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Ising Model with Second-Neighbor Interaction. I. Some Exact Results
and an Apyroximate Solution
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The square Ising lattice with unequal first- and second-neighbor interactions has been considered. Among

the exact results discussed, we show that the lowest energy state can be ferromagnetic, antiferromagnetic,
or superantiferromagnetic, and the transition temperature should vanish in some cases. It is also shown

that this problem is a special case of a more general problem arising in the statistical consideration of the
hydrogen-bonded crystals. A well-defined approximation procedure is then introduced to solve the latter
problem and to derive the (approximate) critical condition and expressions for the thermodynamic func-

tions. The critical temperature thus determined is exact for the regular Ising lattice and for the lattices
with T,=O, while for the equivalent neighbor model the error is less than 2%. The specific heat possesses
the usual logarithmic singularity in all cases.

I. INTRODUCTION

''N' the last forty years, a considerable amount of
~ ~ interest has been centered on the subject of the
Ising model' of magnetism. While numerous papers have
been written on this subject, the progress toward the
understanding of the diGerent aspects of the model has
been surprisingly slow. For example, Onsager's classic
j.944 paper' on the exact solution of the two-dimensional
model was published some twenty years after the in-
troduction of the model by Ising. In recent years, a
number of new approaches have provided alternate and
simpler derivations of the Onsager's solution. '—' How-
ever, despite the significant amount of eGort made in
these years, a number of related problems still remains
essentially untouched. ' One of them is the so-called
"crossed bond" problem.

For a better description of real magnetic systems, it
is desirable to remove the restrictions attached to the
original Ising magnets. The most innocent modi6cation
seems to be the extension of the interaction into a cer-
tain range. However, once the interactions are allowed
to "cross" each other thus forming crossed bonds, the
conventional methods of treatment invariably fail and
the model is no longer soluble. The only progress made
in connection with this crossed-bond problem is the
Pade study made by Domb and Dalton. ' Through the

~ Work supported in part by National Science Foundation
Grant No. GP-9041.

' K. Ising, Z. Phys. 31, 253 ()925).' L. Onsager, Phys. Rev. 65, 117 (1944).' C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960).
4 P. W. Kasteleyn, J, Math. Phys. 4, 287 (1963).
'L. Schultz, D. Mattis, and E. Lich, Rev. Mod. Phys, 36, 856

(1964).
C. A. Hurst, J. Math. Phys. 7, 305 (1966).' For a description of the outstanding unsolved Ising problems,

see, for example, H. S. Green and C. A. Hurst, in Order-disorder
Phenomena (Wiley-Interscience, Inc., New York, 1964), Chap. 7.

C. Domb and N. W. Dalton, Proc. Roy. Soc. 89, 859 (1966).
See also note added in manuscript.

analysis of high-temperature expansion series, they de-
termined some critical indices and estimated the loca-
tion of the critical point for some models with extended
range of interactions. As their discussion was restricted
to the equivalent neighbor model (same interaction with
all neighbors), it does not answer some pertinent ques-
tions of interest. For example, it may be of interest to
know the dependence of the critical temperature on the
lattice constants. ' In the present paper, we consider the
quare Ising lattice with uneggal first- and second-neigh-
bor interactions and with no external field. We shall
discuss some exact results and obtain an approximate
solution which gives (approximate) answers to these ques-
tions. The approximation involved is a straightforward
generalization of a method used earlier by one of us in
the study of the ferroelectric phase transitions. "It has
also been noted by Gibberd" that this procedure should
be useful in the study of the unsolved Ising problems.
However, through the use of a dual transformation, we
are able to essentially eliminate the crossed bonds and
cast the problem into a form suitable for a straight-
forward application of the approximation.

Our method of approach also constitutes the basis for
obtaining the exact low-temperature series expansions
which are usually more difficult to derive. The results
on the Fade approximant studies on these series will be
reported subsequently. " Later on, we hope to study
the eGect on the inclusion of corrections and eventually
discuss some exactly soluble Ising models with crossed
interactions.

In Sec. II we discuss some exact results and, by means
of the introduction of the dual lattice, transform the

' For a study of this problem for the regular Ising lattices, see,
for example, C. Y, Weng, R. B. GriSths, and M. E. Fisher, Phys.
Rev. 162, 475 (1967)."F.Y. Wu, Phys. Rev. Letters 18, 605 (1967};Phys. Rev. 168,
539 (196S)."R.K. Gibberd, Phys. Rev. 171, 563 (1968)."This is now under study by C. Fan, W. W. Yeh, and F.Y. Wu.
See also note added in manuscript.
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problem is considered in some detail and solved under
a well-defined approximation in Sec. III. In Sec. IV, we

apply this approximation procedure to the Ising model
to derive the critical condition and expressions for the
thermodynamic functions,

II. SOME EKACT RESULTS

We consider an array of QEX+cV spins (s=-,') ar-
ranged at the vertices of a square lattice. The inter-
action Hamiltonian is taken to be" FIG. i. The square Ising lattice with 6rst- and

second-neighbor interactions.

Z= Q exp( —PK), (2)

where P=1/kT An immedi. ate observation is that the
replacement of J by —J, while holding J' fixed, leaves
Z unchanged. That is, we have

(3)

Equation (3) is well known for the simple square lattice
(J'=0). To see that this is also true for lattices with
nonvanishing second-neighbor interactions, we divide
the lattice into two interlacing sublattices. Due to the

where the superscript i (i= 1, 2) restricts the sum to all
ith neighbors of the lattice. The lattice is illustrated in

Fig. 1. Here, in agreement with the usual convention, a
positive J or J' tends to align the spins. Because of the
competing eGect between the first- and the second-
neighbor interactions, the lowest energy state could be
any of the following: (i) ferromagnetic, (ii) antiferro-
magnetic, and (iii) superantiferromagnetic. These situa-
tions are illustrated in Fig. 2. The superantiferromag-
netic state is so named because the lattice can be viewed
as a superposition of two antif erromagnetic sublat tices.
Since there are altogether 2$ first-neighbor and 2$
second-neighbor interactions, the total energy for the
three cases are, respectively, (i) 2N(J+ J')—, (ii)
2E(J—J'), and (iii) 2XJ'. It is then easy to see that
the lowest energy state is ferromagnetic if J)2t J'~
(region I), antiferromagnetic if J&—2~ J'~ (region II)
and superantiferromagnetic if 2J'& —

~
J

~
(region III).

These three regions are shown in Fig. 3.
The problem is to evaluate the partition function

fact that the two sublattices interact with the first-
neighbor interactions only, the replacement of J by —J
has the same e6ect as reversing all the spins on one of
the two sublattices. Therefore, the partition sum (2) is
unchanged.

For J'=0, the lattice reduces to the usual simple
square one with an interaction —J which is ferromag-
netic for J)0 and antiferromagnetic for J&0. For J=0
(the J' axis), the lattice is decomposed into two inde-

pendent simple square lattices. Each of these simple
square lattices is ferromagnetic for J'& 0 and antiferro-
magnetic for J'&0, while the over-all lattice is either
ferromagnetic or antiferromagnetic for J'& 0 and super-
antiferromagnetic for J'&0. It is also to be noted that
the transition temperature vanishes on the boundary
2J'= —

~
J~. As will be more clearly seen later in Sec.

IV, this result is due to the fact that on this boundary
the lowest energy state is no longer unique, a pheno-
menon that is also responsible to the vanishing of the
transition temperature for the antiferromagnetic tri-
angular Ising lattice. "

We now introduce the dual lattice D which is formed
by drawing the perpendicular bisectors to all the lattice
edges of the original lattice L."It is immediately evi-
dent that the simple square lattice is self-dual in that
the dual lattice is topologically identical with the orig-
inal one. For any spin configuration on L, the positive
spins cluster together forming isolated islands in the
sea of negative spins. If we enclose these "islands" by
drawing polygons on the dual lattice, each spin configur-
ation on L is then mapped into a polygon configuration
on D. Therefore, instead of considering the spin con-
figurations on J., we may consider the polygon con-

Fn. 2. Spin configu-
rations of the lowest
energy state. (a) ferro-
magnetic, (b) antiferro-
maqnetic, (c) super-
antIferromagnetic.

(c)

"Our discussions can be easily extended to the case of unequal horizontal, vertical and diagonal interactions."G.H. Wannier, Phys. Rev. 79, 357 (1950).
'~ For a more detailed discussion on the duality transformation for two-dimensional lattices, see, for example, Sec. 3.4.2 of C. Domb,

Adv. Phys. 9, 149 (1960).
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I1I: -IJ) & 2J

Fro. 3. The three regions in the J-J' plane. The ground state is
ferromagnetic in region I, antiferromagnetic in region II, and
superantiferromagnetic in region III. The transition temperature
vanishes on the boundary —

~
J

~

=2J'.

figurations on D. For the simple square lattice with
nearest-neighbor interactions only, the correct Boltz-
mann factor can also be accounted for by assigning
appropriate bond weights to the dual lattice. This fact,
together with the self-dual property of the simple
square lattice, has essentially been used by Kramers
and Wannier to determine the transition temperature"
before the exact solution was known. When the second-
neighbor interactions are included, however, the situa-
tion is somewhat complicated. But the correct Boltz-
mann factor can still be generated by assigning vertex
weights to the polygon configurations on the dual lat-
tice." The Ising problem involving crossed bonds is
then transformed into a well-defined statistical problem
related to the dual lattice.

To see the details of this transformation, it is con-
venient to break each horizontal and vertical inter-
action into two equal parts of strength —

&J each and
focus our attention to a typical lattice point on the dual
lattice as shown in Fig. 4. There are now eight possible
vertex configurations for a typical lattice point on D as
shown in Fig. 5. From the associated spin configurations
on L,, which are also given in Fig. 5, it is not dificult
to derive the appropriate vertex weights needed for each
kind of vertex. For example, for the vertex (2) the
interaction energy is 4(—-,'J)(—I)+2(—J') =2(J—J')
and the appropriate weight factor is the corresponding
Boltzmann factorexpL —2P(J—J')j.Thepartitionfunc-
tion of the Ising model under consideration therefore
becomes

The first equality is obtained by interchanging all bonds
into holes and all holes into bonds. In particular it re-
duces to Eq. (3) upon substituting the weights cd; from
Fig. 5. The second equality is the result of the inter-
changing of all bonds and holes in the horizontal direc-
tion and the third equality for the same changes in the
vertical direction. These relations will be useful in later
discussions.

-J/2
Fro. 4. A typical lattice point

on the dual lattice D (denoted
by the dotted lines). Only half
of the horizontal and vertical
interactions on the Ising lattice
L are associated xvith this lattice
point.

The factor 2 comes from the fact that the reversing of
all spins leaves the polygon configurations unchanged.
The vertex weights are listed in Fig. 5.

The Ising problem under consideration now appears
as a special case of a more general problem involving
the counting of weighted polygons on D for which the
vertex weights are arbitrary. Now it is known that this
general problem is identical to the statistical problem
arising in the consideration of hydrogen-bonded crys-
tals. "However, it is unfortunate that the technique de-

veloped for the solution of the latter problem' " is
inapplicable here because of the violation of the so-

called "ice condition" in the present case. If we number
the eight diBerent kinds of vertices from 1 to 8 as shown

in Fig. 5, the technique which proves useful in treating
the hydrogen-bonded statistical problems" "explicitly
uses the fact that only the vertices 1 through 6 are
considered (the ice condition). Undoubtedly the inclu-

sion of vertices 7 and 8 makes the problem more diffi-

cult and the exact solution is not known at the present
except for a few special cases."

It is useful to point out at this point some symmetry
relations of the partition function (4). If we write
(cd;= the weight of the 2th kind of vertex)

Z= Z(cdl &cd2&cd8&cd4 & cd5&cds&cdT&cd8)

and consider each empty lattice edge without bond as
a hole, then we have the following bond-hole symmetry
relations:

Z(cdl&cd2&cd8&cd4
&

cd5 cd6 cd&T cd8&) &Z(cd2&cdl&cd4&cd8 & cd6&cd5&cds&cdT)

= Z(cd4&cd8&cd2&cdl &' cd 2&cds&cd5&cd6)

=Z(cds&cd4&cdl&cd2& cdsb»&cds&cd5) .

Z=2 g(vertex weights) . (4)
all polygon

con6gurations on D

6H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252
(1941);ibid, 60, 263 (1941).

"This observation is due to E. H. Lieb (private communica-
tion).

"E. H. Lieb, Phys. Rev. Letters 18, 692 (1967); 18, 1046
(1967); 19, 108 (1967); Phys. Rev. 162, 162 (1967).' B. Sutherland, Phys. Rev. Letters 19, 103 (1967); C. P.
Yang, Phys. Rev. Letters 19, 586 (1967); B. Sutherland, C. N.
Yang, and C. P. Yang, Phys. Rev. Letters 19, 588 (1967)."F.Y. Wu and C. Fan (unpublished).
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(8)

Fto. 5. The spin con6gurations
on L and the associated bond con-
Bgurations and the vertex weights
on D.
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III. FREE-FERMION APPROXIMATION

In this section we consider the problem of the evalua-
tion of the ps, rtition function (4) with arbitrary vertex
weights. This problem has been considered by Hurst and
Green from a somewhat diferent point of view. In their
consideration of the most general (planar) Ising lattice, "
they introduce a sublattice at each vertex of a simple
square lattice. Various Ising lattices are then generated
by making special choices for the sublattice. Clearly, if
the internal structure of these sublattices are compli-
cated enough to include crossed bonds, it is possible to
generate arbitrary vertex weights and the problem is
then identical with ours.

In order to attach a well-defined meaning to the ap-
proximation procedure that we shall introduce, we fol-
low Hurst and Green' in rewriting the partition func-
tion (4) as the vacuum expectation value of a linear com-
bination of products of fermion operators (4)e=+E)

g=(oI g (cd)+cdea, &" a, &" a &"a 4&"+cdea, (t)ta. &e)

+(d4a)' a)—4 +cdea)' a4' )+c—dea)'.(1)f . (1) .(2)f, (1) .(1)f . (2)

where a,f and a,. are the bond creation and annihilation
(fermion) operators at the jth vertex. The superscript
1 refers to bonds in the horizontal direction, 2 refers to
bonds in the vertical direction, and

I o) is the vacuum
state defined by a, I

o)=0. Using the anticommutation
relation of the fermion operators, it is easy to reduce
(6) into the following expression:

g=~('(oIT exp' I&o(j)+K(j)7lo), (7)

where

CO3 CO4 CO5

+e(j)— a.&e)ta. (4)+ a.())ta. 4())+—a.(e)ta. )())
CO1 CO1 CO1

CO6 CO7 CO8

+ g. ( )fgj ( )+ g.( )fg. ( )f+ g. (2)g. 1(
CO1 CO 1 CO1

ff (j)— a, (e&ta, (()ta, (e&a, )&))

CO1

6=CO1CO2+ CO3CO4
—

CO5CO6 COVCOS,

"See Sec. 5.3 of the monograph cited in Ref. 7.

and T is the operator that orders the indices from j= f
to j=X.

The problem is now reduced to the evaluation of the
S-matrix in the form of (7) with an interaction Hamil-
tonian which includes terms quadratic and quartic in
the field operators. It is the presence of the quartic
terms that makes the problem insoluble by the existing
techniques.

If 6=0, the exponential contains only the quadratic
terms and the evaluation of the partition function Z
can be carried out in a variety of ways. 2' In Appendix A
it is evaluated by the standard 5-matrix technique. '
The partition function Zp is found to be given by

lim —lnZp ——
~""E SX2

d8 dg InLce+2P cos8

+2y cosc))+28 cos(8—P)+24 cos(8+@)7, (g)

where the subscript of Zp refers to the case 6=0 and

CK=(dc +Cd +(d +Cd

P=cd)&de Cde&d4,

P =CO1CO4
—

CO2CO3,

8=CO3CO4
—

COVCO8 ~

6=CO3CO4
—

CO5CO6.

As one easily checks, the symmetry relation (5) holds
for this solution. The critical point for the expression
(8) has also been investigated by Hurst and Green and is
given by"

cd)+cde+cde+cd4= 2 max(cd), cde, cde, cd4) . (9)

If AWO, this problem corresponds to the consider-
ation of an interacting many-fermion system and the
exact evaluation of (7) cannot be carried out. However,
as pointed out by Gibberd, " a meaningful approxima-
tion as suggested by the structure of Kq. (7) is to ignore
the interaction Hamiltonian H1. We shall refer to this
procedure as the free-fermion approximation. For the
potassium dihydrogen phosphate (KDP) model" of fer-
roelectrics, this corresponds to the consideration of the
modified model" and one obtains the correct critical
temperature and the correct critical behavior of the
specific heat. For the I" model" of antiferroelectrics,
this approximation also gives the correct critical tem-
perature as well as the correct (continuous) behavior
of the specific heat at the critical point. It is then hoped
that for other unsolved problems this procedure is per-
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haps comparably useful in furnishing some of the vital
infarmations. Since Ho does not contain co2, the free-
fermion approximation is essentially to adopt the ex-
pression (8) for Z but to replace 402 by

0» = (005403+ 407403 0&»074)/4&71
&

in order to make 6=0 an identity for the set of weights
(401 402003,074,0»,074,077+»} As . discussed in Appendix B,
corrections to this approximation can be written in a
power series in 6/&012. Due to the symmetry relation (5),
the approximation can also be made in a variety of
ways. For example, from the 6rst equality of (5) we

may also make the replacement of 071 by coi=(405403

+407403—0»404)/402 in (8) and expand the corrections in a
power series in 6/4022. Among these alternatives, we
shall choose as the best approximation the one whose
correction expansion parameter is the smallest. There-
fore, we have the following working prescription for
the free-fermion approximation: Pick the largest among
the weights co~, co2, w3, and A&4 and modify the weight
of its conjugate" to make 6=0 an identity. The ap-
proximate partition function is then given by Zo as a
function of these weights, including the modified one.
For example, if we find co~)~2, ~3, co4, then use ~. de-
fined by (10) and write

Z»pprox ZO(4&71&4&72&003&4&74&405&0»3&4&77) ~

weights associated with the dual lattice have been tabu-
lated in Fig. 5

401= 1/yz,

402= z/y,

M3= Q)4=/ )

(13)

where
6=7= cps= 2

&

y
—e—2K' z—z 2K K—=PJ K&=PJ&

It is convenient to discuss the different regions in the
J-J' plane separately.

off,pp„„=—4(K+K')+
0

Xin[1+ 2z'y4+ (2z'y' —z'y4) '

+2zy'(2z2y' —z2y' —1)(cos8+ cos&t&)

A. Region L J&2~1'~

This is the ferromagnetic region for which ~~~& co2, co3,

cv4. Hence by our prescription we replace ao2 by ~2 given
by (10) which now reads

401
——yz(2 —y') .

The free energy per spin f,ppr p~ is given by (8)

The critical condition is given by

GOg= C02+ Ma+4)4
&

lf My) (d2

C02= My+(03+C04, if My((d2.

(12a)

(12b)

+4(z'y4 —z'y') cose cos4]. (14)

The critical condition (12a) now reduces to

(1 zy2)2 —2z2y2

We also have a graphical interpretation for this ap-
proximation. For co~) co2, coa, co4, the leading terms in the
expansion of the partition function (4) consists of poly-
gon configurations with small number of vertices. After
drawing out all polygon configurations with a given
length of circumference, one is easily convinced that,
among the eight different vertex configurations, it is
the cross-over type [vertex (2)] that occurs the least
number of times. For example, it does not appear in
graphs containing less than eight bonds. Among the
seven topologically distinct connected polygon graphs
with a total of ten bonds, only one graph contains a
cross-over type vertex. Similarly among the 34 different
graphs with a total of 22 bonds, only nine contain the
cross-over type vertices. Therefore it is reasonable to
expect that the error introduced will be minimized by
modifying the weight of this particular type of vertex.

IV. APPLICATION TO ISING MODEL

We shall now apply the free-fermion approximation
to the Ising model considered in Sec. II. The vertex

"We define the conjugate of a vertex configuration as the con-
figuration obtained by changing all the bonds into holes and holes
into bonds. For example, vertices {1)and {2)are conjugate to each
other.

OI
e2K ~e—2K'+ e

—4K (15)

This relation is exact for A. =0 which yields the well-
known result'"

e 2K=M —2=0.42422

for the simple square lattice. It is also exact for
E= —2K' in producing T,=O. The vanishing of the
critical temperature is a common situation in the con-
sideration of the hydrogen-bonded crystals. For ex-
ample, it happens for the KDP and the F-model with
the inclusion of an external field. " In general, if the
ground-state of a system is degenerate with a macro-
scopic degree of degeneracy, the transition temperature
then vanishes because there would be no preferred
state at low temperatures. In the present case, the
vertices (1), (3), and (4) have the same energy and,
as a result, the lowest energy state is no longer unique.
Therefore, the vanishing of the transition temperature
is an exact result. For E =E', the equivalent neighbor
model, Eq. (15) gives

z
—2K ( [~1+(1 2~2/27)1(2]1/3

+ [-', —(-,' —242/27)'"]'"} '= 0.68946

"E.H. Lieb and F. Y. Wu {unpublished).
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e2( Kj +e—2K'+ e—4K' (17)

whereas the Pade value is e 2K=0.6837.' The agree-
ment is surprisingly good. However, for E=0, our ap-
proximation gives

s-2»'= (VS—I)/V2= 0.517638 (16)

while the exact number should be e 2K'=0.4142I ~ .
This disagreement is somewhat expected because the
expansion parameter in connection with this approxi-
mation is now za(1 —y')' and is largest for K=0. Be-
cause the deviations from the exact results are in the
same direction in these cases, it is conceivable that our
approximation gives an upper bound to the true tran-
sition temperature. In fact, we expect our approxima-
tion to be accurate within a few percent in determining
the critical temperatures, at least in the region

l Jl

The other thermodynamic functions can be computed
from (14). We include the details in Appendix C. As in
the case of the regular Ising lattices, the specific heat
has the same logarithmic singularity both above and
below the critical temperature.

B. Region II. I(—2l J'l

This is the antiferromagnetic region for which cv2&~ F1,
c03, co4. We may proceed in the discussions according to
our prescription by modifying c01. However, it is more
convenient to use the identity (3) to conclude that the
thermodynamic properties in this region are identical
with those in region I, except with the replacement of
J by —J. Therefore, in combining the two cases to-
gether, the critical condition in both regions I and II
(2J') —

l Jl) is

The critical condition is now given by

or, equivalently,
C04 =Ale+ C01+Ct72

cosh2E = 2 sinh'2E'. (19)

For E=0, the lattice decomposes into two independent
sublattices and the critical condition (19) reduces to
(16). The deviation of other thermodynamic func-
tions is also given in Appendix C. Here, as in the pre-
vious cases, the specific heat again possesses a logarith-
mic singularity in the critical region.

APPENDIX A

The evaluation of the partition function (7) for the
special case 6=0 will now be given. For convenience,
we deine a set of four operators for each lattice site j

(A1)
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The conclusion on the singularity of the specific heat With the help of Eq. (A1), (7) can be rewritten as, after
is unchanged. setting &1=0,

C. Region III
I
Jl)2J'

This is the superantiferromagnetic region with or3= eu4

&c01, co2. According to our prescription, we replace c03

by cpa= (cdacds+cdacda cdacda)/cd4= 2/y——1/y' and the free
energy per spin is then given by

z,=~, (0ITt:expa Z pZ A,p (j)g (j)jlo&, (A2)i1n e

where the summations over p and c7 extend from 1 to 4
and fEp,j is a skew-symmetric matrix given by

Pfapprox= 2& +
8X2 O

0
Cda/Cda

Cd 4/Cd 1

.COg Coy

—4)8 C01

0
Cde COI

Ng C01

—4 1
—(de 401

0
COy COI

—N5 N1

2/ 1
(A3)—Ny 401

0

Xln 1+z'y '+—+(2y '—y
—4)'

+2y ' co& z(2y '—y ')——

+2y ' cos8 —(2y '—y 4)—z

Equation (A2) can be evaluated by the standard
technique. After expanding the exponential and using
the Wick's theorem to evaluate the vacuum expectation
values, the following expression is obtained':

N

S ' lnZs ——2 p in{detpI —KAj)+lncda. (A4)

y4(y —4
y

—2) cosy cos4, (18) In Eq. (A4), I is the identity matrix and A is the Fourier
transform of the lattice-ordered contraction matrix,
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That is,

where

0
0

CO

. 0

0
0
0

0
0
0

0
mt'

0
0

ments Gp"(r, M)

M13D(r)Gp"(r, M) = —
M&M6M7(M

"—M "),

M13D(r)Gp&2(r, M)=M22M7M& 'i"—M1M8M7M "—M2MCMsM
"

+cps(MaM4 M—5M6 M—7Ms),

cd=—exp(27ri/N) .

Substitution of (A3) and (A5) into (A4) now leads to
Eq (g).

(A5) M13D(r)Gala(r M) (Mia+M&M22)M
—r M12M2M

—
r(M rm+M™)

+Ml M4+M Ml(M3M4 MSM6)

+M Cd i (Cd aCd 4 Cd 7cda),

APPENDIX B

In this Appendix we evaluate the partition function
(7) by the perturbation technique. The method is es-
sentially an extension of that given by Gibberd and
Hurst. "First the expression (7) can be rewritten as

co

Z=M2"(oi T Q —(p B,(j)j"S($)io), (81)
n-0 g~

Mi D(r)Gp"(r M) =cdi M6M &'+m&"—cdicd4cdscd m'

M1M8M6M +M6(M3M4 M5M6 M7MS) l

Ma'D(r)Gp" (r M) M7(M5M6 M3M4+M7M8) cd1 cdlcd

+071C04G07CO +M 1GO~VGO

cdiaD(r)G622(r, cd) =M1M5M7(M "—cd'),
cdi D(r)Gp" (r,cd) = Mi'M5M "~'" cdicdacdac—d

M&M4M5M +Ma(MaM4 M5M6 —M7MS),—

where

S(N) =exp( P Hp(j)).

cdi'D(r)Gp" (r, cd) = (cdi +M1M4 )M Mi'Ma

+M4(M5MS+ M7MS —M3M4)

+Ml(M3M4 M5M6)M +Ml(MSM4 M7MS)

+M r M12M4M™(M—r+—M ') (85)

If we keep only the first term in (81), then we have
exactly (A2) which is the free-fermion approximation.
The other terms in (81) provide corrections to the free-
fermion approximation in a power series in 6/Mia. For
example, the first-order correction is

Cdi D(r)Gp &(r,M) = —(M&3+.M1M2 )M /M12M (Cdmr+Cd )
—CO™N1Q)3074—GdgM6

M M1 C03(d4 M7MS

Ma(M7Ms MaM4+M5M6)+Mi M4,

M13D(7)G 32(7 M)
—

M&2M M(m+&ir+M M M Mmr

+MiM2M5M Ma(MaM4 —M5M6 M7MS) lZa=M1~ (oi T—(g A4(j)A3(j)A2(j)A'(j)S(A'))io).
(82) M&3D(r)Gpaa(r M)

—
M M M (M M )

It is convenient to introduce the free one-particle ~1 i"i"o i"~"j— "7i"" "'"'+"~"Si
Green's functions +~1-~8~ ( ')"—~1~ ~8~

Gp" (u v) —= (o i
TA '(u) A '(v) S(cV) i o)/(o (

TS(A')
i o) . (83)

+M1M2M6M Ms(MaM4 M5Cds M7M8) i

Following Gibberd and Hurst, "we can evaluate (83)
by making use of the linked-cluster theorem and thus
obtain the 4X4 matrix

LGp"(u v)j=ilr —' g M"&"-"1A(I—KA]-'
r 1

M13D(r)G 42(7 M) Mmr(M13+M M 2)+M 2M Mmr(Mr+ M r)—
+Ml M2 M Ml(M3M4 M7M8)

M4(M5M6+M7MS MaM4)

—
C01 COSM4

—%5&6 GO

M, 3D(r)G64'(r M) = —cd, 'cd M &
—'i "+M,cd M8Mm'

+M1M2M8M +Ms(M5M6+M7M8 M3M4)
N

=X ' 2 M" &" "'EG *'(r M)j (84) M13D(r)Gp" (r,cd) = —Micdscds(cd "—cd")

where
D(r) =det(I —KA) .where Gp"(r, cd) is essentially the Fourier transform of

Gp"(u, v). For completeness we now list all matrix ele- From Eq. (84) we observe the translational invariance
of Gp"(u, v) and write

~'R. W. Gibberd and C. A. Hurst, J. Math. Phys. 8, 1427
(1967). Gp"(u —v) =—Gp" (u, v) . (86)
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With these notations and the general relation and for the superantiferromagnetic case (—I
J

I
)2J')

—8J'
I zy + +4y +2y —6y z

I

, t'

z' jthe first order correction (82) can be written as (in the
limit 1V—y~)

(oI TA4(j)Az(j)A'(j)A'(j)S(&a) I o) C=2J',
=(oI TA4(j)A'(j)S(~) I o)(oI TA'(j)A'(j)S(~) I o)

—&olTA'(j)A'&j)S("&lo&&oiTA'(j)A'(j&S(") Io) 4I JI I~z2 -4 y iI+ ~ -2 z(2y-z y-4)+
+&oI TA3(j)Az(j)S(~) I o&&oI TA4V)Ai&j)S&~) I o),

(87)

gq = li)'@02(ziu )I GO 8(0)G '(0)—Go (0)GO '(0)
+Go"(0)GO"(o)j- (118)

Similar expressions can be written for higher-order cor-
rections. Therefore, the partition function (7) is now
given by a power series in 6/~&' with the coeScients
expressed in terms of the one-particle Green's functions.

In the thermodynamic limit, all the one-particle
Green's functions are expressible in terms of double
integrals with D(r) appearing in the denommator of
the integrands. As in the consideration of Zo, the singu-
larity of these integrals is determined by the zero of the
expression D(r). Therefore, a collection of finite terms
in the perturbation expansion will not modify in any
way the singularity of the partition function Zo. Any
signi6cant modi6cation would have to come from
the summation or a partial summation of the ex-
pansion series, which is a subject still remaining to be
investigated.

AppENDIx c
This Appendix is devoted to the evaluation of the

thermodynamic functions for the Ising model under the
free-fermion approximation. The free energy per spin
f,» „hzaxs been computed and was given by (14) and
(18).The evaluation of the energy E from these expres-
sions is then straightforward, although tedious, and
upon which we shall now proceed.

The expression for the energy per spin is

1
+costf)y

—' z(4y '—3y ') ——

b=4IJI —y-' —L2y '—y 'j+z
I)

1
+By' y '~ z—(4y '—3y '))+2y 'cozy(1 —2y ')

s

~
—4

d=1+z'y-'+ —+(2y-' —y-')-'
Z2

+2y—'co& z(2y '—y ')——

1
e=2y ' -(2y '—y ')—z —4y '(1—y ") co&.

In these expressions we have s= e 'I

The t3 integration can be performed by the use of the
following integration formula:

a+b cos8 b ty bd 8(d' e')—
d0 = 2yr-+2yrI u ——,(C2)

d+e cos8 e & e (d' —e')'"

where
8(*)=1, x)0

8 2

(Pf».-*—) =C+-
BP

=0, x(0.
0+b cos8

, (C1)
d+e cos8 A phase transition occurs at d' —e'= 0. (C3)

where for the ferromagnetic and antiferromagnetic
cases (—I JI (2J')
c=—4(I JI+J')
a=4I JI {2(2z'y2—z'y4)'+2z'y4

+cosp(6z'y —3z'y —zy') }+8J'{(2z'y' —z y') '
—z'y'(2s'y' —z'y' —2)+ cosg(4z'y4 —3z'yz —z'y') },

b =4
I
J

I
{6z'y'—zy' —3z'y' —cos4 (4z'y' —4z'y4) }
+8J'{4z'y' —2zy' —3z'y' —cos4 (2z'y' —4z'y') },

d= 1+2z'y'+(2z'y' —z'y')'+2z'y'(2z'y' —z'y' —1) coQy

e= 2zy'(2z'y' —z'y' —1)—4z'y'(1 —y') cosP y
d' —e'= S(co+—A) (co+—8), (C4)

We note that the remaining @ integral now contains
two terms, one involving the square root of a quadratic
form in co& and one free from the square root. The
term free from the square root can be integrated and
expressed in terms of trigonometric functions while the
one involving the square root, i.e., the second term in
(C2), gives rise to the elliptical integrals after suitable
transformations. We now carry out the ft integration.

(i) For the ferromagnetic and the antiferromagnetic
cases (with J yI JI ), the quadratic form in cos4) inside
the square root sign is
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where

S=—4um(1 —u') (1—z'r'),
A —= (1—u)/2u(1+sr)+u(1+zr)/2(1 —u), C5

8= (1+u)/2u(1 —sr)+ u(1 —zr)/2(1+ u), with
(e= (cosd —x)/(1 —x cosy) (C7)

It;s possible to satisfy (C ) '"'y "'3=1 which leads
t the critical condition (17).

The transformation into the varia

with

s—:1—y

t' —2 y
t'=1—2y .

x—=2u/(1 —sur), T&T,
=—(1—sur)/2u, T& T,

(C6) then leads to the following:

f

�2''
d(f) (d' e'—) '"= K—(k), T& c

ZQ

1
=—E(k-'), T& T„

ZQ

2g k
d(f) co&(d' e')—'"= E(k)—

xsQ

k(1—x)
II(—x', k), T&T,

xZQ

1 (1—x')
K(k-') — ll( —x', k-'), T&

xs'Q xsQ

+ (1+v cosd) —'(d' —e' —'"= vk(1 —xm)

E(k)+ II(—m', k),
su(1+vx)'m

T(Tc

x v(1 —x')
E(k-')+ 11(—m', k- ),

(v+x)zu zu(1+vx)'m

k=4zuL(I+zur)' —4zu] ',
v
—=2(z—u) (1—zur) —',

m=—(v+x)(1+vx) ',

te elli tical integra s o t e rs ate e i
'

1 f th first and third kinds deined by:and E II are, respectively, the complete e ip

K(k) =
x/2

(1—k' sin'8) —'"d8, II(n, k) =
0

(I+n sin'8) '(1—km sin28) '(2d8.

Kith these formulas, we find

2J'-—2+ L4 j ji (1+zru)+8J'(2zu —1—u'r)/sj~. ..= -21~1+2 'l~

Q 3QS
8J'~~ — + —-+ +2 ——kK(k)y 4/Z// 2zu. +2y' + /+» ~ "—~ y ——

zv ksi

1—x2

II(—x', k)
x

kv 1—x'
E(k)+ II(—m' k), (C8)+ +167'

k(1 sur) —ks(1 —zur s

—+II —m' k 'r)r, ,
'

kE(k) -+ E(——k-') and kII(—m', k) ~ II(—m, kEz )z,——Ez (z, with kE

1 2tq-—
+ 4( I i

(1—gyr)+((J'(21 ——sy'+ —
) kK(k) k—
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(ii) For the superantiferromagnetic case, it is convenient to introduce

I:—Zy r=2 —y
' s=—1—y ', t=1—2y '

Again we find

but with

d' —e' =S(cos4 —A) (cos4 —B)

S=—4s—4u'(1 —u') (1—z'r')

A =s'—(1 u)—/2u(1+ sr)+ u(1+ zr)/2(1 u)—z',
B—=s'(1+24)/2u(1 —sr)+ u(1—zr)/2(1+ u)z'.

The phase transition occurs at A= 1, which is identical with the condition (19).The transformation (C7) is used
again but with a di6'erent definition for x

2(u, +2u' —u'y ')
g= T&T~

Z'+y '—Z'N2 —4u2 —e4+4m'

The following formulas are used:

z2+y 4 z2u2 4u2 —u4+4zu2
T&T, .

2(u+2u' —u'y ')

dP (d' e')-"—=ky'K(k) T & T

=y'E(k-'), T& T..

ky2 ky2(1-*2)
deco&(d2 e') —'"=- E(k) —II(—x' k) T&T

=—E(k-')— II(—x' k-') T&T .
g g

where

f
ky'x kv(i —x')

dd (1+v «sZS) '(d' —e') '"= E(k)+ II(—2u' k) T&T
0 (v+x) (1+vx)2222

y'x v(1—x')
E(k ')+ II(—rw2 k—') T& T„.

(v+x) (1+vx)2222

k—=4zu(z'+4s'y '+s'y-' —4z'y 4—z'y 4—y-4) '

v=—2ss(s2 —y 'r) '.

The expression for the energy is then

4J'zt —
I
J

I (z'+yr)v+2J'(vs' t vy
' 3svy—')— —

(y '+z')(z' 'r f)—
Er&r.=2J'+ + -+ 4IJI y '(1+s')—

v(y-'r —s') (y
—2r s2)(f v2)l/2 2sz

2t (y 2+3sy-2 —s')(sur —1) kE(k)—8J' y2(f+z')+2y 'sr+ +--——
ks2 2sz Z2

t(1—sur) kE(k) (1—x')k+ 4I JI(zur+1) —8J' su(1+3s)—1+ — II(—x' k)
S XZ gs

/ 2(y 'r+z')
y

2—(z' —y '—3sy2) 2t kxE(k) vk(1 —x')+ 4IJII —

I

—8J' +— + n( —~, k), (C9)kks(s2 —y
—'r)I ks(y-2r —z') s2 (v+x) (1+vx)2222

Er&r,= Er&r, with kE(k) ~ E(k—') and kII(—2222 k) 4 II(—2242 k ')
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From (Cg) and (C9) we find that the coeScients of the
elliptical integrals all vanish at T, which renders con-

tinuity in the internal energy at the critical point. To
investigate the nature of the singularity of the specific
heat, we note that the asymptotic expression for the
energy as T —+ T,* is

E~ M(y, s)E(k),

where M(y, s) is regular in T and vanishes identically
at T,. The specific heat then takes the following asymp-
totic expression:

dM
C —+ E(k—)+M E(k)—.

dT dT

The second term on the right-hand side is finite at T,.
Therefore, the singular behavior of C is due entirely
to the first term. It can be shown that dM/dT is regular

at T,. It follows that the singularity of the specific heat
arises from that of the elliptical integral E and is
logarithmic, as is understood for the usual Ising model.

)Vote added in manuscript (1).. Professor C. Domb has
kindly called our attention to an earlier paper LC.
Bomb and R. B. Potts, Proc. Roy. Soc. A210, 125
(1951)j, in which some of the results of Sec. II have
been discussed from the point of view of the method of
transfer matrix. Their approximation for the equivalent
neighbor model yields e '~=3(+10—1)=0.72076 for
the transition temperature as compared to the value
0.68946 of the present paper and the presumably exact
Pade value 0.6837.

(2). We also received a preprint by N. W. Dalton
and D. W. Wood in which the Pade analysis of Ising
model with higher neighbor interactions of Ref. 8
is extended to include the low-temperature expansions
as well as models with nonequivalent higher neighbors.
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Exact Solution for a Linear Chain of Isotropically Interacting Classical Spins of
Arbitrary Dimensionality*

H. E. STANLEY
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The isotropic Hamiltonian X& ) = —Jp; p 'S; S,+1 is considered for an open linear chain of X ~-dimen-
sional vector spins8;; 3C&") reduces to the S=$ Ising, planar, and Heisenberg models for v = 1, 2, and 3. The
thermodynamic properties (including the susceptibility) of X("& are found for ferromagnetic (J)0) and
antiferromagnetic (J(0) exchange interactions for all temperatures T and all spin dimensionalities v. The
manner in which the various properties depend upon T and v is studied; in particular we find (a) that al-
though the chain of spins does not display long-range order except at T=0 for any value of ~, most of the
properties vary monotonically with v (in such a way that, e.g. , the degree of "short-range order" decreases
with increasing v); and (b) that as the spin dimensionality increases without limit, all of the calculated
properties approach precisely those predicted by the Berlin-Kac spherical model.

I. INTRODUCTION

HERE exist comparatively few nontrivial statis-
tical mechanical models which have been solved

exactly in more than one dimension. ' One motivation

~ A different derivation of the partition function is presented in
H. E. Stanley, Proceedings of the 1968 IUPAP Conference on
Statistical Mechanics, Kyoto, J. Phys. Soc. Japan (to be
published).

t Operated with support from the U. S. Air Force.
f Present address: Physics Department, University of Cali-

fornia, Berkeley, California.
'Two notable examples are the two-dimensional Ising model

in zero field fL. Onsager, Phys. Rev. 65, 117 (1944)g and, more
recently, the various two-dimensional "ferroelectric" models /see,
e.g. , E. H. Lieb, 1968 Boulder Lectures in Theoretical Physics
(to be published)). For a comprehensive introduction to exactly
soluble models of interacting particles in one-dimension, see E. H.
Lieb and D. C. Mattis, Mathematical Physics in One Dimension
(Academic Press Inc. , New York, 1966).

for considering exactly soluble one-dimensional models
is that their solutions may possibly aid in judging
the validity of approximation techniques which are
used in three dimensions. ' A second motivation is that
results discovered for one-dimensional models are some-
times generalizable to higher dimensionalities. Finally,
a one-dimensional model may serve as a reasonable
approximation to some special physical system. For
example, there exist materials in which the magnetic
ions may be considered to form "linear chains" so that
interactions between spins within the chains are ap-

'For example, many approximation schemes (such as ex-
trapolation from high-temperature expansions) have been
tested on the Ising model for one-dimensional and two-dimen-
sional lattices.


