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Analysis, given in an earlier paper, of standard variational methods for elastic scattering
is extended to the case of several open channels. As in the case of elastic scattering, and
contrary to widespread expectation, the spurious singularities inherent in the Kohn formalism
are shown, for the general multichannel case, not to arise from the singularities of the linear
inhomogeneous system of equations common to standard variational methods. The Kohn for-
mula for elements of the R or K matrix, and its analog for the R matrix, are shown to vary
smoothly, without poles, as the energy parameter goes through eigenvalues of this system of
equations. The spurious singularities arise from isolated zeroes of determinants that occur
in the denominator of the Kohn formula and of its analog (the inverse Kohn formula) for R~
The singularities in these formulas do not in general coincide, and a criterion is proposed for

alternative use of these formulas, resulting in a procedure free of spurious singularities.
This analysis is illustrated by calculations on a soluble two-channel-model problem. An
incidental result of the present formalism is a proof that the approximate R matrix given by
the Kohn formula is symmetric and real if the basis functions used are real.

1. INTRODUCTION

Several standard variational methods in elastic-
scattering theory, together with a new method pro-
posed by Harris, ! have recently been analyzed,
especially with regard to their behavior near sin-
gularities of the inhomogeneous system of linear
equations common to the various methods.? This
analysis reached the somewhat unexpected conclu-
sion that these singularities exactly cancel out of
the Kohn formula?® for the tangent of the phase
shift, which can be expressed as a ratio of two
functions with coincident simple poles at singular
values of the energy E (or wave vector k). The
spurious singularities inherent in the Kohn formula,
discussed most fully by Schwartz, * then must arise
from some other aspect of the formalism. It was
shown?® that the Kohn formula can be expressed as
a ratio whose denominator, denoted by M, in the
single-channel problem, has isolated zeroes at
values of E that are artifacts of the variational
method, since they depend on the particular choice
of basis functions used for linear expansion of a
trial wave function. These zeroes are the sources
of the spurious singularities in the Kohn formula.
The corresponding formula for the cotangent of the
phase shift, due to Hulthén and Rubinow, ® which
will be called the inverse Kohn formula here, can
also be expressed as a ratio whose denominator,
denoted by M, in the single-channel problem, has
isolated zeroes that depend on the choice of basis
function set. These zeroes cause spurious singu-
larities in the inverse Kohn formula. Since the
zeroes of M,, and M,, do not, in general, coincide,
the ratio |M,,/M,,| can be used as a criterion to
choose either the Kohn or inverse Kohn formula,
thus giving an anomaly-free variational procedure.
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In the present paper these results are generalized
to the theory of inelastic scattering. The principal
result is the formulation of a variational procedure
that avoids all spurious singularities, works with
real numbers only, and obtains the reactance ma-
trix R or its inverse R™! by use of a suitable gen-
eralization of the Kohn or inverse Kohn methods,
respectively.® The inhomogeneous linear system
of large dimension common to variational methods
is solved only once for each energy in the present
method, in contrast to iterated solution of such
equations inherent in some earlier methods.

The proposed method is applied to a soluble mod-
el problem, and results are compared with earlier
calculations on this model reported by Huck,’ who
used methods proposed by Moiseiwitsch® and by
Rubinow.® The present results indicate that the
method proposed here converges rapidly, is free
of spurious singularities, and compares favorably
in terms of computational effort with earlier meth-
ods.

It is intended to apply this method to electron-
atom scattering, using a Bethe-Goldstone formal-
ism proposed earlier to deal with the many-particle
aspect of such calculations.®

II. VARIATIONAL FORMALISM

Consider the system of equations

Zq(Hpq—Eépq) wq:o, (1)

where indices p and g represent separate open
channels and run from 1 to N, the number of chan-
nels. The Hamiltonian H,  is a matrix of operators
and ¥, is a vector whose components are wave func-
tions. For a spherically symmetric system, it is
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179 VARIATIONAL METHOD FOR INELASTIC SCATTERING 61

convenient to make a partial-wave expansion, and
to associate a wave number %k, and angular mo-
mentum [ , with each channel index p. An example
leading to equations of this form occurs in electron-
atom scattering, where the scattering atom has
several bound states with energy Ep less than E.
Each such bound state defines at least one chan-
nel. If the state is not spherically symmetric,
there might be several channels with different /
values but the same value of 2. In Hartree atomic
units

%k;:E—Ep, (2)
where E, is the energy of the bound state associ-
ated witlf channel p for the scattered electron.
Equations (1) are obtained by taking matrix ele-
ments of the many-electron Hamiltonian between
the various bound-state wave functions of the scat-
tering atom, and by expanding the wave function of
the scattered electron in partial waves. Alterna-
tively, the functions ¥, can be taken to be many-
particle functions defined by their asymptotic be-
havior as antisymmetrized products of a bound-
state eigenfunction and a one-electron continuum
function appropriate to parameters %5 and lp.

If the channel wave functions ¢, are considered
as one-electron functions, the partial-wave de-
composition leads to equations of the form con-
sidered here for the separate radial functions. It
is convenient to multiply each wave function by 7,
so that each ¥, vanishes at »=0, and can be chosen
to have the asymptotic form

¢p~a0psp+a1pcp, (3)
where Sp ~sin(kpr— %lpn),

. (4)
C, ~cos(k, - 31 m).
p p P

In general, the coefficients a will be complex.
The form of Sp and Cp in the region of small 7 is
arbitrary, except that both functions should vanish
as rl+ 1; the exact form to be chosen is a matter
of computational convenience. Given specific
forms for these functions, the function ‘Pp can be
approximated by the linear expansion

= S
7" %0 1% @
"
where ¢ =a2::1 nie, (6)

The functions 7,? are normalizable basis functions
chosen from a countable set that becomes complete
(for finite #) as np is increased. Then ¢, is also
normalizable and does not affect the asymptotic
behavior of Up.

Scattering cross sections depend only on the rel-
ative values of the coefficients @. In practice the

dimensions #y of the normalizable basis function
sets will be increased until the coefficients @ are
seen to converge to a desired accuracy. In order
to avoid the use of complex numbers, the reactance
matrix R® (or K in another common usage), which
is real and symmetric in the channel indices, can
be computed directly. The scattering and transi-
tion matrices are given, respectively, by®

S=(1+4R)/(1-4R), (7)
T=-2R/(1-iR). (8)

The partial cross section for a transition from
channel p to channel g is, in atomic units,

- 2 T 2
Qg =Tk N T, |

= (41r/kp2)l[R/(l— iR)]pqlz. (9)

If the coefficients of one of N degenerate solutions
J% of Eqs. (1) at given E are chosen to satisfy the
condition,

o
a =
0Oq 5(10’

for each 0=1, ..., N, then the computed values of
a1q° will be denoted by

g=1,...,N, (10)

o
Yoq_ alq ’ (11)
The elements of the R matrix are defined in terms
of these coefficients to be®
R_=(k /B )2y, . 12
pa™ % """ pq (z2)
An alternative set of definitions leads directly
to the matrix R~', which must also be real and

symmetric. If the coefficients are required to
satisfy,
o
C!lq 2640, q=1, .--,Ar (13)

for each 0=1, ..., N, then the computed values of
a0q° will be denoted by

o
Bog” %0 (14)
The elements of R~! are given by
R, -'=(k /B NP8, .
pq ( q/ P) qu (15)

The coefficients in Eq. (6) are determined by
the condition that Eqs. (1) should have no compo-
nents in the Hilbert spaces spanned by the basis
functions naP, This leads to the system of linear
equations of dimension Zp”p’ for p=1,...,N and
a=1,..., np,

ps_ s_ bq ba
%Zb;Mab ‘p = Z;:’(OIOqMaS +alqMaC ),

(16)
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v ba_ . P _ q
where Mab _(na IHM Eépqlnb ), (17)
PPy _Es s 18

M g (na mpq pq' q), (18)

Pd_m Py _Es IC 19

M (n IHPq pql q). (19)

The computations for an N-channel problem can
be greatly simplified, following the procedure used
by Schwartz for the single-channel problem,* by
observing that the coefficients cbq obtained by
solving Eqs. (16) depend linearly on the coefficients
a. In particular,

sq
_z;( 0¢° bS alqcbc ), (20)

where, for p=1,...,N and a=1,,“,np,

ps sq _ 2]
?%M Chs =~ Mag

(21)

ps, sq_ pq
%%M Cpe =~ Mgc -

Solution of these equations reduces to successive
solution of 2N inhomogeneous linear systems of
dimension ny with a common homogeneous ma-
trix M, bpq for each of the 2N inhomogeneous vec-
tors - M qu and -~ M,cP9. The solution of these
equations, of large dimensionality, is a common
starting point for all variational methods of de-
termining the coefficients . Equations (20) and
(21) imply that Eqs. (16) are satisfied identically
for any arbitrary values of these coefficients.
Since Eqgs. (21)do not involve the @’s, they must
be solved only once for a given value of E, regard-
less of the specific method used subsequently to
determine the a’s. Most of the computational
effort in any practical calculation occurs in the
solution of Egs. (21).

Through Eqs. (21), each independent asymptotic
function, Sq or C , picks up a normalizable com-
plement denoted by $Sq or $Cq, with components
¢S or ¢4 in each of the channels This leads
to a set of functmns corresponding to particular
solutions of the linear system of Eq. (21), with
components in channel s given by

) [0} +S 6
0g Sq " qgs (22)
s s
or (plq —d)c +Cq6 , S=1,.0.,N
where ¢ -2 77 ,
Sq b'b bS (23)
and Z’b A bC , §=1,...,N,

Equations (21) imply, for p, ¢=1, ... ,N and
a=1,... s Mps
P
Z ",

- Eb $)=0,
S

pslwoq
» (24)
Zs(na mps—Eb l¢ %)=0

The variational methods to be considered here
can be described in terms of the matrix elements

Moopq ‘:“‘?(‘”Op \H S—Eéyslwoqs)
_z(spmps-mpsnpoqs),
o ! 273:2,@01, o= B0 19,
=§(Sp‘Hps‘E%s'¢1qs)’ (25)
101= D Doy, = B0, 14y,
=2(cp|Hps-E5ps|¢Oqs),
pq %?“’ﬁp ‘E5rs“"1qs)

=33(C |H -Eb ).
:E( pl ps Pshplq)

The last term in each of these equations follows
from Eqgs. (24), since the normalizable part ¢S

or ¢Cp7' of each of the functions zpop or zplp 1s a
linear combination of the basis functions 7,7, and,
by Egs. (24), does not contribute to the matrix
elements defined by Eqs. (25). In terms of the ma-
trix elements and coefficients defined by Eqgs. (17),
(18), (19), and (21) above,

pq_ . bpq pr_ ra_, bq
Moy "=Mgg +§§M5a a5 =Mgg

—ZZM p'r(w ) rsM sq,

vs ab ab bS
M Pq=M Pq+2 M P”c 7q_, P4
01 sc T Vsa ‘aC sc
-ZZu P )ab“Mb S0 @)
rs ab
bq ba pr 7rq pq
M =M —_—
10 cs *? PE’M ca Sas “Mcs
br s sq
- M,
R ca M~ )ab Mys

rs ab
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pa _ pq y Pr. va_, pa
My =Mec +§§WC¢1 cc “Mcc
pr vs, Sq
_ZEM )ab M,y

s ab

Because the operator H is Hermitian with respect
to normalizable functions, the matrix elements de-
fined by Eqs. (26) are real and, except for M, PP
and Mmpp, symmetric in the index pairs

& or (1),
i J

where ¢, j=0,1. The exceptional case is

pp_., bb_,, Pb_. Db_.
Mo " =My =Mge ~Meg =Ry

p=1,000,N, (27)

if the functions Sp and Cp, satisfy Eqs. (4). This
result follows upon integrating the kinetic-energy
integral by parts and evaluating the resulting sur-
face integral. Equation (27) can also be written
in the form

ba ap
- 5 5.-5.5
M =M+ 2kp bq ®0 i1 it jO)’

ij=0,1; p,g=1,...,N. (28)

Up to this point in the analysis the coefficients

p(z—O 1; p=1,...,N) of Eq. (5) are as yet un-
determmed although the coefficients c,P defined
by Eq. (6) are determined as linear functions of
the a@’s by Egs. (20) and (21). For a variational
calculation this implies a trial function ¢¥ with
component in channel s given by

Z 2o (29)

iq lq

where the functions ¢;,S are defined by Egs. (22).
Consider the variational functional

o 12
1,,=@WH-E14")

= - E .
er 01’ rs 6rs lwvs) (30)
If y¥ were an exact solution of the Schrédinger
equation, Eq. (1), then I4, would vanish for arbi-
trary $o. This condition, for I,,,, is required as
a constraint on ¢V in the Hulthén variational meth-
od.' If Eq. (1) were satisfied, the integrals
b_
Iiv _Z'rs(lp

v
IH -E5 |sz$) (31)

would vanish for each value of i=0,1 and

p=1,...,N. Interms of the matrix elements de-
fined previously,
Z,Zw Pag V. (32)
i q ij Jq

The matrix elements M;;P4, defined by Egs. (25),
above, are real if the basis functions Uap are
chosen to be real. While each of the integrals IZ-VP
would vanish for an exact solution ¥ of Eq. (1),
setting all of these integrals equal to zero would
give 2N homogeneous equations to determine the
2N unknown coefficients @ in the variational trial
function y¥. In general, for a finite set of basis
functions naP , these equations will be inconsistent.
The various variational methods that can be applied
to this problem represent different procedures for
combining these equations to reduce their number
and obtain a consistent set.

From Egs. (25), (29), and (31), the variational
functional can be expressed in the form
o x
Z 2o, i» M, Pay v
ij pq J 19
—Z}Z)a P (33)
L
ip
Alternatively, from Eq. (28),
=5 Za P o
ij pg ip Jji P pq
X808 = 6115]0)]
—ZZ}[I Ty %kq
Jjq
0 * o* v
x(6., a -6 «a o, -, 34
(11 0g j0 1q ) jq (34)

From these equations, if the coefficients a9 and
a¥ are independent,

alou p
F:Iiy (35)
i
and
aI
ov q* o* o*
- -5, . . 36
VIjO' +Zk(]l 0Og 6jO 1g ) (36)
aajq

The first-order variation of 7, is given in gen-
eral by

-3 T 6a P51 Tsa
i p

. I, .
i 1A% ; o
p i q J J1q
1 o* v ax v
sk (@ - . 37
+§qu( 0g Galq I baoq) (37)

For exact solutions ¢° and y¥, since all of the
integrals I;;,? or Ijq* vanish, this reduces to

1 o* v_ o* v
_%:qu(an éalq alq baoq ). (38)
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III. THE KOHN AND INVERSE KOHN VARIATIONAL
METHODS

Equation (37) for the first variation of the varia-
tional functional simplifies considerably if the R
matrix is computed directly, using Eqgs. (10), (11),
and (12). All coefficients a are real. Because
the values of a0p? or agg” are fixed (0 or 1), their
variations vanish, and Eq (37) reduces to

=Z,11V”5a o1 %a. Y
p

1 10 1
p 7 q
+ip 62, (39)
2% 10 ?
_ b q
—Ellv 670p+2110 G'yvq
b q
+ 3k Oy (40)

o ‘vo'

The integrals 11,}’ that occur in this equation can
all simultaneously be reduced to zero by an ap-
propriate choice of the coefficients Yvg equivalent
to elements of the R matrix except for simple fac-
tors given in Eq. (12). These values of the coeffi-
cients will be denoted by 7., ‘? and satisfy the
equations, from Eq. (32),

pq. (0)_ pv
ZMy Ty, =My
v=1,.00,N; p=1,...,N. (41)

For each index v, this is a set of N inhomogeneous
linear equations for N unknowns ‘yyq‘°’. The sys-
tem of equations has finite solutions unless

det1, P9 -o. (42)

In the present context, the Kohn variational meth-
od,? as applied to elements of the R matrix, ®
makes use of Eq. (40) to compute first-order cor-
rections to the v,4‘®. From Eq. (40), if the inte-
grals Ilup or I1¢9 vanish,

1 -
6(IOV - zko‘yuo) =0. (43)

This gives approximately stationary values of the
coefficients

= (0) _ 2 ) o),
7vq qu ( /kq) qV(YVq ) (44)

From Egs. (10) and (33), when all I;,” vanish,

1749 5 Ta

i p zp zv
_; 4., (0
_§a0p ov IOv (‘yvq ). (45)

Then Eq. (44), the Kohn formula, reduces to
_. (0 q,, (0)
Vg~ Vvg (2/kq)IOV (qu ) (46)
(0) v, ar., (0)
:yyq —(Z/k MOO %1\401 Vp )

(47)

Equation (32) has been used here to give an explicit
formula in terms of the matrix elements M; pq.

A similar method can be used to compute ele-
ments of the R~! matrix. This will be called the
inverse Kohn method here, although in the single-
channel problem it reduces to a method proposed
by Hulthén and by Rubinow, sometimes referred
to as the second Hulthén method.® In terms of
Egs. (13), (14), and (15), the first variation of the
variational functional I, becomes

o1 =21, 1’55 920 "53
b o’ q

LI (48)

The integrals I0 VP or IOoq in this equation can all
be reduced to zero by solution of the inhomogen-
eous linear equations

pq, (0)_ pv
?Moo Bvq ==Myy

v=1,...,N; p=1,...,N (49)
This system of equations has finite solutions for
the coefficients 8, () related to elements of the
R™! matrix by Eq. (15), unless

det, 2% 0. (50)
. . p p
From Eq. (37), if the integrals Iy, or Iy,
vanish,
1 _
6(10V+ zkcﬁw)-o. (51)

This gives approximately stationary values of the
coefficients

B0 =Pg”

Vg + (2/kq)IqV(BVq‘°’) . (52)

From Eqs. (13) and (33), when all IOUP vanish,

)=2 D a, ‘71

qv vq i p ip

=Z}a qI
p P
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Then Eq. (52), the inverse Kohn formula, reduces
to

. ()
Bra=Pra

(0), _
vq )=

(0)
Byq
(0)

q ap
+(2/kq)(M11 +§M10 Bup ). (54)

q
+ (2/kq)11 ) (B v

Equation (32) has been used to give an explicit
formula in terms of the matrix elements Mi]-pq.

1IV. AVOIDANCE OF SPURIOUS SINGULARITIES

When applied to a single-channel problem, the
Kohn formula, Eq. (47), becomes a formula for
the tangent of the elastic phase shift. Spurious
singularities, in the form of isolated poles whose
position as a function of E or k depends on the
choice of normalizable basis set, occur in this
formula and have been studied by Schwartz.
While these singularities were attributed by Sch-
wartz to the singular points of Eqs. (21), where
the determinant of M,; vanishes, it has been
shown more recently that the Kohn formula re-
mains smooth at such points, since it can be writ-
ten as the ratio of two functions with coincident
simple poles at these points.? The spurious singu-
larities arise instead from the zeroes of M,,, the
single-channel form of Eq. (42). These points
do not, in general, coincide with the zeroes of
Mg, so the inverse Kohn formula, in which M,
occurs as a denominator, can be used to give
smooth results whenever |My/M,,| exceeds unity. 2
This apparently gives an anomaly free variational
method for the single-channel problem.

With the formalism developed here, these re-
sults can easily be generalized to the multichannel
problem. Equations (26) show that each of the
matrix elements M,-]-Pq has a simple pole at an
eigenvalue E , of the Hamiltonian matrix H, ab‘bq’
where the determinant of M,,P9 vanishes.

These eigenvalues will be assumed to be nonde-
generate, as they appear to be in simple examples
using an arbitrary finite basis function set.

The eigenvalues E_ and eigenvectors, with
components ¢, S, o? the homogeneous part of
Egs. (21) satisfy the equations

>2H Pc ScEc P, (55)
s b ab o

ba ax

The eigenvectors can be assumed to be orthonor-
mal. It should be noted that each eigenvector has
components in all channels, so the index ¢ does
not specify any particular channel. There are
‘[fp”p independent eigenvectors, each of which
corresponds to a normalized function with compo-
nent in channel p.

n
b
p_ p. P
¢a =2 Mg Caq ° (56)
a=1
The ¢ ., are eigenfunctions of the Hamiltonian within

the Hiﬁoert space spanned by the basis functions
ng’. The functions ¢g,° and ¢’Cqs of Eq. (23)
can be expanded in terms of the function ¢ o and
eigenvalues E g in the form

s s -1 q
¢Sq _%(pa (£ Ea) MaS ’

s Sim_ -1 q
¢Cq —.§¢>a (E Ea) M (57)
q._ Py
where M o _%)(% alq Eépqlsq),
M 9= P\y  _Es .
aC ;?(% ! Pq qucq) (58)

These matrix elements are real and symmetric if
the basis functions 1,?, Sq4,and C, are all real.
The matrix elements Mijp 9, defined by Egs. (25),
reduce to

pa_,, pPa p o4
Moo~ =Mss +§M5a (B-E,) Mg
m Py Pl P(E-E) M 9

01 N a Sa a aC ’

p o4
10 cs +§MCa (E-E ) M,

S b

pa_ pq p - q
My =Mee *?Mccl (E-E ) M,.". (59)

These matrix elements obviously have coincident
simple poles at the eigenvalues E a As E ap-
proaches a particular eigenvalue E w
bq P q
E-E M -
( u) 00 MSu. Mus ’

_ »q by, 4
(E E’J)M01 MSp. M“

C ’

_ pq p q

E-E ) P m P9

_ M P9_ b q
(E EH) 1 MC[J. MuC . (60)

These formulas will be used here to show that
the coefficients v, , determined by Eqs. (41), or
by the Kohn formula, Eq. (47), can be expressed
as ratios of quantities with coincident simple notes
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at an eigenvalue Eu, and hence that these eigen-
values do not introduce spurious poles in the com-
puted R matrix elements. A similar result holds
for the coefficients B8, and the inverse Kohn
formula for elements of the R~! matrix.

The solution of Eqs. (41) and the Kohn formula,
Eq. (47), can be expressed in terms of deter-
minants of submatrices of the matrix M;;?9, where
i,7=0, 1and p,g=1,...,N. A convenient nota-
tion for such submatrices is

pr bs
M, M
paq rs _ qr . gqs
<ij... kl...) =| M Myt (61)

n

where 7, the order of the submatrix, is the num-
ber of pairs of upper and lower indices in each
part of the bracket symbol.

In this notation, the solution of Eqs. (41) is

If it is recognized that the second term in Eq. (47)
is equivalent to the expansion by minors of a de-
terminant of order N+1, this equation, the Kohn
formula, can be expressed in the form

N

Similar formulas can be written for 8,,”, the
solution of Eqs. (49), and for the inverse Kohn
formula, Eq. (54), for Bug -

To examine the behavior of a determinant of the
kind indicated by Eq. (61), near an eigenvalue
E|, of the finite matrix HgpP4, Eqs. (59) can be
used to write Eq. (61) in the form

(0] 7nr) e, P
i b1 © o Je
Xeooe ]\/[#kTMuls"'detn[flpq(E)] ’ (64)

where

P4y (g ey Py 4
fl.j (E)=(E Eu)Mij (E)/Miu My (65)

and the symbol det, denotes a determinant of or-
der n. Here M%LP denotes M‘ZIJP if i =0 and Mcy?
if i =1, From Egs. (60), as E approaches E“,

pq
fii (E)-1. (66)

Then det,, [fiqu(Eu)] is the determinant of a ma-
trix of order n, all of whose elements are unity.
Such a matrix is of rank one. A theorem proved
in matrix theory!! states that if A(X) is the de-
terminant of a matrix of order », whose elements
are functions of A, and if for some Ag the matrix
becomes singular, of rank », then (A = X4)? =7 is
a factor of A(A). It follows immediately from this
theorem since f;; P4(E ;) is a matrix of rank one,
that (E-E )"~ Lis a factor of det,[ fiP9E)].
Hence any determinant of the form given by Eq.
(64) or Eq. (61) has a simple pole at E,,, unless
one or more of the matrix elements M; ? should
vanish at E,,. Because ¢N- is a normalized func-
tion, these matrix elements are finite. In the
example considered later in this paper, they do
not vanish at E,,, and there appears to be no
general reason for such matrix elements to vanish
when a finite set of basis functions is used. It can
be concluded that determinants of submatrices of
Miqu» of any order n <2N, will in general have
simple poles at each eigenvalue E .

Since yyq“” and the Kohn formufa for 7pq €an
be expressed as ratios of such determinants, as
in Egs. (62) and (63), the poles at E,, cancel ex-
actly and these coefficients vary smoothly as E
passes through an eigenvalue. A similar result
holds for Byq“” and for the inverse Kohn formula
for B, .

The determinant of M, 9 is the denominator in
both Eqs. (62) and (63), which can be expressed
as a ratio. Since there is no general reason why
|M,,P4(E)| should not have isolated zeroes, as a
function of E, these points will be spurious singu-
larities of the Kohn formula, as the zeroes of
M,,(E) are in the single channel problem.? The
zeroes of | M, P9(E)| are spurious singularities
of the inverse Kohn formula, Eq. (54), as the
zeroes of M, (E) are in the single-channel prob-
lem. There is no general reason, in the present
formalism, why these zeroes should coincide,
and they are found to be distinct in the example
considered below. It can be expected, in analogy
to the anomaly-free procedure proposed for the
single-channel problem, that spurious singulari-
ties can be avoided completely by using the Kohn
formula only when the ratio of determinants

1M, P /1, P (67)
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is less than unity, and by using the inverse Kohn
formula when this ratio is greater than unity.

The formalism developed here can be used to
show that the R matrix, computed from Eq. (12)
and from the Kohn formula, Eq. (47), is sym-
metric. This is not in general true if the coef-
ficients v, © are used in Eq. (12). From Egs.
(47) and (23),

__ H qp
Bpq™ [2/ (kpkq) M50
Do otk o )y ) (68)
. 01 2% qs’’ps
==[2 k k 1/2
[2/¢ ; q) ]
qp sq_ (0)
><(M00 +§M10 Vps ) (69)
=—[2/(k k V2
[2/¢ » q) ]
1
m, 2 om0 w9
1 11 1
AIlO p Mll Mll q
1
Mlopp Mup Iwupq (70)

T

1 1q
M P M

The determinant in the numerator of this equation
is carried into itself by first interchanging rows
and columns, and then exchanging indices p and

¢q and transposing all of the matrix elements Mu"s,
which by Eq. (28) are symmetric in their indices.
Since interchanging rows and columns does not
change the value of a determinant, Eq. (70) is
symmetric in the indices p, ¢. A similar result
holds for the R~! matrix computed from the in-
verse Kohn formula, Eq. (54).

V. CALCULATIONS FOR A TWO-CHANNEL MODEL
PROBLEM

A simple two-channel model problem, with ex-
act solutions computable in terms of elementary
functions, has previously been used as an example
of variational methods by Huck.” The Hamiltonian
operator is

H, =-3d%/dr*,

H,=H, =3C, r<a; =0,r>a ,
Hyp=—3 d?/dv®+ AE . (71)

Following Huck, the values a=1, AE =0.375 were
assumed, with all quantities in atomic units. The
channel wave functions are required to satisfy the
boundary conditions

wp~010p sinkpr+a1pcoskpr, p=1,2; (72)
where 3k%-3k,%=AE=0.375. (73)

For variational calculations, the normalizable
basis functions used in each channel were
-2.5
=% 4 ,

n a=1,... ,n. (74)

a

The specific asymptotic functions used were

Sp:sinkpr ,
Cp=(1—e_r)coskpr, p=1,2. (75)

The order of the basis set in each channel, =,
varied between 1 and 5.

For C2>k %k,?, the general solution of Egs. (71)
can be expressed in the form, for r<a,

»,(#) =A sinmy + B sinhpr»

,(7) = @ sinmy + B sinhpyr, (76)
where

2m=[ (k2= k2 ) +4C%]"" + (B 2+ ky7)

202 =[ (k2= k2 ) +4C2) 2= (R 2+ R,2), (77)

and
2 2 \'? 2 172
a (lﬂ;&) B (.’hjﬁ_z (18)
A T\ 2 -, » B T \%,+p? ¥

The constants A and B are chosen to satisfy Egs.
(10), giving a direct determination of the elements
of the R matrix through Eqs. (11) and (12).

From Eq. (9), if Qpq is the cross section for a
transition from channel p to channel ¢, the various
cross sections expressed as functions of elements
of the R matrix, in units na?, are
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Q,,/m=4/k?)

y R,2+(R,Ry, — R R,
(R11+R22)2 +(1 +R, R, -R 11R22)2 ’

le/ﬂ: (4/k12)

R’
>< b
(Ru +R22)2 +(1 +R R,y — RnRzz)2

sz/”: (4/k22) (79)

Ry’
X ’
(Ru + Rzzj +(1+ RioRy, - RuRzz)2

sz/'” = (4/k22)

% Ryg® + (szRm - RuRaz)z
(Ru +R22)2 +(1 +R,R,) — RuRzz)2

In the exact solution, as well as the Kohn and
inverse Kohn variational formulas, the matrix
elements R,, and R,, are equal. Similar formulas,
used with the inverse Kohn formula, hold for the

R. K. NESBET

179

cross sections as functions of elements of the
R~! matrix.

Matrix elements of the operators in Eq. (71),
between any two of the functions defined by Eqgs.
(74) and (75), can be expressed in terms of
elementary functions and evaluated in closed
form. Computations were carried out by
diagonalizing the matrix Habpq’ through the
eigenvalue equations, Eqs. (55) and then by evalu-
ating Eqs. (59) explicitly. The Kohn or inverse
Kohn formulas, Eqs. (47) and (54), respectively,
were used alternatively according to the criterion
given by Eq. (67). This procedure, as discussed
in Sec. IV, above, avoids spurious singularities
inherent in these formulas.

Results for C2=2(2)12 and for n=1(1)5 are given
in Table I. The variational procedure appears to
converge rapidly and smoothly. Detailednumerical
results are given by Huck, with the values of &,
and k, used here, only for C>=10.0. Hefinds 0. 767
for the exact value of @,,, in agreement with the
present result, and obtains values 0.937, 0.937,
0.927, 0.797, and 0. 711 for five different varia-
tional calculations.” The present method, both in
terms of the computational labor required and of
the rapidity of convergence, appears to be superior
to the methods used by Huck.

TABLE 1. Elastic and inelastic cross sections, in 1ra(,2 atomic units, for £;=1.0, £y=0.5. Comparison of variational
and exact results for different values of #, the number of basis functions in each channel.

C, 2.0 4.0 6.0 8.0 10.0 12.0
n=1 0.153516 0.577469 1.10100 1.55967 1.896 62 2.124 57
2 0.201 946 0.779186 1.41733 1.88110 2.154 04 2.30003
3 0.223 666 0.793 405 1.42923 1.87135 2.11838 2.24259
Qut 4 0.206 931 0.780 991 1.42035 1.884 87 2.15984 2.308 05
5 0.208 917 0.788733 1.42991 1.89289 2.164 61 2.30969
exact 0.211324 0.796 646 1.44018 1.90053 2.16791 2.309 04
1 0.363195 0.674 684 0.846 888 0.888 440 0.853 299 0.786 291
2 0.380416 0.725170 0.868 641 0.854 035 0.772634 0.678 856
3 0.386459 0.743 678 0.885 588 0.862 239 0.774109 0.676 967
Q2 4 0.387109 0.722779 0.865 142 0.851725 0.772211 0.680 029
5 0.387974 0.723 923 0.865797 0.850480 0.769720 0.677 009
exact 0.388993 0.726 203 0.866 754 0.849 444 0.767462 0.674 333
1 1.45278 2.698 74 3.38755 3.55376 3.41319 3.14516
2 1.52166 2.900 68 3.474 56 3.41614 3.09053 2,715 42
Q 3 1.54584 2,974 71 3.54235 3.448 96 3.09644 2.707 87
i 4 1.54844 2.89112 3.46057 3.406 90 3.08884 2.720 12
5 1.55189 2.895 69 3.46319 3.40192 3.07888 2.708 04
exact 1.55597 2.904 81 3.46702 3.397 77 3.06985 2.697 33
1 0.207 837 0.781 447 1.48922 2,108 63 2.562 98 2.86969
2 0.230592 0.938 986 1.706 52 2.266 11 2.594 44 2.76982
@ 3 0.238877 1.02133 1.83794 2.404 00 2.71861 2.874 91
4 0.246 214 0.929 030 1.68159 2.23117 2.556 25 2.73116
5 0.247654 0.932 284 1.68931 2.236 48 2.55722 2.728 10
exact 0.249583 0.940700 1.70028 2.24333 2.55844 2.724 45
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As a verification of the analysis given in Sec. 1V, singularities of Eqs. (21), computed cross sections
above, which indicates that the Kohn and inverse near two of these singularities are tabulated in
Kohn formulas should vary smoothly through the Table II. These results speak for themselves.

TABLE II. Behavior of computed cross sections near eigenvalues of the Hamiltonian matrix. The eigenvalues con-
sidered, for C*=6.0 and n=>5, occur at (E=0.535 275, k;=1.03467, k,=0.566171) and at (E=0.876 882, k,=1.324 30,
ky=1.00188).

Ry 1.033 03 1.03413 1.03522 1.036 32

By 0.563171 0.565171 0.567171 0.569171

n=5 1.253 80 1.25065 1.244 38 1.23795

@t oxact 1.26134 1.256 10 1.250 90 1.24571
0, "0 0.834744 0.833519 0.832448 0.831408
2 exact 0.835648 0.834523 0.833394 0.832254
o "0 2.808 68 2.790 64 2.773 28 2.756 22
U exact 2.81172 2.794 00 2.77644 2.75903
0, "5 1.48106 1.47493 1.46903 1.46291
2 exact 1.48959 1.48343 1.47730 1.47118
ky 1.32203 1.32354 1.32505 1.326 57

ky 0.998 88 1.00088 1.00288 1.004 88

0, "8 0.538 701 0.536 211 0.534771 0.532798
1 exact 0.540973 0.539010 0.537056 0.535110
0, "5 0.547 283 0.546 102 0.544836 0.543 643
2 exact 0.547 517 0.546312 0.545110 0.543 909
o "0 0.958 666 0.954 959 0.951119 0.947426
M exact 0.959074 0.955 325 0.951596 0.947889
0, "8 0.639360 0.636 927 0.634504 0.632239
2 exact 0.640938 0.638 624 0.636 321 0.634 029

TABLE III. Behavior of computed cross sections near a spurious singularity in the Kohn formula, where Wupq'
passes through zero. K denotes Kohen, K~ ! denotes inverse Kohn. C?=6.0 and n=5.

k4 0.923 255 0.925 000 0.926769 0.928561
ky 0.320 0.325 0.330 0.335

I M P9 —0.017444 ~0.018 189 —0.018 963 —0.019766
1M, £9) 0.000 864 0.000418 —0.000039 —0.000507
Qu K 2.12137 2.11046 1.74952 2.02086
K 2.10937 2.086 26 2.063 43 2.040 88
exact 2.12721 2.103 86 2.08079 2.057 99

Qny K 0.867 206 0.868 909 0.889486 0.876 935
K 0.867661 0.870315 0.872767 0.875018
exact 0.868 997 0.871640 0.874 082 0.876 324

Qi K 7.218 82 7.038 68 7.01542 6.73750
k! 7.22260 7.050 07 6.883 56 6.72277
exact 7.23372 7.060 80 6.893 93 6.73280

Qn K 2.493 14 2.46416 2.46187 2.41648
K- 2.49100 2.463 78 2.436 90 2.41031

exact 2.50968 2.482 17 2.454 99 2.42813
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The analysis given in Sec. IV indicates that
spurious singularities occur in the Kohn formula
at zeroes of the determinant |M,,P4| and in the
inverse Kohn formula at zeroes of [My,P9|. Ex-
amples of the resulting erratic behavior of com-
puted cross sections are shown in Tables III and
IV. It is clear from these tables that the use of
Eq. (67) as a criterion for choice between the

Kohn and inverse Kohn formulas provides a satis-
factory procedure for avoiding these spurious
singularities.

ACKNOWLEDGMENT
The calculations reported here were carried

out on the IBM CALL/360 terminal system, using
programs written in the BASIC language.

TABLE IV. Behavior of computed cross sections near a spurious singularity in the inverse Kohn formula, where
IMP4| passes through zero. K denotes Kohn, K~' denotes inverse Kohn. C*=6.0 and n=5.

ky 1.08885 1.09189 1.094 94 1.098 01
ko 0.660 0.665 0.670 0.675
My PY) 0.008 127 0.003 783 —0.000321 —0.004 224
IM P9 —0.054485 —0.056 256 —0.058 033 —0.059825
Qu K 1.026 87 1.016 64 1.006 53 0.996 537
K! 1.04573 1.05537 0.611520 0.964 826
exact 1.03442 1.024 05 1.013 80 1.003 67
Qp K 0.774 245 0.770 885 0.767507 0.764115
K 0.773 203 0.768493 0.764 856 0.765 946
exact 0.774 960 0.771582 0.768 187 0.764 779
Q@ K 2.10731 2.078 28 2.04982 2.02192
k! 2.104 47 2.07183 2.04274 2.026 76
exact 2.10925 2.080 16 2.051 63 2.023 67
Qn K 1.21535 1.20333 1.19143 1.17967
K 1.21559 1.20260 1.16177 1.18108
exact 1.22229 1.21008 1.198 00 1.186 07
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