs. (62) and (63), the poles at E cancel ex-
actly and these coefficients vary smoothly as E
passes through an eigenvalue. A similar result
holds for P~q'" and for the inverse Kohn formula
for Ppq.

The determinant of M» q is the denominator in
both Eqs. (62) and (63), which can be expressed
as a ratio. Since there is no general reason why
IM„f q(E) I should not have isolated zeroes, as a
function of E, these points will be spurious singu-
larities of the Kohn formula, as the zeroes of
M»(E) are in the single channel problem. ' The
zeroes of {M«~'q(E) ) are spurious singularities
of the inverse Kohn formula, Eq. (54), as the
zeroes of M„(E) are in the single-channel prob-
lem. There is no general reason, in the present
formalism, why these zeroes should coincide,
and they are found to be distinct in the example
considered below. It can be expected, in analogy
to the anomaly-free procedure proposed for the
single-channel problem, that spurious singulari-
ties can be avoided completely by using the Kohn
formula only when the iatio of determinants

I M„ I / I M„ (67)
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is less than unity, and by using the inverse Kohn
formula when this ratio is greater than unity.

The formalism developed here can be used to
show that the R matrix, computed from Eq. {12)
and from the Kohn formula, Eq. (47), is sym-
metric. This is not in general true if the coef-
ficients yp "& are used in Eq. (12). From Eqs.
(47) and (2 ),

1

=-[2/(k k )'][m
pq p q 00

H„=H„= ~ C, r(a; =O, r~a

H22 = —~ d2/dr + ~ (71}

Following Huck, the values a=1, bS =0.375 were
assumed, with all quantities in atomic units. The
channel wave functions are required to satisfy the
boundary conditions

01 '
q qs pss

q (o)=o,
p

sink r+~ cosk r, p=1, 2;
p

(72)

= —[2/(k k )"']
p q

s

= —[2/(k k )"']
p q

(89)

where g k,' —p k, ' = ~ = 0. 375 . (78)

q —2. 5r=r e ', a=1, ... , n.

For variational calculations, the normalizable
basis functions used in each channel were

00 10

1p 11
10 ll

qq
~ o ~ Ml0

1q
11

The specific asymptotic functions used were

S =sink r,
p

10 11

11
M„

~ ~ ~

11

1q
11

. (7o)

C =(1 —e )cosk r, p= 1, 2 .
p p' (75)

The order of the basis set in each channel, n,
varied between 1 and 5.

For C'&k, 'k, ', the general solution of Eqs. (71)
can be expressed in the form, for r & a,

The determinant in the numerator of this equation
is carried into itself by first interchanging rows
and columns, and then exchanging indices p and

q and transposing all of the matrix elements Mll
which by Eq. (28) are symmetric in their indices.
Since interchanging rows and columns does not
change the value of a determinant, Eq. (70) is
symmetric in the indices p, q. A similar result
holds for the R ' matrix computed from the in-
verse Kohn formula, Eq. (54).

g, (r) =A sinmr+B sinhpr

g, (r) = a sinmr+ P sinhpr,
where

2m'=[(k ' —k ') +4C'] +(k '+k ' )

2P' = [ (k ' k ' )' y 4C'] ' '
(k '+ k '

)

and

(78)

(77}

V. CALCULATIONS FOR A TWO-CHANNEL MODEL
PROBLEM

A simple two-channel model problem, with ex-
act solutions computable in terms of elementary
functions, has previously been used as an example
of variational methods by Huck. ' The Hamiltonian
operator is

H„= —2 d'/dr',

The constants A and 9 are chosen to satisfy Eqs.
(10), giving a direct determination of the elements
of the R matrix through Eqs. (11) and (12).

From Eq. (9), if Qf, is the cross section for a
transition from channel p to channel q, the various
cross sections expressed as functions of elements
of the R matrix, in units ma0', are
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q„/v = (4/a, ')

R„+(R,2R2, —R„R22)
( R„+R22)'+ (1+R„R2,-R „R22)

q„/~ = (4/a, ')

2

(R„+R~2) + (1+R,IR2„—R„R22)

q„/v = (4/n, ') (79)

R2,
(R„+R ) +(1+R„R,—R„R )

q„/v = (4/u, ')

R22 + (R,2R2, —R„R2~)

In the exact solution, as well as the Kohn and
inverse Kohn variational formulas, the matrix
elements R» and R» are equal. Similar formulas,
used with the inverse Kohn formula, hold for the

cross sections as functions of elements of the
R ' matrix.

Matrix elements of the operators in Eq. (71),
between any two of the functions defined by Eqs.
(74) and (75), can be expressed in terms of
elementary functions and evaluated in closed
form. Computations were carried out by
diagonalizing the matrix H~&~&, through the
eigenvalue equations, Eqs. (55) and then by evalu-
ating Eqs. (59) explicitly. The Kohn or inverse
Kohn formulas, Eqs. (47) and (54), respectively,
were used alternatively according to the criterion
given by Eq. (67). This procedure, as discussed
in Sec. IV, above, avoids spurious singularities
inherent in these formulas.

Results for C2=2(2)12 and for n = 1(1)5 are given
in Table I. The variational procedure appears to
converge rapidly and smoothly. Detailed numerical
results are given by Huck, with the values of k,
and k, used here, only for C'=10. 0. Hefinds 0. V6V

for the exact value of Q», in agreement with the
present result, and obtains values 0.937, 0.93V,

0. 927, 0. 797, and 0. V11 for five different varia-
tional calculations. ' The present method, both in
terms of the computational labor required and of
the rapidity of convergence, appears to be superior
to the methods used by Huck.

TABLE I. Elastic and inelastic cross sections, in &ao atomic units, for k~
——1.0, k2= 0.5. Comparison of variational

and exact results for different values of n, the number of basis functions in each channel.

Cg

3

5

exact

1
2

3

5

exact

1
2

3

5

exact

1
2

3

5
exact

2.0

0.153516
0.201 946
0.223 666
0.206 931
0.208 917
0.211324

0.363 195
0.380416
0.386459
0.387 109
0.387 974
0.388 993

1.452 78
1.521 66
1.545 84
1.548 44
1.551 89
1.555 97

0.207 837
0.230 592
0.238 877
0.246 214
0.247 654
0.249 583

4.0

0.577 469
0.779 186
0.793 405
0.780 991
0.788 733
0.796 646

Q.674 684
0.725 170
0.743 678
0.722 779
0.723 923
0.726 203

2.698 74
2.900 68
2.974 71
2.891 12
2.895 69
2.904 81

0.781 447
0.938 986
1.021 33
0.929 030
0.932 284
0.940 700

6.0

1.1Q1 00
1.417 33
1.429 23

1.420 35
1.429 91
1.440 18

0.846 888
0.868 641
0.885 588
0.865 142
0.865 797
0.866 754

3.387 55
3.474 56
3.542 35
3.460 57
3.463 19
3.467 02

1.489 22
1 ~ 706 52
1.837 94
1.681 59
1.689 31
1.700 28

8.0

1.559 67
1.881 10
1.871 35
1.884 87
1.892 89
1.900 53

0.888 440
0.854 035
0.862 239
0.851 725
0.850480
0.849 444

3.553 76
3.416 14
3.448 96
3.406 90
3.401 92
3.397 77

2.108 63
2.266 11
2.404 00
2.231 17
2.236 48
2.243 33

10.0

1.896 62
2.154 04
2.11838
2.15984
2.164 61
2 ~ 167 91

0.853 299
0.772 634
0.774 109
0.772 211
0.769 720
0.767462

3.413 19
3.090 53
3.096 44
3.088 84
3.078 88
3.06985

2.562 98
2.594 44
2.718 61
2.556 25
2.557 22
2.558 44

12.0

2.124 57
2.300 03

2.242 59
2.308 05
2.309 69
2.309 04

0.786 291
0.678 856
0.676 967
0.680 029
0.677 009
0.674 333

3.145 16
2.715 42
2.707 87
2.720 12
2.708 04

2.697 33

2.869 69
2.769 82
2.874 91
2.731 16
2.728 10
2.724 45
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As a verification of the analysis given in Sec. IV,
above, which indicates that the Kohn and inverse
Kohn formulas should vary smoothly through the

singularities of Eqs. (21), computed cross sections
near two of these singularities are tabulated in
Table II. These results speak for themselves.

TABLE II. Behavior of computed cross sections near eigenvalues of the Hamiltonian matrix. The eigenvalues con-
sidered, for C =6.0 and n=5, occur at (E=0.535275, k& ——1.03467, k2=0.566171) and at (E=0.876882, kq=1.32430,
k2 = 1.001 88) .

kg

k2

n=5
exact

n=5~" exac~

n=5
exact

1.033 03
0.563 171

1.253 80
1.261 34

0.834 744
0.835 648

2.808 68
2,81172

1.034 13
0.565 171

1.250 65
1.256 10

0.833 519
0.834 523

2.790 64
2.794 00

1.035 22

0.567 171

1.244 38
1.250 90

0.832 448
0.833 394

2.773 28

2.77644

1.036 32
0.569 171

1.237 95
1.245 71

0.831408
0.832 254

2.756 22

2.759 03

n=5
exact

kg

kp

n=5
exact

n=5~" exac~

n=5
exact

n=5
exact

1.481 06
1.4S959

1.322 03
0.998 88

0.538 701
0.540 973

0.547 283
0.547 517

0.958 666
0.959 074

0.639360
0.640 938

1.474 93
1.483 43

1.323 54
1.000 88

0.536 211
0.539010

0.546 102
0.546 312

0.954 959
0.955 325

0.636 927
0.638 624

1.469 03
1.477 30

1.325 05
1.002 88

0.534 771
0.537 056

0.544 836
0.545 110

0.951 119
0.951596

0.634 504
0.636 321

1.462 91
1.471 18

1.326 57
1.004 88

0.532 798
0.535 110

0.543 643
0.543 909

0.947 426
0.947 889

0.632 239
0.634 029

TABLE III. Behavior of computed cross sections near a spurious singularity in the Kohn formula, where IM~~
Pc

passes through zero. K denotes Kohen, K denotes inverse Kohn. C =6.0 and n=5.

kg

k2

fM, g
ef

lMgfe f

Qgg K
K

exact

Q(2 K
K

exact

Q2g K
K-'

exact

@22 K
K-'

exact

0.923 255
0.320

—0.017444
0.000 864

2 ~ 12137
2.10937
2.127 21

0.867 206
O.S67 661
0.868 997

7.218 S2
7.222 60
7.233 72

2.493 14
2.491 00
2.509 68

0.925 000
0.325

—0.018 189
0.000 418

2.11046
2,086 26
2.103 86

0.868 S09
0.870 315
0.871 640

7.038 68
7.050 07
7.060 80

2.464 16
2.463 78
2.482 17

0.926 769
0.330

—0.018 963
—0.000 039

1.74S 52
2.063 43
2.080 79

0.889486
0 ~ 872 767
0.874 082

7.01542
6.883 56
6.893 93

2.461 87
2.436 90
2.454 99

0.928 561
0.335

—0.019766
—0.000 507

2.020 86
2.040 88
2.057 99

0.876 935
0.875 018
0.876 324

6.737 50
6.722 77
6.732 80

2.41648
2.410 31
2.428 13
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The analysis given in Sec. IV indicates that
spurious singularities occur in the Kohn formula
at zeroes of the determinant I Myy~q ( and in the
inverse Kohn formula at zeroes of t~pp I Ex-Pcf

amples of the resulting erratic behavior of com-
puted cross sections are shown in Tables III and
IV. It is clear from these tables that the use of
Eq. (67) as a criterion for choice between the

Kohn and inverse Kohn formulas provides a satis-
factory procedure for avoiding these spurious
singularities.
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TABLE IV. Behavior of computed cross sections near a spurious singularity in the inverse Kohn formula, where
ijir, P~( passes through zero. K denotes Kohn, K denotes inverse Kohn. C =6.0 and n 5.=

kg

kp

I M(Pq I

Qgg K
E-'

exact

Q)2 Kz'
exact

exact

Qg2 X
z-'

exact

1.088 85
0.660

0,008 127
—0.054 485

1.026 87
1.045 73
1.034 42

0.774 245
0.773 203
0.774 960

2.10731
2.104 47
2.10925

1.215 35
1.215 59
1.222 29

1.091 89
0.665

0 ~ 003 783
—0.056 256

1.016 64
1.055 37
1.024 05

0.770 885
0.768 493
0.771 582

2.078 28
2.071 83
2.080 16

1.203 33
1.202 60
1.210 08

1.094 94
0.670

—0.000321
—0.058 033

1.006 53
0.611520
1.013 80

0.767 507
0.764 856
0.768 187

2.049 82
2.042 74
2.051 63

1.19143
1.16177
1.198 00

1.098 01
0.675

—0.004 224
—0.059 825

0.996 537
0.964 826
1.003 67

0.764 115
0.765 946
0.764 779

2.021 92
2.026 76
2.023 67

1.17967
1.18108
1 ~ 186 07
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