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From (C8) and (C9) we find that the coefficients of the
elliptical integrals all vanish at 7. which renders con-
tinuity in the internal energy at the critical point. To
investigate the nature of the singularity of the specific
heat, we note that the asymptotic expression for the
energy as I — T, * is

E— M(y,2)K(k),

where M (y,3) is regular in T and vanishes identically
at T.. The specific heat then takes the following asymp-
totic expression:

M d
C— —K(E)+M—K().
dT aT

The second term on the right-hand side is finite at T..
Therefore, the singular behavior of C is due entirely
to the first term. It can be shown that dM /dT is regular
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at T.. It follows that the singularity of the specific heat
arises from that of the elliptical integral K and is
logarithmic, as is understood for the usual Ising model.

Note added in manuscript. (1). Professor C. Domb has
kindly called our attention to an earlier paper [C.
Domb and R. B. Potts, Proc. Roy. Soc. A210, 125
(1951)], in which some of the results of Sec. II have
been discussed from the point of view of the method of
transfer matrix. Their approximation for the equivalent
neighbor model yields e 2K=%(1/10—1)=0.72076 for
the transition temperature as compared to the value
0.68946 of the present paper and the presumably exact
Padé value 0.6837.

(2). We also received a preprint by N. W. Dalton
and D. W. Wood in which the Padé analysis of Ising
model with higher neighbor interactions of Ref. 8
is extended to include the low-temperature expansions
as well as models with noneauivalent higher neighbors.
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The isotropic Hamiltonian 3¢ = —J3°;_,/¥~1§;-S;, is considered for an open linear chain of N y-dimen-
sional vector spinsS;; 3¢ reduces to the S =} Ising, planar, and Heisenberg models for v=1, 2, and 3. The
thermodynamic properties (including the susceptibility) of 3¢ are found for ferromagnetic (J>0) and
antiferromagnetic (J <0) exchange interactions for all temperatures T and all spin dimensionalities ». The
manner in which the various properties depend upon 7" and » is studied; in particular we find (a) that al-
though the chain of spins does not display long-range order except at 7=0 for any value of », most of the
properties vary monotonically with » (in such a way that, e.g., the degree of ‘“short-range order” decreases
with increasing »); and (b) that as the spin dimensionality increases without limit, all of the calculated
properties approach precisely those predicted by the Berlin-Kac spherical model.

I. INTRODUCTION

HERE exist comparatively few nontrivial statis-
tical mechanical models which have been solved
exactly in more than one dimension.! One motivation

* A different derivation of the partition function is presented in
H. E. Stanley, Proceedings of the 1968 IUPAP Conference on
Statistical Mechanics, Kyoto, J. Phys. Soc. Japan (to be
published).

t Operated with support from the U. S. Air Force.

t Present address: Physics Department, University of Cali-
fornia, Berkeley, California.

! Two notable examples are the two-dimensional Ising model
in zero field [L. Onsager, Phys. Rev. 65, 117 (1944)] and, more
recently, the various two-dimensional “ferroelectric” models [see,
e.g., E. H. Lieb, 1968 Boulder Lectures in Theoretical Physics
(to be published)]. For a comprehensive introduction to exactly
soluble models of interacting particles in one-dimension, see E. H.
Lieb and D. C. Mattis, Mathematical Physics in One Dimension
(Academic Press Inc., New York, 1966).

for considering exactly soluble one-dimensional models
is that their solutions may possibly aid in judging
the validity of approximation techniques which are
used in three dimensions.? A second motivation is that
results discovered for one-dimensional models are some-
times generalizable to higher dimensionalities. Finally,
a one-dimensional model may serve as a reasonable
approximation to some special physical system. For
example, there exist materials in which the magnetic
ions may be considered to form “linear chains” so that
interactions between spins within the chains are ap-

?For example, many approximation schemes (such as ex-
trapolation from high-temperature expansions) have been
tested on the Ising model for one-dimensional and two-dimen-
sional lattices.
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preciably stronger than interactions between spins be-
longing to different chains.?

In this paper we consider a system of isotropically
interacting classical spins of arbitrary dimensionality
situated on a one-dimensional (linear chain) lattice.
Our Hamiltonian,* then, is

N—-1
x=—J ¥ §;-Sj1,

=1

(1a)

where S; is a »-dimensional classical spin (or “vector’)
of magnitude A2 and localized on site j. Thus if
[o1(§), a2(5),- - -, 0u(5)] are the Cartesian coordinates of
S, we require that

Z' a2()=X\;

n=1

(j=12,---,N). (1b)

Here —J\ is the energy of a pair of nearest-neighbor
spins®; thus at T=0 all nearest-neighbor pairs of spins
are parallel if J is positive, and antiparallel if J is nega-
tive. The Hamiltonian 3¢ reduces to the S= 7 Ising
model,® classical planar model,” and classical Heisen-
berg model,? respectively for »=1, 2, and 3.°

3 Hence the intrachain interactions may be treated exactly,
and the interchain interactions approximated, say, by a molecular
field. Such a treatment was first carried out for Ising (v=1) inter-
actions by H. Sato [J. Phys. Chem. Solids 19, 54 (1961)], A. H.
Cooke, D. T. Edmonds, C. B. P. Finn, B. R. Heap, and W. P.
Wolf [in Proceedings of the Seventh International Conference on Low
Temperature Physics, 1960, edited by G. M. Graham and A. C.
Hollis (University of Toronto Press, Toronto, 1960), p. 107],
and J. W. Stout and R. C. Chisholm [J. Chem. Phys. 36, 979
(1962)7], and for Heisenberg (»=3) interactions by H. E. Stanley
and T. A. Kaplan [J. Appl. Phys. 38, 975 (1967)]. We have
generalized this idea to all » [H. E. Stanley (to be published)].

4 This Hamiltonian was first considered for general lattices by
H. E. Stanley [Phys. Rev. Letters 20, 589 (1968)] in an attempt
to ascertain by high-temperature approximations the dependence
of critical properties upon dimensionality of spins.

5 Note that in Ref. 4 the energy of a pair of nearest-neighbor
spins was —2Jv; thus the J of this paper is called 2J in Ref. 4,
and the parameter A of this paper was chosen for convenience to
be » in Ref. 4. We shall leave the parameter \ unspecified for all
the expressions which we shall derive, but when we actually plot
the various functions we shall take A=y in order to facilitate study
of the dependence upon spin dimensionality. We can equally well
choose A=1 (spins of unit length), in which case we must ‘re-
normalize”’ the exchange integral J — Jo/v in order to take the
v — o0 limit. Then the Hamiltonian

N-1
BW=—7 T $;Sn
=1

(where the spins are of length »!/2) becomes identically

N-1 N-1
XO=—Jw 1 T S;-Sju=—Jo T 8;-sip,

=1 =1

where the spins s;=»"1/2§; are of unit length and the free energy
is given by Eq. (14) with A=1 and x — xo=Jo/kT=Jv/kT. Thus
%o 1s of order » and we again use the same asymptotic expansion
for Bessel functions with large argument as well as large order.

8 There exists a small class of magnetic materials whose spin
interactions are well described by the Ising model; such materials
(e.g., DAG, dysprosium aluminum garnet) have been studied
extensively by W. P. Wolf and co-workers [see D. C. Mattis
and W. P. Wolf, Phys. Rev. Letters 16, 899 (1966) and references
contained therein; also W. P. Wolf (to be published)]. The S=3
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Here we obtain exact expressions, valid for arbitrary
v, for the free energy, entropy, specific heat, internal
energy, and susceptibility for the system described by
(1). Although we shall see that the linear chain of »-
dimensional spins does not display infinite-range (or
even long-range) order at any temperature except 7=0,
we shall comment upon two fairly striking features of
our solution: (a) At high (and also at low) temperatures,
most of the various thermodynamic functions calcu-
lated vary monotonically with spin dimensionality ».
(b) As v increases without limit, the free energy and
susceptibility approach those obtained for the Berlin-
Kac spherical model,*

1

N—
FHSM=—J 3 uikis1,
i1

where the spins u; are continuous variables subject only
to the single constraint

N

2 pui?=N.

=1

In Sec. II we derive the partition function Qx®,
from which follow the free energy, entropy, specific
heat, and internal energy. These thermodynamic quan-
tities are each plotted as functions of 7" and 1/7T for
representative values of ». In Sec. III we obtain the
susceptibility from the two-spin correlation function,
and display the antiferromagnetic case graphically.

Ising model has also come to serve as a practical model for a
binary alloy and a classical “lattice gas.”

7 The classical planar model has recently received attention as a
fairly crude lattice model for the transition in a Bose fluid. See,
e.g., V. G. Vaks and A. I. Larkin, Zh. Eksperim i Teor. Fiz. 49,
975 (1965) [English transl.: Soviet Phys.—JETP 22, 678 (1966) ];
R. J. Bowers and G. S. Joyce, Phys. Rev. Letters 19, 630 (1967);
H. E. Stanley, ibid. 20, 150 (1968). The planar spin model (v=2)
is not to be confused with the (quantitatively similar but qualita-
tively different) XY model (a “Heisenberg model”

X=—3 3 Ja(i)Sa(@)Sal4)

a=1 15

with Jy=J; and J3=0), which has been invoked in connection
with certain magnetic insulators [such as Gd:(SOs)s: 8H,0]—
see, e.g., D. D. Betts and M. H. Lee [Phys. Rev. Letters 20, 1507
(1968) J; R. F. Wielinga, J. Lubbers, and W. J. Huiskamp [Physica
37, 375 (1967)] and references contained therein.

8 The classical Heisenberg model was first considered in detail
by G. Heller and H. A. Kramers [Proc. Roy. Acad. Sci. Amster-
dam 37, 378 (1934)]. The fact that for many materials with $>},
the classical (§— ) limit is a good approximation for 7> 7,
was realized independently by H. E. Stanley and T. A. Kaplan
[Phys. Rev. Letters 16, 981 (1966)3'1' G. S. Joyce and R. G.
Bowers [Proc. Phys. Soc. (London) é, 1053 (1966)]; and P. J.
\(?Y(g)gg)]and G. S. Rushbrooke [Phys. Rev. Letters 17, 307

°In the case of the one-dimensional (linear-chain) lattice, 3¢
has been solved exactly for »=1 by E. Ising [Z. Physik. 31, 253
(1925)] and for »=3 by M. E. Fisher [Am. ]J. Phys. 32, 343
(1964) ], and by T. Nakamura [J. Phys. Soc. Japan 7, 264 (1952)7.
We wish to thank Professor S. Katsura and Professor T. Oguchi
for calling this (generally overlooked) work of Nakamura to our
attention. The case of a closed chain (or ring) with »=2 was treated
by G. S. Joyce [Phys. Rev. 155, 478 (1967)].

10T, H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
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II. PARTITION FUNCTION where
19
The normalized partition function corresponding to y,=—— In[x'="2I,,_;(\x)] (11)
3 of Eq. (1) is A Ox

QN (x)=Zn"(x)/Zn*(0), 2
Wit 11
N
ZN(v)(x)=/. . ./dsl. . dSN II [5()\_812)]

N-1
Xexpl:x > Si'sj+l]» (3)

j=1

where x=J/kT, and where the N § functions represent
the constraints that each spin has magnitude \!/2.
Consider first the integration over spin Su,

3V (x)= /dSNSD\— SN2]exp[xSN_1 . SN] . (4)

In Appendix A it is shown that
3@ (x)=3x(2r/x)" ", p1(Mx) ©)

independent of the orientation of Sy_i; here I.(z) is a
modified Bessel function of the first kind. Thus we
obtain

Zy®(x)=3(0)[3* (x)]¥1, (6)
where, from (5),
3(0)=(A7)"/2/AT'(3») - ()
Hence, from Eq. (2)
QN (x)=[3"(x)/3*(0) ¥, ®)

or, on using (5) and (7),
On?(x)=L[EN) T G) L pa (). (9)

Equation (9) is an exact expression for the normalized
partition function of a linear chain containing an ar-
bitrary number N of »-dimensional spins of magnitude
AL2,

In the following we shall calculate exact expressions
for the various normalized thermodynamic functions
per spin, where by normalized we mean that we divide
each function by either J or % in order that it be dimen-
sionless, and we divide by A in order to facilitate study
of the depencence upon spin dimensionality.®

The internal energy per spin E®=limy_.,N"(3C")
is directly related to the partition function via (3¢®)
= —(8/98) InQn®(x). Thus we obtain

E0=E0/\=—y,, (10)

11 For »=1, the Ising model, we associate an extra factor of 2
with each of the Né-functions in Eq. (3) [since 6(S—1)+8(S+1)
=25(5?—1)7]. This in turn gives rise, for =1 only, to an addi-
tional factor of 2% in Egs. (6), (8), and (9) and to an additional
factor of 2 in the argument of the logarithm in Egs. (14) and (15).
Thus, the only effect of this additional factor of 2¥ in the Ising
model partition function is to add a term §y® = —/M\"1In2 to the
free energy and a term 58® =X\"1In2 to the entropy.

is the (normalized) nearest-neighbor spin correlation
function A"1(S;- S;,1). Thus, e.g., y1= tanh\x, yo=I(Ax)
/Io(A\x), y3= £L(Ax)=cothAx—1/\x, and

¥o= 22/ {14+ [1+(22)*]"2} . (12)

For » finite, one may relate the Bessel-function deriva-
tive in Eq. (11) to a Bessel function of a higher order,
and thereby write

yo=1I,2(\x)/1,2-1(\x) .

In Fig. 1 we indicate the temperature dependence of
E® for various values of ». We note that the correlation
between nearest-neighbor spins decreases monotonically
with increasing spin dimensionality, as one might have
expected intuitively.

The entropy S® may be obtained from the free
energy per spin ¢®=—kT limy. ,N"'InQx®(x) by
means of YP=E»—-TS® or, equivalently, S®
=(—9/3T)y™. Since from Eq. (9)

(13)

PO=pO/N = = () In[ Gy

XT@) ()], (14)
we have
S®=S50/\k=x\"!In[exp(—Axy,) (3\x)'—/2
XTGv)p1(M) ], (15)

The free energy and the entropy are plotted in Figs.
2 and 3. For »>1 the entropy diverges logarithmically
as T — 0 and thisis reflected in the fact that the specific
heat does not approach zero as T'— 0.

Finally we calculate the specific heat C»=(9/dT)
E®=T(3/dT)S™. From Egs. (10) and (11), or, al-
ternatively, from Eq. (15), we obtain

C»=C®/Ne=1%(dy,/0x), (16)
or, for v finite, simply
CO=x2{1—y,[(v—1)/N\x+9,]}, an

with y, given by Eq. (13). The specific heat is plotted
against ¢((=kT/J) and x(=1/t) for various spin dimen-
sionalities in Fig. 4. (We note that the maximum in the
specific heat occurs at the highest temperature for =1,
becomes a broad flat region at 7=<0 for »=3, and dis-
appears altogether for »>3). The presence of a maxi-
mum in C® for =1 and 2 at a nonzero temperature is
reflected in the initial upward curvature of the cor-
responding energy curves in Fig. 1(a).
Low-temperature and high-temperature expansions
are developed in Appendices B and C, respectively, for
E® §» S§® and CP(". Also, simplified expressions for

v=1,2,3,and « of §, E, and C are given in Table I.
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Fic. 1. Normalized internal energy
E®»=—y, (with A=y) as a function
of (a) t=kT/J, and (b) x=J/kT for
y=1 (Ising model), »=2 (planar
model), »=3 (Heisenberg model),
v=4, »=6, and v=c (spherical
model). Curves for other values of »
lie in between the values shown. The
correlation function between two spins
located R sites apart is ()%, and de-

creases monotonically with » for
every value of R. Since y, <1 for T>0,
the  spontaneous  magnetization
~1 R 1 1 1 Il 1 1 Il Il | 1 Il
(~limg....()*] vanishes for 7">0. o 05 10 15 20 25 R T ¥ S T R Y
kT/J J/kT
(a) (b)

III. SPIN CORRELATION FUNCTIONS

The two-spin correlation function (S,-Sg) for spins
localized on sites which are a distance R apart is ob-
tained in exactly the same fashion as the partition func-
tion (by performing first the integration over Sy, then
Sy_1,- - ) with the result

NS0 Sr)= () ".

From Eq. (11) (or Fig. 1) we note that y,<1 for all
finite values of x; hence, for >0 the spontaneous
magnetization per spin (or “infinite-range order”) M is
given by

(18)

Mzcr}lgn; (So-Sk)=0. (19)
Thus, although the correlation between two spins in-
creases monotonically with decreasing temperature,
M=0 for all T>0. However, for T=0, y,=1 and M
achieves its saturation value.

Although the absence of a spontaneous magnetization
(alone) does not mathematically preclude the possibility
that the normalized zero-field susceptibility per spin
X=(0M/3H),=(—0%/0H?), diverges to infinity at
some nonzero temperature, it is not difficult to show
that, for a ferromagnet, X rises smoothly with decreasing

temperature, approaching infinity as 7'— 0. Now the
free energy ¥ has been calculated in the presence of a
magnetic field H only for the case =1, and we have not
succeeded in generalizing the calculation to arbitrary .
However, one can easily obtain the zero-field suscepti-
bility per spin directly from the zero-field two-spin cor-
relation function of Eq. (18) with the result

X0 = (m2/vkT)(14,)/(1—7,),

where m=gup is the magnetic moment per spin. The
temperature dependence of the susceptibility for the
case J<O(antiferromagnet) is shown in Fig. 5 for vari-
ous values of »; for J>0 (ferromagnet), X diverges to
infinity as T'— 0 in a fashion which is described in
Appendix B in terms of the low-temperature expansion
of v,.

Higher-order correlation functions may also be calcu-
lated, with a corresponding increase in labor; for ex-
ample, we obtained the four-spin correlation function.
Knowledge of this function enables us to generalize
to all » a model of two- and three-dimensional lattices,
considered to be composed of chains of classical spins,
in which we treat the intrachain interactions exactly
and the interchain interactions via a molecular-field
approximation.?

(20)

o 0
-0.2+ -0.2+
L o B
Fi1c. 2. Normalized free energy ~0.4+ 6 _o0.4]-
g =y /N\J, as given by Eq. (14) v 4 —
(with A=»), as a function of (a) - ¥ -
t=kT/J, and (b) x=J/kT for » ~0.6l- 3 o6l
=2, 3, 4, 6, andx. Note that the v=2 ’
curvature is the same for all values = -
of p, reflecting the fact that 5%/ —o.8l o8l n
AT =090%" /aT?>0. (See Fig. 3.) ) - v
-1.0 1 1 1 1 1 1 1 1 1 -1.0 1 1 1 1 1 1 1 1 1
0 0.5 1.0 1.5 2.0 25 0 1.0 2.0 3.0 4.0 5.0
kT/J J/kT



574 H. E.

STANLEY

179

TaBLE 1. Thermodynamic formulas for selected spin dimensionalities ».

= e=M/kT; t=1/x); p=[1+Qx)*]'"
v PO =y0 /N E®=E®/\J CO=C»/\k
1 — i\t In[2coshz] —tanh z X1[z sechz]?
2 —IN"1In[Zo(2)] —11(2)/1o(2) N Y22 42E—[2E72)
3 — "1 In[(sinhz) /2] —[cothz—1/z] A {1—[z cschz]?}
© —tH{—4+3p—% In[3(1+0)]} —2x/(14p) 2%/ (p*+p)
SO =50 /Nt =x(E® —F™)
XN =pkTX? /Am?=(1—E®)/(1+E®)
Fie. 3. Normalized entropy S®
d =S®/\k, as given by Eq. (14), as a

function of (a) ¢=kT/J, and (b)
x=J/kT for v=1, 2, 3, 4, 6, and .
The plot for y=1 is S®—In2. At low
2 temperatures S diverges logarith-
mically to —«w as 77— 0 for »>1
(diverging ‘“faster’” the larger » is).
Henceas 7' — 0, CO[=—T9S® /T

approaches a nonzero constant (whic

increases with ») for »>1. From the
fashion which S® — const as T'— 0,
we have that C® — 0. (See Fig. 4.)

IV. DISCUSSION

We have seen (cf. Figs. 1-5) that the various thermo-
dynamic quantities are monotonic functions of spin
dimensionality ». This leads us to ask if anything par-
ticularly interesting occurs in the limit y —c . We shall
see that the limiting expressions for all of the normalized
thermodynamic quantities are identical to those calcu-
lated by Berlin and Kac for the spherical model.}* Con-
sider first the normalized free energy ¢, as given by
Eq. (14), with the choice A=».5 The relevant asymp-
totic expansion for Bessel functions when both the
argument and order are large is developed in Watson’s
treatise.? Thus the leading term in the asymptotic
expansion of Y® for large » is

FO=—t{~4+h—3b00+AD, 1)

where p=[1+(2x)?]"/2. Equation (21) agrees precisely
with Eq. (C18) of Ref. 10 for the free energy of the
spherical model.® Similarly, the first term in the asymp-
totic expansion of the spin correlation function is, from
Egs. (11) and (18),

(=) F=[22/(1+p)]%, (22)
which agrees with Eq. (39) of Ref. 10. (It appears,

12 G, N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, London, 1958).

13 Note that the J of Berlin and Kac (Ref. 10) is identical to
our J, so that our parameter x(=J/kT) is equal to twice their
parameter K[=3J/kT].

20 30 a0 50
J/kT

(b)

moreover, that these limiting properties of 3C® are
generalizable to lattices of higher dimensionality.!4)
This result is extremely useful, especially since the
spherical model is exactly soluble for two- and three-
dimensional lattices, thereby providing an ‘“anchor
point’’ in the hierarchy 3¢® (which, with the important
exception of Onsager’s solution of the two-dimensional
v=1 case, appears hopelessly insoluble for lattices of
higher dimensionality than the linear chain). Moreover,
the monotonicity found in the present linear-chain calcu-
lations is reflected in high-temperature expansions for
lattices of higher dimensionality.* Hence the spherical
model, which in the past has been interpreted as a
soluble approximation to the Ising model, might in fact
turn out to be a much better approximation to the
much more “realistic’’ Heisenberg model.

In conclusion, we remark that all of the above results
for the linear chain can be easily generalized to a Bethe
lattice,'® which displays a phase transition at a tempera-
ture determined by the equation

(23)

where g=o-1 is the lattice-coordination number (num-
ber of nearest-neighbors). Note that Eq. (23) reduces to

»=0,

4 H. E. Stanley, in Proceedings of the 1968 IUPAP Conference
on Statistical Mechanics, Kyoto, J. Phys. Soc. Japan (to be
published); H. E. Stanley, Phys. Rev. 176, 718 (1968).

18 Note that the linear chain is a Bethe lattice of coordination
number ¢=2. For a picture of a Bethe lattice of coordination num-
ber g=4, see Fig. 2 of K. Kawasaki [Phys. Rev. 145, 224 (1966)].
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0.5
0.4 )
0.3+
c c
0.2+
B v=1
0.1t
| 1 1 1 1 1 1 1
() 1 2 3 4 5
kT/J J/xT
(a) (b)

F16. 4. Normalized specific heat ) =C®/\k as given by Eq. (16) (for A=v) as a function of (a) t=kT/J, and (b) x=J/kT. As
T— 0, 0% — 3(v—1)/A [i.e., C®» — 3k(v—1)], just as one expects from classical statistical mechanics. Note that the rather sharp
specific-heat maximum (or “Schottky anomaly”) found for =1 becomes more rounded and occurs at a lower temperature for v=2,
becomes a broad flat region for y=3, and disappears altogether for »>3. That C®(=9E® /dT) increases as the system is heated from
T=0 for =1 and 2 only is reflected in the initial upward curvature of the corresponding energy curves in Fig. 1(a). Note from(b) that
the characteristic 1/7? temperature dependence of C at high 7" is found for all ».

1.6 1.6
1.4 1.4
F16. 5. Reduced antiferromganetic 12 12
(J <0) susceptibility R4®T (with v 3 I~
v=X\) as a function of (a) t=kT/J 1.0 .o
and (b) x=J/kT. Here Ra®(T) a A N
=x40(T)/x4®(0) for »>1, with X, 0.8F P X, o.8-
RaWV(T)=x4(T) [since x4M(0) - u
=0]; hence, the relative heights of 0.6 0.6
the peaks can be compared only when -
y>1. The maximum in £4® occurs at o4l =1 0.4
t=2 for v=1, “moving in” to :=21.7, -
1.4, 1.2, and 0.8 for »=2, 3, 4, and 6, 0.2} 0.2
respectively, and approaching ¢=0 -
asy—>0, | 1 1 1 1 1 | 1
o 2 4 3 8 10 o 05 1.0 1.5 20 25
kT/J J/KT
(a) (b)

=1 or T.=0 for the linear chain.!® As one would
expect, the critical exponents v, #, and » have the same
values for the Bethe lattice (1, , and 0, respectively)
as predicted by the molecular field theory.®

The above results can also be generalized to a closed
“ring” of spins,!” the relevant integral equation being
solved using the Funk-Hecke theorem.!® Moreover, the
onset of infinite-range order as 7" — 0 is characterized
mathematically by the collapse of the discrete eigen-
value spectrum of an appropriate linear operator into a
single value. Thus it is interesting to observe that the
same “mathematical mechanism” appears to character-

16 The exponent # describes the approach to zero as T — T+
of the inverse correlation range k~(7T—T)?, and is obtained from
the second moment of the two-spin correlation function
u2=2y,(14+y,)/(1—5)(1 —ay,)% The exponent 7 is obtained from
the relation y= (2—1n)7.

¥ By a ring we mean a linear chain with periodic boundary
conditions imposed: Sx41=S,. The results of the chain and ring
problems are identical in the thermodynamic limit N — .

18 See, e.g., Bateman Manuscript Project, Higher Transcendental
Functions (McGraw-Hill Book Co. Inc., New York, 1953), Vol. II,
p. 247. We wish to thank Dr. M. Blume for pointing out this result.

ize the phase transition in the present model 3¢ (with
strong, short-range forces) as in the Kac model (with
weak, long-range forces.)!®
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APPENDIX A: DERIVATION OF EQ. (5)
From the definition of 3®’(x) in Eq. (4),

x £ 0 i
3(V)(x)=—— / . f d0'1' . 'dd,/ du
21["1: —® —0 —1i0

Xepr:ux(x— i a,.z):lexpl:x i c,.a,.], (A1)

n=1 ne=l

where we have suppressed the site index N and set
cn=0n(N—1). To interchange the order of the do, and
du integrations we insert into the integrand the factor

explra(— 3 a2)]

ne=1

(which has the value unity for any value of a because
of the constraint), and choose « to be a sufficiently large
positive real number that (x+a)on2—cnon is positive.
Then

x at1%0 v )
50 (x) =— / dver [T | don

27”' —10 n=1J_ &
Xexp[—x(von2—cnon)], (A2)
where v=u+a. On completing the square,
/ don exp[—2(v0,2—Cacn) ]
- = (m/vx)2 exp[xca2/4v], (A3)

and on applying the constraint (1b) to eliminate
cn=0,(N—1), we obtain

x atio T\’ /2
30 () =— / dv exp[)\x(H' 1 4v)](—) . (A9)
2wt a—in vx

Finally on setting w=2v we obtain an integral repre-
sentation of the modified Bessel function of the first
kind,

2r\r2 1 pratio
a(”’(x)=%x(——) —f dw
2

X 27 a—100
Xexp[F x(w+1/w) kw2,

from which Eq. (5) follows at once.

(AS)

APPENDIX B: LOW-TEMPERATURE
EXPANSIONS

At low temperatures the relevant asymptotic expan-
sion for Bessel functions with large argument (z=\x
=N /kT=\/1) is'?

L 21(2)~ ¢ l:i L,®(—z)=n

(27rz)”2 n=0

4i~0-Dg22 3 L..wz—»], (B1)

n=0

STANLEY
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where the coefficients L,® are defined by means of the
recursion relation
(r—2)2—(2n—1)2

L= "
8n

(B2)

and Lo®=1. At first sight it might appear unnecessary
to include the second summation in Eq. (B1) due to
the presence of the prefactor e~22. However, from the
definition of the coefficients L,® in (B2) we see that
for both »=1 and 3 (the Ising and Heisenberg models)
L,"=0if n>0, for v=5 L,=0if n>1, -- -, so that to
determine the asymptotic behavior of 1,/5_1(z) for small
values of », we cannot ignore the second summation
in (B1).

The first few terms of the low-temperature expansion
of the free energy are readily obtained by combining
Egs. (14) and (B1),"

YO~ —1—&T/N){In[T (Gv)/2x 2] +3(—1)
XIn(2kT/N)— L@ kT/N)+---}. (B3)

Forv=1and 3, L;’=0 and the term (—)L,®(T/\J)
in (B3) should be replaced by (=) exp(—2\J/kT) for
»=1 and 3, respectively.

The leading terms in the entropy S®=—ay® /9T
are then [from (15), or directly from (B3)]

SO~NHIn[T(3v)/2r2]+ 1 (v— D[ 1+In(2ET/\) ]
—2L,Y(T/N)}, (B4)

which, for »>1, approaches — « as T— 0. For v=1 the
“TInT term” is not present in the free energy, and,
therefore there is no logarithmic divergence in the en-
tropy; rather,

SO~N-1[eNIRT(NT/RT+1)], (BS)

which approaches a constant as T — 0.

The low-temperature behavior of the energy is easily
obtained from the above expansions of ¢® and S®
[or by expanding Eq. (11)],

EO~—[1-3(—D(kT/MN)+LPRT/M)?. (B6)

For »=1 and 3, the L;* term is replaced by F2
Xexp(—2\J/kT). The specific heat C»=9E® /9T
=T85S /3T is then

CONTB—1)—2LOET/A)]. (BY)

We notice that if A\=1, then C®(T=0)=3k(r—1), just
as one would expect from classical statistical mechanics.
The L;* term becomes =+4(\J/kT)?exp(—2\J/kT)
for v=1 and 3, respectively.

The expansion for the ferromagnetic (J>0) suscepti-
bility X® is readily obtained from the low-temperature
expansion of y,=—E® in Eq. (B6). For »>1,

o~ 1=L—=1)/(2A) T+ L (kT/N)2,  (BS)

and, on substituting into Eq. (20), X® diverges in the
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limit 7'— T.(=0) as (T'—T,)~" with y= 2.2 However,
X diverges exponentially as T— 0, since y;~1—2
Xexp(—2\J/kT).

To obtain the corresponding expansion of the anti-
ferromagnetic susceptibility (J<0), we note that y, is
an odd function of J so that, for »>1,

a? v—1

v|J| 4\
e

2

A
XA(I)NZ’% exp(—2\|J| /&T) { 1+exp(—2\| T | /kT)

XA(”)"’

For v=1,

+exp(—4)\|J[/kT)+---}, (B10)

so that X,® — 0 as T"— 0 only for v=1.

APPENDIX C: HIGH-TEMPERATURE
EXPANSIONS

At high temperatures the familiar Bessel-function
expansion for small argument is

0 (%z)2n+(1/2)v—l

1,2 1(2)= .
(@) Eo(n)!(n-f-%v——l)!

from which all the various functions may be obtained
exactly as was carried out in detail at low temperatures.
Because no coefficients in (C1) are zero for »=1 or 3,
we shall see that, in contrast to the low-temperature
behavior, each of the functions has a similar algebraic
structure for all values of ».

Moreover, the coefficients in all the series except the
susceptibility are so simply related to one another that
we can express them all in terms of one basic set of
coefficients H,*. We define the H,® by the energy
expansion

En=—y,= (—,,)\x)[1+§1 H,.(")(i:c_)z"]; (C2)

therefore, the free energy is!

¢<~>=("M)[%+i (2n+2)“H..‘”)<>‘Tx)2n:|- (c3)

v n=1

(Ch)

Note that both the internal energy and the free energy
vary as J/kT at high temperatures. Hence, it follows
that the entropy! and specific heat,

so=(Z5Y 3+ £ 2”“3,.0(%——’5)“] (ca

n=12n-+2 v

20 Hence the reduced susceptibility x~7x diverges as 7! [or
y=1]. When we generalize from the linear chain to a Bethe
lattice of arbitrary coordination number ¢ (see Ref. 15), we have
y=1 for both x and X since the phase transition occurs at a non-
zero critical temperature.
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and

@<,)=(_”‘_2>[1+§ (2n+1)H,.<v>()‘—x-)zn], (CS)

v n=1 v

go to zero as (J/kT)? at high temperatures.

The coefficients H,® defined by Eq. (C2) are ob-
tained directly from Egs. (C1) and (11). For general
v and arbitrary order » we find

H, "=y 3 2m41)"1Gn®Fon®, (C6)

me=(
where

Gn®=T()/[T(m+ )T (m+)4"],  (C7)

and the coefficients F,_ are obtained by means of the
recursion relation

1
Fg(")= - Z Gk(y)Fl_k('); FOE 1.

k=1

(C8)

The first few coefficients are thereby found to be
H\O=—y/(+2), (C9a)
HyO' =2/ (v+4)(+2), (C9b)
H3® = —3(Sv+12)/(v+6)(v+4)(v+2)?, (C9c)

and
H " =24Tv+24)/(v+8)(v+6)(v+4)(»+2)2.  (C9d)

The coefficients K,® in the high-temperature series
for the susceptibility

g e (]
X)) = —| + n N —
vkT n=1 v

are not related in a particularly direct fashion to the
H,® because y, occurs in both the numerator and the
denominator of Eq. (20); however, they may be ob-
tained by the relation

(C10)

[n/2]
Kn-}-l(y): z Hm(v)Kn—2m(y),

m==0

(C11)

where K,®=2 for purposes of Eq. (C11), and the
symbol [37] denotes the largest integer less than or
equal to 3n. Thus we find K, =K,"=2,

K;®=4/(v+2), (C12a)

K®==2(0—2)/(v+2), (C12b)

K;»=—4(3v—4)/(v+4)(+2), (C12¢)
and

K¢ =403—22—6v+8)/(v+4)(v+2)2. (C12d)

Since it is not difficult to obtain numerical expressions
for the high-temperature coefficients H,® and K,®
directly from Egs. (C6) and (C11), we will not list
specific values here. It is interesting to note, however,
that a knowledge of even the first five H,® and the
first ten K,® is sufficient to reproduce the curves in

parts (b) of Figs. 1-5 down to fairly low temperatures
(J/kT~1).



