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Five sharp lines in the optical absorption spectrum of antiferromagnetic Cree are investigated, and the
assignments of four of the lines as Frenkel exciton absorptions are discussed in detail. A previous exciton
assignment of these lines is shown to be inconsistent with the results of a detailed group-theory analysis
of the manner in which interion interactions govern the spectrum, and of the effect of an externally applied
magnetic Geld. All difhculties of the previous assignment are removed by new assignments in which the
lines are pairs of Davydov-split Frenkel excitons and none of the energy separations in the spectrum are
single-ion exchange splittings. The Davydov splittings are very large, and the mechanism for the large
splittings is found, in a first-principles treatment of the interion interactions, to be interion exchange.
This result is not predicted by the usually assumed, phenomenological, total-spin Heisenberg exchange
interaction, which is an inadequate representation of the exchange interaction between two ions in states
of di6erent total spin. New experimental data on the circular polarizations of the split components of the
lines in an axial Zeeman experiment, and on the temperature dependence of the positions of the lines, confirm
the new assignments. In addition, new data on the temperature dependence of the integrated intensities of
the lines and on their stress dependence are presented. The assignment of the fifth line as a magnon sideband
is discussed briefh.

I. INTRODUCTIOÃ

~CHROMIUM oxide is an antiferromagnetic insula-~ tor with a Weel temperature of 308'K.' The
crystal structure is corundum and the chromiums and
oxygens bond to produce a Cr'+ ion with spin f. The
chromium spins, four per trigonal unit cell, lie along the
crystal c axis and alternate up and down, the magnetic
space group being E3'c'. ' Because the Cr'+ ion has
sharp optical absorption lines, notably the transitions
between the 'A2 ground state and 'E excited levels (the
same transitions used in the ruby laser), and because
interion chromium interactions are strong, as evidenced
by the high Noel temperature, Cr&03 is a prime candi-
date for observing optically the eGects of exchange and
thereby extracting information about the interion
couplings in the material.

The optical absorption spectrum of Cr203 greatly
resembles the single-ion (crystal 6eld) spectrum of the
Cr'+ ion in A1203 (ruby). ' In particular, there are
several reasonably sharp lines in the red and these are

associated with single-ion transitions between the 4Ay

and ~E crystal-field levels. The basic unpolarized spec-
trum is shown in the left-hand trace of Fig. 1. There
are 6ve lines labeled 1-5, and on the basis of their
polarizations, which are also given in the 6gure, lines
1-4 may be distinguished from line 5. Lines 1-4 are
electric dipole, there beinq two 0. and two ~ polarized
lines with only the 0. lines being observed in an axial
spectrum. Line 5 is observed in 0. and m, but not axial
polarization, implying a mixed electric and magnetic
dipole character. The positions of lines 1-5 as measured
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FIG. 1. Zeeman efl'ect in unpolarized absorption spectrum of
'A~ ~ 'E excitons in Cr~03. Polarizations and labeling are given
in right-hand columns.
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FIG. 2. Exchange-split 'E and '3
&

Cr'+ single-ion energy levels.
Polarizations predicted for four 432 as' ~'E electric dipole
absorptions and Wickersheim's assignments are given at the
right.

' K. A. Kickersheim, J. Appl. Phys. 34, 1224 (1963).
4The representations are labeled so that the character of

counterclockwise C3 in a~ —as is 1, e'»' e '~', e'~', e ' '3, and—1, respective! y.
~ A. M. Clogston, Phys. Rev. 118, 1229 (1960).

by Wickersheim' and confirmed in the present study are,
respectively, 13 743.3, 13 764.1, 13 903.4, 13 926.3, and
13 970.5 cm ' referred to vacuum. This paper is con-
cerned principally with the T=O'K assignment of
lines 1-4.

The site symmetry of the Cr'+ ion is C3, so that, in-

cluding spin-orbit coupling, the 'E and 43 2 levels of the
cubic approximation each split into four levels labeled

by the irreducible double group representations of C3.
If time reversal w'ere a site symmetry operation, as it is
for the Cr'+ ion in A1203, then each set of four levels
would consist of two Kramers doublets, but this does
not happen in Cr203 because the magnetic ordering
prevents time reversal from being a site symmetry
operation. Splittings of crystal-field levels due to the
absence of time-reversal symmetry in a magnetically
ordered material are usually called exchange splittings.

The resulting situation in Cr203 is shown in Fig. 2.
The single-ion energy levels are labeled by C3 double
group representations4 and an up or down arrow that in-
dicates the sign of the s component of spin angular mo-
rnentum associated with the state. Strictly, the symbol
1' or $ is not a proper label, but for the particular Cr'+
ion states considered here the orbital angular mo-
mentum is nearly zero, leaving the spin angular mo-
mentum an almost good quantum number. It may be
noted that the spin character of the a4 and a5 ground
and excited states is reversed. This labeling is correct
and is related to the negative g value of the 'E a4, a5
Kramers doublet, as discussed by Clogston' and by
others. Also shown in Fig. 2 are the polarizations pre-
dicted from group theory for electric-dipole transitions
to the four upper levels from the lowest ground-state

level and the assignments for lines 1—4 made by Wicker-
sheim' on the basis of their observed polarizations. This
assignment encountered the difIiculty that although
transitions from the lowest ground-state level to the
highest two excited states are not forbidden by sym-
metry, the single-ion mechanisms leading to an elec-
tric-dipole moment are too small to make these transi-
tions observable, as is experimentally verified by
Zeeman studies of the Cr'+ ion in ruby. '

The behavior of the spectrum when a magnetic field
is applied to the sample was observed by Stager, ' and
more recently by van der Ziel. ' There is no response if
the field is applied perpendicular to the c axis, but for
the field parallel to the c axis, the spectrum changes as
shown in Fig. 1, which presents data confirming pre-
vious work. Lines 1 and 4 split uniformly with splitting
factors that are equal within experimental error, van
der Ziel's values being 4.62 and 4.66, respectively.
Line 3 is unaffected by the field and line 2 develops a
~-polarized satellite, which will be referred to as 2'. As
the field increases, the intensity of 2' increases and 2
and 2' shift to increase their separation. If the separa-
tion is extrapolated to zero field, where 2' is unobserv-
able, it is found that a zero-field separation of 3.75
cm ' exists.

Stager assigned g values to the single-ion Kramers
doublets and tried to interpret the magnetic splittings
in terms of Kickersheim's assignments as arising from
the magnetic-field-induced inequivalence of up- and
down-spin sites. Using this model, an internally con-
sistent assignment of g values could not be found, and
the qualitative behavior of lines 2 and 2', first observed
carefully by van der Ziel, could not be understood. Van
der Ziel showed that the qualitative behavior of lines
2 and 2' could be explained if the lines were assigned as
transitions from the ground state to k=0 Frenkel ex-
citon states. Treatment of the excited states of magnetic
insulators as excitons allows for the e6'ects of interion
couplings in delocalizing an excitation, and was first
suggested by Loudon' in a recently published paper
which was widely circulated prior to publication. As
will be discussed in Sec. II each single-ion transition
gives rise to a k=0 exciton state, and each k=0 exciton
state has associated with it a multiplicity of four be-
cause Cr~03 has four Cr'+ ions per unit cell. The dis-
tribution of the multiplicity, i e., a quartet, two
doublets, etc., is determined by the symmetry of the
unit cell, departures from a quartet being called
Davydov splittings. In particular there is a well-known
procedure, which will be reviewed in Sec. II, for clas-
sifying the k=0 states arising from some single-ion
transition according to irreducible representations of
the crystal's factor group, which describes the sym-
metry of the unit cell. For a magnetic crystal, the factor

'M. D. Sturge (private communication).
C. V. Stager, J. Appl. Phys. 34, 1232 (1963).

8 J. P. van der Ziel, Phys. Rev. 161, 483 (1967).' R. Loudon, Advan. Phys. 17, 243 (1968).
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Frc. 3. Davydov-split k=0 exciton states in Cr&03. Electric-
dipole selection rules (F means forbidden), van der Ziel's (V.D.Z.)
assignments, and the new assignments as they appear with V.D.Z.
ordering of energy levels are shown at right.

"J.O. Dimmock and R. G. %heeler, in The Mathematics of
Physics and Chemistry, edited by H. Margenau and G. M. Murphy
(D. Van Nostrand, Inc. , Princeton, N. J., 1964), Vol. 2, Chap. 12."M. Lax, in Proceedings of the International Conference on the
Physics of Semiconductors, Exeter, 196Z (The Institute of Physics
and the Physical Society, London, 1962).

group may contain antiunitary operators and the classi-

fication is usually done using the factor group's unitary

subgroup, whose representations are inspected for

extra degeneracy due to the antiunitary operators as

discussed by Dimmock and Wheeler" and using the

test developed by them. Lax" has shown that selection

rules determined using these unitary representation
labels are valid when the initial and final states of a
transition are not connected by one of the antiunitary

operators, a condition satis6ed for the transitions being

discussed here. The result of applying the classification

procedure for single-ion transitions from the lowest

exchange-split ground state to the four exchange-split

excited levels of the Cr'+ ion in Cr203 is shown in Fig. 3,
including the predicted electric-dipole selection rules

and van der Ziel's assignment of lines j.-4. It can be
shown from group theory that a magnetic 6eld applied

parallel to the crystal c axis may split the E levels and

couple the A ~ and A ~ levels. Thus line 2' can be assigned

as an unobservable transition between the ground state
and a Davydov-split A& level, which by mixing with

line 2 becomes observable when the magnetic field is

applied. The insensitivity of line 3 to 6eld was explained

by assuming its magnetic-field coupling to anyA & levels

was very small. Van der Ziel did not attempt to explain
the observed magnitudes of the magnetic splitting or

coupling factors.
There are three difficulties with van der Ziel s assign-

ment. The first is that the number of lines predicted is

twice the number observed. Van der Ziel has attempted
to explain this by invoking the group appropriate to the
paramagnetic state as an approximate symmetry group.

The paramagnetic group contains inversion and the
previous results are altered in that representations

labeling the states appear in pairs with odd and even

parity, thus making electric-dipole transitions to half

the levels forbidden. As will be discussed carefully in

Sec. II, this is an incorrect application of the approximate
symmetry concept, essentially because the states used

to describe the exciton levels do not form, even approxi-

mately, a basis for a representation of the paramagnetic

group. The second difFiculty is the same one encountered

previously by Wickersheim. Because transitions to
Frenkel exciton states derive all their intensity from
single-ion processes" it is not possible to account for
the observed intensities of lines 3 and 4. Van der Ziel

postulated that interion exchange interactions might
provide an eAective single-ion mechanism of sufficient
size to account for the transitions. A generalization
which includes this idea is to observe that there may be
matrix elements of the interion interactions between
exciton states of the upper levels and exciton states of
the lower levels if both states belong to the same repre-
sentation of the factor group. In Sec. III, where a 6rst-
principles analysis of the interactions is given, it will

be seen that such matrix elements are not of sufficient
size to explain the intensities of lines 3 and 4. The last
difficulty is in explaining the magnitudes of the magnetic
splitting and coupling factors, and the observed circular
polarization properties of lines 1 and 4 in an axial
Zeeman experiment. The magnetic splitting and cou-

pling factors, including their signs, which determine the
circular polarization properties, can be related to single-
ion g values, as will be shown in Sec. II, and an internally
consistent fit with the data is impossible using van der
Ziel's assignments.

All these difficulties arise from assigning lines 3 and 4
as transitions to levels arising from the upper single-ion
excited states, and may be avoided if lines 1—4 are
identified as allowed electric-dipole transitions to the
Davydov-split levels arising from the lower two single-
ion excited states only. Evidently there is no longer any
need to give an intensity mechanism for the upper two
levels; the number of lines predicted becomes the num-
ber observed, and it will be shown that the magnetic
coupling and splitting factors can be understood
quantitatively.

The principal issue raised by the new assignment is
that Davydov splittings in the optical spectrum of
magnetic insulators have previously been estimated to
be of the order of a few cm—' at most, ' while Fig. 1 shows
that the splittings identified here are as large as 180
cm—'. This point is emphasized by Fig. 3, which shows
the new assignments as they appear with van der
Ziel's ordering of the energy levels, where the Davydov
splittings are fine structure rather than major features.
To know whether this is a reasonable result requires a
detailed knowledge of how the interion couplings deter-

~ A. S. Davydov, Theory of Molecular Excitons (McGraw-Hill
Book Co., New York, 1962).
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mine the spectrum. The group-theory analysis in Sec. II
obtains the Davydov splitting patterns in terms of
specific interion couplings, and Sec. III discusses the
mechanisms responsible for these couplings. By making
a first-principles analysis of exchange that goes beyond
the total-spin Heisenberg interien interaction usually
assumed, it is possible to show that the large splitting
is due to energy transfer via the exchange interaction
between ions whose spins in the ground-state configura-
tion are aligned.

In Sec. IV, new experimental data on the tempera-
ture, stress, and magnetic-field dependence of the lines
are presented and discussed in terms of the reassign-
ment proposed here.

K=+ Q K(R.,)+ P 3c(R...R,). (2.1)
i 1 n 1 Res/Rmg

3C(R„;) is the single-ion crystal-field Hamiltonian and
contains the usual phenomenological crystal electric-
field terms, spin-orbit coupling, and Coulomb inter-
actions between the magnetic shell electrons on the ion.
It is independent of i and n except for the over-all
rotational orientation of the crystal electric-field terms.
The eigenstates of X(R„;) can be combined to specify
a state of the crystal by giving the state of each ion, and
the antisymmetrized product of the functions as-
sociated with the single-ion states defines what will be
called a crystal state, denoted by

jPR01 PR02 ' ' ' IJ'R '' ' PRN0)' (2 2)

where p, is a collective index giving all pertinent quan-
tum numbers of the crystal-field state and will include
the row of some representation of the site group. The
crystal state with the low'est-energy diagonal matrix
element of 3C will be called the ground-state spin
arrangement jG), which in Cr000 is

jG)= j'A0+ —'„'A0—$, 'A0+s0, 'A0 —a0, ). (2.3)

Note that the single-ion terms of 3C determine the
lowest-energy crystal-field state and the interion terms
of X determine the lowest-energy relative spin arrange-
ment of the ions. The departure of jG) from being an

II. GROUP-THEORY ANALYSIS OI'
OPTICAL EXCITONS

Kith the work of Loudon, ' it is now generally ac-
cepted that the excited states of a magnetic insulator
are best described as Frenkel excitons. The formalism
is appropriate not only for the optical levels to be dis-
cussed here, but also for the low-lying excitations, which
are usually called spin waves. The Frenkel exciton states
result from diagonalization of the crystal Hamiltonian
in a certain subspace of states, to be specified below.
Labeling the ion sites by R„„avector specifying the
location of the ith of p ions in the nth of X unit cells,
the crystal Hamiltonian can be written

exact eigenstate of the full Hamiltonian does not
seriously aft'ect the results of this discussion, which
tacitly assumes jG) to be an eigenstate. Denote by
j pR, ) a crystal state that divers from j G) in that the
ion at R„;has a state p diferent from its state in

j G).
Again the interion terms of K will distinguish ener-
getically among the possible choices of the z component
of the angular momentum of state p, inducing diagonal
energy differences which are the exchange splittings
nientioned in Sec. I and are shown schematically on a
single-ion energy-level diagram like that in Fig. 2 for
Cr203.

The magnetic space group g of a crystal can be de-
fined as th'e set of operations that leave jG) invariant.
Consider operating with an element 0' of g on a state
j pR„,), presuming p to be a one-dimensional representa-
tion of the site group, as would be the case in Cr203. If
0 maps R„; into R;, then

0 jpR.;)= e*+
j vR;), (2.4)

where v=p if R; and R„, have the same spin in jG)
and v= p*, the representation related to p by the time
reversal, if R„; and R; have opposite spins in jG).
That v= p* in the latter case follows because 0 leaves

G) invariant. By letting 0 run over the elements of

jG), pX states are generated, each representing the
excitation of a different one of the pX ions, and each
having the same on-diagonal matrix element of X.This
follows by observing that, since Lg,X]=0,

(pR.; j x j pR. ,)= (OpR. ; j Ox 0—'
j Op R.;)

= (vR, jBC j1R...). (2.5)

This result also implies that all the ions have the same
set of exchange-split energy levels, taking into account
that the same energy levels on opposite spin ions are
labeled by time-reversal related site-group representa-
tions. The o8-diagonal matrix elements of BC will couple
the p't; crystal states among themselves and these
matrix elements are frequently called transfer-of-excita-
tion matrix elements. Diagonalization of BC in this
p.'jj-dimensional subspace, where all the states are
physically equivalent and have equal on-diagonal
matrix elements, results in the Frenkel excitons. Choos-
ing p in the single-ion ground-state spin manifold gives
magnons, and choosing p in a higher-lying single-ion
manifold gives optical excitons.

Diagonalization of 3C in this subspace is rendered
possible by observing that because of the way the pE
states were generated, they form a basis for a pX-
dimensional representation of g. Because j gPC$=0 the
linear combinations of these states that reduce this
representation into irreducible representations of g will
diagonalize X. except for the possiblity of matrix ele-
ments between linear combinations belonging to the
same irreducible representation. Now it is true that the
first-I;rinciples crystal Hamiltonian is invariant to a
larger group of operators than g; for example, it is
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certainly time-reversal-invariant. As Anderson" has
discussed, t G), which defines g, should be regarded as
a broken symmetry state of X, that is, it is left invariant
by only a subgroup of the full group of 3C. It is clear,
however, that if 3C is to be diagonalized not in a com-
plete set of states, but in a subset like the set of p,V
states considered here, the relevant symmetry group is
the largest subgroup of the full group of BC for which the
subset of states forms a basis for a representation, the
subgroup in this case being g. From this point of view
it is clear that introducing the paramagnetic group, as
van der Ziel has done for Cr203, is only appropriate
when the interion terms in 3C produce negligible single-
ion exchange splittings. van der Ziel's assignments
assume sizeable single-ion exchange splittings, which is
undoubtedly the case in Cr203, but is inconsistent with
his use of the paramagnetic group as an approximate
symmetry group.

A partial reduction of the representation and a cor-
responding partial diagonalization of the Hamiltonian
matrix is accomplished by making linear combinations
of the tpR„,) which will transform irreducibly in the
translation subgroup T of g. These linear combina-
tions are well known to be given by

i ki) —i'—i/o p e
—ik Tn

~

R .) (2.6)

What remains is to diagonalize each subblock. This
is aided by realizing that the

~
ki) must be a basis for a

representation of the factor group g~(T, where T is
the translation subgroup and g~ is the (magnetic) group
of the k vector, since the linear combinations of ~ki)
that reduce this representation will be part of a basis
for an irreducible representation of g. The generators
of the factor group themselves may be regarded as a
group that leaves invariant a unit cell (say, n=O)
with periodic boundary conditions, and this is a con-
venient viewpoint since then the ~ki) may be tem-
porarily replaced by the

t Ro;) in performing the group-

P. W. Anderson, Concepts In Sobds (%V. A. Benjamin, Inc. ,
New York, 1964).

where I is the pure lattice translation that takes unit
cell n =0 into unit cell n. Since all the states being con-
sidered, including ski), are labeled by p or p~, this
subscript has been suppressed. After this transforma-
tion, the Hamiltonian matrix will block down into cV

blocks, each of dimension p, each labeled by a k vector,
and each having equal on-diagonal matrix elements.
This is evident from group theory, or it can easily be
shown directly that

(ki~X~k'I)=bog p e *~ r""II(T. +~;,), (2.7)
Tnm

where
II(T +~,;)=—(R;tsctR;),

Tnm= Tm Tn Rmj Rnj j

C3 axis

EQUIVALENT

INVERSION CENTERS

——& Cq axes

~ t

theory analysis. Since k will remain a good quantum
number, and since the 4=0 photons will only excite
k=0 excitons, the analysis will be done for Cr203 only
for the k=0 subblock. The generators of the factor
group of g~-o form the full covering group of a periodic
unit cell, which is usually called the factor group of the
crystal. For CroOo, p=4, and the (magnetic) factor
group operations are IE,O}, 2(Co t 0},3ICo i 0}, $RI

~
0),

2IRICo]0), 3(RICoj ~), and products with IEt0} to
obtain the double group. R is the time-reversal operator
and ~ is a translation along the C3 axis by half the
length of the unit cell along that axis. These operations
are isomorphic to the magnetic point group, in the
Schoenflies notation, D3$(Do). Figure 4 shows sche-
matically the trigonal unit cell, the ground-state spin
arrangement of the four C3-axis ions, and the locations
of the inversion centers and the C2 axes. The unit-cell
ions are labeled 1-4 and their single-ion states are
listed in that order in a crystal-state ket.

The single-ion exchange-split energy levels for the
four ions are shown in Fig. 5, using labels for the group

asj b4 a4I —h4 a5)—- h~ a4)—

a& I—..~b, ae(—b, 3 a& I
—-.~b, a6t

'
b, 3

Q6t pp Q6I l5lp Q6 t 6 2 Q6I

Q(—b, , Q51
—A~at

ION

~:—- gPH

~i =- Y~gi t H
H ALONG

Fro. 5. Exchange-split single-ion energy levels for four unit-cell
ions and effect of applied magnetic field on energy levels.

I

4l

I |t
l

I

I

FIG. 4. Schematic trigonal unit cell for Cr&03 showing symmetry
operations and labeling of unit-cell ions.
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C6 with spin-orbit coupling. With these labels, IG) is
given by

I G)= I a6t, a66, a6t, a64, ~ ) . (2 g)

The set of four
I R6,) functions describing the excitation

of a single ion to the lowest excited level of Fig. 5 will
be designated F& and are given by

I 1)= I ea4t, ga6&,ga6t, ga6~),

I 2)= I ga6t, ea6&,ga6t, ga66),

I3)= Iga6t, ga66 « t ga6'&

I4)= Iga t6,g a64g at6, e ;a)64,

(2.9a,)

where only the pertinent index i has been retained, and

g and e refer to ground and excited states, respectively.
The four states differ only in which ion is excited. The
rest of the lattice's ions, all in their ground states, are
omitted because this combination transforms identically
and contributes nothing to the analysis. For transitions
to the next highest excited level of Fig. 5, the four

I R6;), denoted as 1'6, are

I1)= I ea6t, ga66, ga6t, ga66),

I2)= Iga6t, ea64, ga6t, ga64),

I»= I ga6t, ga64, «6t, ga64),

I4) =
I ga6t, ga64, ga6t, «6&).

(2.9b)

For the remaining two excited states the sets of func-
tions are similar and will be denoted F3 and I'4, I'4
belonging to the highest level shown in Fig. 5.

Because the magnetic-factor group is an antiunitary
group, the representation generated by each I'„should
be called a corepresentation, in signer's terminology,

"
and following him, the first step in reducing a corepre-
sentation is to reduce it into the unitary subgroup of the
antiunitary group, which in this case is D3. The repre-
sentations of D3 that will appear are rather easily found,
since the character of the reducible representation F„
is given by the formula

X(O') =P X' 6 (O~) O~ in the site group

"K.P. Wigner, Group Theory {Academic Press Inc. , New York,
1959).

0 not in the site group (2.10)

where X 6 (O~) is the character of the site-group
representation for which IR6;) is a basis. This result
follows from observing that only site-group operations
do not permute the functions, and hence will have
diagonal elements in their representation matrices. The
transformation properties of an IR6;) are found by
transf orming each single-ion component separately.
Applying Eq. (2.10) for each set of functions I'„, and
then reducing the representation with respect to D3

yields the unitary subgroup k=0 exciton labels

Fg —+ 2E, F 2A +2A2,

F,~ 2A,+2A„F4~ 2E.

This is the result obtained by van der Ziel and shown in

Fig. 3.The Dimmock-Wheeler test for extra degeneracy
due to the group's antiunitary operators shows that the
dimensions of these representations are unafrected. Also,
since the component of the magnetic-dipole operator
along the C3 axis, p„ transforms as A2 in D3, it is easy
to work out that a magnetic field applied along the C3
axis can cause matrix elements only between two E
states or between an A& and an A2 state. By the I.ax"
theorem, the antiunitary operators will not change
this result.

Knowing the representations of D3 that appear for a
particular F„, projection operators" for these repre-
sentations can be used to find the linear combinations
of

I R6;) (and hence
I
k=0, i)) that transform irreducibly

in the unitary subgroup. The only subtlety in carrying
this out is to observe that from the group multiplication
table C2"=C3C2' and C2"'=C3 'C~', so that phase
factors from the site-group representations enter the
transformation for two of the C2 operations. This rejects
the fact that the oxygens surrounding two sites inter-
changed by the 3C2's are mapped differently by the
diferent C2 operations. The coefricients of the resulting
linear combinations define the columns of a transforma-
tion matrix S such that St3CS=—fC must have a form
consistent with the group-theory matrix-element
theorem. Requiring this form to appear, and using the
known fact that all the H;; are equal, yields restrictions
on the six matrix elements 8;,—=(k=0,iIXIk=0 j).
For F~ and F4 these restrictions are found to be H$2 H34

H$4 —H23 —0 and H~3= H42. For I'2 and F3 the re-
strictions are H~3= H4~, H~~= H43, and H23 and H~4 real.
Doublets arise for the F~ and F4 functions because of
the restrictions that all the H;j except H~3=H42 are
zero, and these restrictions are directly traceable to
the fact that for all the Hj'except H»= H42 the excita-
tion must transfer between sublattices whose equal-
energy excited states transform differently in the site
group, being Kramers pairs a4 and a5. This situation is
peculiar to a magnetic crysta and the observation of
true doublets in the spectrum is quite a detailed con-
firmation of the model. The lack of similar restrictions
for F2 and F3 comes because Kramers pairs a6t and a6&

transform the same in the site group. The observation
of singlets in the spectrum is again good confirmation
of the model.

The effect of a magnetic field applied parallel to the
c axis is included by assigning parallel g values g and g&,
E= 1 to 4, to the single-ion ground and excited states,
respectively, and then computing the changes that the
field induces in the H;;. The changes of the single-ion

"M. Tinkham, Grozcp Theory and Quand'um 3fechanzcs (Mc-
Graw-Hill Book Co., New York, 1964).



DA VYDOU SPLI TTI N GS I N A BSO RP T ION SP ECTRU M

H„(r )=E,+ ,'g,pa —',-g pH+ ,'—gpH ,'-g pH- —

=Ei+ lPH(gi —3g)

H„(r,) =E,—-',Pa(g, —3g),
FI„(r ) =E,+ ,'ga(g, 3-g), —
H„(r,)=E, ,'pa(g—, -3g). —

(2.11)

For /=3 and 4 all plus and minus signs except on EI,
are reversed. This procedure may seem somewhat
phenomenological, but it corresponds to solving the

energies for a field parallel to the ground-state spin on
ion 1 are shown in Fig. 5 and the changes may be taken
as definitions of g and the g~. Kith no excited-state
mixings of the type proposed by van der Ziel, g&=g4
and g2= g3. To obtain the new H;; the changes in energy
for each component of j Ro,) are added up, giving, for
3=1 and 2,

crystal-field problem in the presence of the magnetic

field, obtaining the g values, and then ignoring small

fi.eld-induced changes in the H =0 wave functions, which

would cause small changes in the off-diagonal H;,
Also ignored are direct couplings by the magnetic fieM

of states on different ions. This last approximation is

expected to be good on the empirical grounds that the
observed insensitivity of the Cr&03 lines to a magnetic
field applied perpendicular to the c axis is easily ex-

plained as due to the known negligibly small perpendi-
cular g values of the single-ion levels in ruby.

Because the applied field lowers the symmetry and

prevents all the H;, ; from being equal, certain of the
elements of SC, which are zero by symmetry for no

applied field, become nonzero in the presence of the
field. Using Eq. (2.11) and the restrictions mentioned
above for the off-diagonal H;, , the riS"3CS=—3C(ri) has
the form, including the magnetic field,

1

~(ri)=k .
1.0

0 0
1 1
0 0

I.riE)

1
0
1

0

H11 H12
H1g* H22
H13* H, 3*

.H14 H 4*

H13 H14 1 0
H23 Hg4 0
H33 H34 0 1
H34* H44. .1 0

I yiE)

—i 0
0 i
0
i 0.

jV

H13*
——,'iPH(3g —gi)

0

F213
jV

0
—li»(3g —gi)

+ ,'i pH(3g gi-)—
0
jV

H13

0
+hipa(3g gi)—

E
(2.12)

~here x and y label, respectively, the first and second rows of E, since that is how the rows transform, and the sub-
scripts on the x and y labels distinguish the two E representations. For F2, the transformation matrix S and
K(r&) =StXS is given by

1 0 1

0 1 0
201 0
.1 0 —1

0
1

—1

0.
(2.13a)

where

&+H14
s9 1

3c(ri) = ,'(g 3g)pa——
0

(IIAi)
R1e'@~

E+Hp3
0

2(gi 3g)pa— — '

2 (gi 3g)PH—
0

E—H14
R2e '&

tFFa, )

0
'(gi 3g)p—a-—
Rpe'&'

E—H23

(2.13b)

R1e'"'=—H12+ H13, R2e +2= H12 H13 ~

Note that the magnetic field matrix elements appear where predicted previously from group theory. Diagonaliza-
tion of X(ri) for a= 0 is trivial since for a= 0, K(ri) is block diagonal with two 2&& 2 matrices, each having equal
on-diagonal elements. But for 3C(ri), the diagonal blocks for a=0 have unequal diagonal elements, so the form of
the H=0 eigenfunctions appears to depend on the magnitudes of the off-diagonal matrix elements. This difhculty
can be removed by considering the effect of the antiunitary operators.

The corepresentation matrices are not yet fully reduced, as will soon be shown. An antiunitary group A (8) may
be decomposed as"

A(B)=8+0~+,
where 8 is the unitary subgroup and O~o is any of the antiunitary operators. Thus it is apparent that if the trans-
formation properties of a set of states are known for 8, it sufFicies to know how the states transform under 00 to
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determine how they transform under any antiunitary element. For Daz(D&) it is convenient to takeo~a= (RI l0).
It is straightforward to show that the corepresentation matrices for F& and F&, in the basis for fC, have the forms

r, (U) =
r (U)

l x2E)

0

Fg(U)
r, (RI) =

0

0 —1 0
0 —1

(2.14)
'Xg, (U)

0r, (U) =
0
0

0 0
Xg,(U) 0

0 Xg,(U)
0 0

0
0
0

xg, (z ).

p
1

I'2(RI) =
1
0.

where U is any of the unitary operators, x is the character of an irreducible representation, and F is an irreducible
matrix. These are clearly not in the reduced forms that the Dimmock-Wheeler test shows to be achievable. As
Wigner" has shown, because the upper-right and lower-left subblocks of the coupled parts of F(RI) are identical,
there exists a transformation that reduces F(RI) and leaves F(U) unchanged, and it is the properties of these
matrices as determined by the nature of A &, A2, and E, and the structure of D&z(DS), that enters the Dimmock-
Wheeler test. The unitary transformations St and S2 that reduce Ft(RI) and F2(RI), respectively, are given by

V2Sg ——

1

0
e 'll'

. 0

e'& 0'
0 esrIP

—1 0
0 —I.

es8$

e
—s8y

and v2S2=
1 ese

e '~2 —1.
(2.15)

where p, 8&, and 82 are arbitrary. Applying these transformations gives

s,tr, (z )s= r, (z ), s,tr, (U)s= r, (z ),
e'& 0
0 e'&

Sttrg(RI)st*= S2tF2(RI)S2*=

e'~' 0
P e—s81

e-se2 p
p e

—s82

(2.16)

Note that the use of 5&* and 52* in the last two transformations is correct for an antiunitary operator and that the
reduced forms of F(U) and F(RI) guarantee a reduced form for the remaining antiunitary operators. Note also
that two representations which are indistinguishable with respect to the unitary subgroup may now be distinguished
from one another by their transformation properties under RI, and this implies that 5& and 5& must diagonalize
X(r~) and 3C(F2), respectively.

If fC'Fr) is written with the same row ordering used for Sr and the corepresentation matrices, and p is chosen as
the phase of V~3, then

Srt~(r t)St—

l
xE+)

E+R
i ,'(3g gt)PH—-—

0
0

ly~)
+ 2i(3g e)PH-

E+R
0
0

0
0
E—R

2i(3g g&)PH

lsd )
0
0

+ ,'i(3g gg)&H-—
E—R

(2.17)

where R is defined by H»= Re".This is clearly diagonal when H =0, and as shown by the reduced form of F&(RI)
the states may be labeled by E from the unitary subgroup and by plus or minus according to the sign of p entering
in the transformation properties under RI. Similarly, S2 must diagonalize BC(F2) by group theory and the reason
it can is that the information

H14 (1 l
& l 4)—(RI1

l
~ l RI4)*=H32 (2.18)

is contained in the antiunitary symmetry operators. Insertion of this into 3C(ru), remembering that H&& and H23
have been shown to be real, produces, for B=O, two subblocks, each having equal on-diagonal elements, and this
form is clearly diagonalized by 52 if 8& and 82 are chosen as the phases of R& and R&, respectively. Carrying out the
transformation, including magnetic-field terms, and using trigonometric manipulation to put the resulting mag-
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netic-interaction matrix elements in the form of a magnitude and a phase, yields

(as+&

E+H j4+RE

s,~~(r,)s.=,
.&gPH cos26pe 'x'

0 2gPH slnzd pe'"1
E+Hr4 —Rr —,'gp g cos-,'h(pv '"'

~fJPH cos~d ye+'» E—Hg4+R2
—,'gp g sin-,'Ape *~' 0

zgPH cos-,'4 pe'"'
LgpH sinks pP'&xi

0
E—Hg4 —R2 .

(2.19)

with g=—(gs—3g), hq= pr —~s, x&—=—,'(s —Aq), and
xs= s (e'1+ ps). Fo» =Q, this is diagonal and the states
are labeled by A& and 3& from the unitary subgroup
and by plus and minus according to the sign with which
qj. and p2 appear in the transformation properties
under RI.

Considering the Fj results, it is immediately evident
that for H&0, each E level is split uniformly by an
amount

~
3g gq ~

pH. T—he eigenvectors and eigen-
values are, by inspection,

2 ' s{~xE+) i jyE+)}—with energy (EKE)
+,'(3g gg-)PH—, (2.2Q)

and

2 '"{)xE+)+i(yE+)} with energy (EKE)
gr)p g'.

The held exactly decouples the single-ion excitations of
up-spin sites from those of down-spin sites as can be
seen from the H WO eigenvectors; for example,

2 '~s{ [sE+)—i(3E+)}=2 '~
t (4)+e '"(2)g. (2.21)

This is expected since only E~3= H42 is nonzero for the
F~ states anyway. The form of the H/0 eigenvectors
also clearly sho~s that transitions to these levels are
circularly polarized. Both g and g& are expected to be
near 2 and positive, making 3g—

g~ positive, so that if
circularly polarized light is propagated along the direc-
tion of positive H, right circularly polarized light which
transforms like x+iy will excite the states that lose
energy in the presence of H and left circularly polarized
light which transforms like x—iy will excite the states
that gain energy in the presence of H.

The analysis for the F4 functions is very similar
to the one for the F~ functions, since both give rise,
at %=0, to two E excitons, and the I 4 results can
be obtained from the F~ results with the following
substitutions.

(1) The linear combinations of (1), (2), (3), and 14)
that transformed as x for F~ transform as y for F4,
and vice versa.

(2) The magnetic splitting factor 3g—gr for I'r is
replaced by 3g+g& for F4.

Thus the splitting factors for the I'4E levels are ex-
pected to be significantly larger than those for the
F~E levels, and the circular polarization properties of
transitions to the two kinds of E levels should be

reversed. The reversal of polarizations is not very sur-
prising since the Fj and F4 levels arise from excited
states of opposite spin relative to the ground-state spin.
In fact, the splitting factor sign and magnitude dif-
ferences are apparent from an inspection of Fig. 5,
keeping in mind that only H» and H24 are nonzero.
Lines 1 and 4 have the linear polarizations predicted
for transitions to E levels and both have the same split-
ting factor, suggesting that they are both either F& or I'4

levels, rather than being one of each as in van der Ziel's
assignment. Foner's antiferromagnetic resonance work"
has shown that g=1.99, and since gj=g4 is expected to
be about 2 the fact that the observed splitting factor of
4.6 is less than 3)& 1.99=5.97 indicates that lines 1 and 4
are transitions to F~E levels. %ith this assignment g~ is
measured to be 5.97—4.6=1.37. The departure of g~
from the spin-only value 2 is in the opposite direction
than occurs for the same single-ion level of Cr'+ in
A1203 (ruby). This is reasonable since it may be noted
from Foner s determination" of the single-ion anisot-
ropy that the trigonal crystal held parameter v' that
enters strongly and linearly in determining g& is of
opposite sign to that in ruby. The result of an experi-
ment, which will be described in Sec. IX, determining
the circular polarization of lines 1 and 4 in an axial
spectrum is that both lines are polarized the same, and
that the polarizations are those predicted for F~ levels.
In view of this experimental evidence there seems little
doubt that the reassignment of lines 1 and 4 as transi-
tions to F&E levels is correct, and, as previously stated
in Sec. I, this change eliminates several other difficulties
present in van der Ziel's assignments. Then the energy
separation of lines 1 and 4 is the F~ Davydov splitting
2

t
H ~s ~; since the observed separation is 183 cm ',

|Has~ is measured to be 91.5 cm '. The origin of this
sizeable interaction will be discussed in Sec. III.

Considering now the results for F~, it can be noted
that they differ significantly from those for F3 only in
that g is replaced by —(3g+gs) in the magnetic-
interaction matrix elements. Transitions to both the
~ ~+ and A2 F2 states are expected, and it is consistent
with the observed linear polarizations of lines 3 and 2
to assign them as these transitions. As pointed out by
van der Ziel, the behavior of line 2 suggests it is a transi-
tion to an A& state being coupled by the applied mag-
netic field to a nearby A2 state and thus becoming ob-
servable. Inspection of the H=O F2 states' energies

"S. Poner. Phys. Rev. '130, 183 (1963).
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uggests that the two states involved are A ~ and A 2 .
Evidently the Hamiltonian for H/0 cannot be dia-
gonalized algebraically, but in the approximation that
the A& and A2 states couple strongly only to each
other, a 2X2 matrix results and the difference of the
eigenvalues DX is easily found to be

(hi%,)'= (Eg—Eg—2H&4) + (gP sin q'Ap) H (2.22a)

van der Ziel has found empirically that the separation
of lines 2 and 2' obeys the relation

since then 3g+g2 would enter instead of 3g—g2. Since
line 3, assigned as a transition to the A~+ state, is un-
aGected within the experimental error of 0.5 cm '
even by an applied field of 50 kt, then it must be that
the unobserved A~+ state to which it couples when
H /0 is at least, using second-order perturbation
theory,

PgP(H=50 kG) sin-,'Dyj'
= -'(0.46X5 X3.12)'

0.5 cm '

(AX in cm ')'
= (3.75) '+ (1.435) 'LH/(10 kG)j', (2.22b)

=26 crn ' (2.24)

indicating that the approximate diagonalization above
is valid. Comparing the two relations shows, setting
/=0. 46cm '/(10 kg),

~ (3g—
g2) sins'hq

~

= 1.435/0. 46=3.12, (2.23)

200—

a, ~ ~
t

'E IOO-
~4) ) r

2I Hi~

A
/ l

11

+
A~ 3

,
E4

I
2 I

CASE I

and if sin-,'Ap is &1 (Ay=&180'), then g2 is 3X1.99
—3.12=2.85. It may be recalled that g& was determined
from the splitting of the I'~E levels to be 1.37, which is
less than 2.0 by 0.63. This amount of asymmetry about
2 of g& and g2 is very reasonable and there is no a priori
reason not to set 6p = &180'. If this is done the approxi-
mate A~ —A2 diagonalization above becomes exact
since the other couplings of these states (to A~+ and
A z+, respectively) are proportional to cos26&= cos
&90'=0. In any event, these other couplings are
certainly ineffectual because the H=O separation of the
levels involved is large compared to gPH cos2hp. It
may also be noted that the size of the coupling factor
favors the interpretation that I'3 states are not involved

away from the A2+ level. Then there are two I'2

Davydov split ting patterns consistent with experiment;
they are shown in Fig. 6, labeled case 1 and case 2.
Under the assumptions that the A2+—A~+ separation
is 30 cm ' and that Ay= &180', the values of H~2, HJ, 3,

and H~4 for the two cases are given in Table I.The two
cases are distinguished by the sign of H&4, the relative
sign between H~~ and H~3, or the size of H~3. It is worth
noting that it is possible to fit the spectrum by reversing
the values of H~3 and Hi2 in each case, but this makes
Ay=0, which causes the wrong levels to be coupled by
the field. Thus the magnetic field behavior forces an
interpretation with Ag 180', implying (H~3~) ~H~2~.
As will be seen in Sec. III, this result is consistent
with a microscopic analysis of the interactions. The
last entry in Table I, 6„., is the deduced energy
separation of the two single-ion levels being Davydov-
split, assuming the A and E excitons have small or
nearly equal dispersion. This separation is due to the
combined e6ects of exchange and trigonal field plus
spin-orbit splitting, and is perhaps significant because
McClure's measurement of the 'T2 band splitting gives
the trigonal field parameter v as about —700 cm '.
This implies, " assuming both levels have equal ex-
change splittings, that 6„is +15—20 cm '. As will be
seen in Sec. III, the exchange split tings of the two single-
ion levels are, in fact, expected to be nearly equal so
the sign of the splitting would seem to favor case 2.
It is to be emphasized that the values in Table I are
given merely to provide an indication of the sizes of
the couplings and cannot be taken as firm experimental
values because the location of the A I+ level is not known.

200
E+4

I

TABLE I. Assignment of experimental values of parameters
for two cases shown in Fig. 6.

E (PP- a+ &

~6)
s (H,„/

CASE 2

A 3
——-A+

6 I

2
2Ri

2 Hli

, A~ 2
Al 2

E I

Case 1

H, 4=+ 6.5 cm-1

H13=~78.5 cm '
H12=& 8.5 cm '
Aq = ~180'
b,„.= —7.5 cm '

Case 2

H14= —8.5 cm '
H13= ~63.5 cm '
H12=~ 6.5 cm '
b, q = ~180'
b,„=+ 7.5 cm '

FIG. 6. Two possible Davydov splitting patterns consistent with
both theory and experiment. Sign of 6„. favors case 2. "R.M. Macfarlane, J. Chem. Phys. 47, 2066 (1967).
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III. INTERION INTERACTIONS

In contrast to the discussion of Sec. II, which
emphasized the role of crystal symmetry in determining
the optical absorption spectrum, it is the purpose of
this section to investigate the interactions responsible
for determining the spectrum with the twofold purpose
of determining if the new assignments involve quantita-
tively sensible energy separations and gaining informa-
tion from the observed spectrum. In particular, three
quantities will be investigated, the single-ion exchange
splittings, the matrix elements involved in van der
Ziel's proposed mechanism for the intensities of lines
3 and 4 in his assignments, and the transfer-of-excita-
tion matrix elements pertinent to the assignments pro-
posed in this paper.

Interactions between electrons on different ions are
of two principal kinds, the spin-independent electro-
static interaction of charge with charge, and the spin-
dependent exchange interactions a,ssociated with the
requirement of using antisymmetrized crystal states.
The essential point to be made in the present discussion
is that fundamentally the interactions occur not be-
tween pairs of ions but between various pairs of elec-
trons bound into the ion states and this configuration
interaction aspect of the problem cannot be ignored.
Thus the first-principles interaction Hamiltonian for
ions at R and R' has the form

3C(R,R')

e2

E(R,R'; k/mn) =—,'(—kR,/R'
f f

nR, mR' )
fr —r'f

e2

drdr'go*(r R)—zZ
z~(r' —R')

fr —r'f

X p.(r—R) p (r' —R') (3.2)
and

J(R,R'; k/mn) = b(/R', n R)b(k R,mR' )/ U

e2
——,'(kR, /R'

f f
mR', n R), (3.3)

fr —r'f

where b( zzR, n' R') = (nR f3czz
f

n'R') is the one-electron
transfer matrix element of the band Hamiltonian BC~

from whose eigenfunctions the Wannier states are
constructed, and U is the cost in energy to remove an
electron from the state n'R' and place it in the state nR.
The b terms give rise to antiferromagnetic kinetic ex-
change while the Coulomb exchange term in J is
ferromagnetic. It should be mentioned that in the
Anderson theory, a third term involving b',~L' appears
in 3C(R, R'), but since this term does not a&ect the
quantities of interest in this discussion it was omitted.
Since the results to be obtained in this section do not
depend on the detailed nature of E and J, this aspect
will not be pursued further.

The information that the interacting electrons have
already been bound by strong intra-ion forces into ion
states is inserted in the problem by computing matrix
elements of the full interaction IIamiltonian

g f K(R,R', nzn nzn4).
n1, n2, n3, n4 o, o'

3Cr= P 3C(R, R')
R&R'

(3.4)

Xa"(Ro n 4)at (R'0.'n, )a(R'0 'n 0)a(Rzrn 4)

+J(R,R', n, n.n, n4)

X at(Rzznz)at(R'o'nz)a(R'&Tno) (Ra'
4zz))n, (3.1)

where az and a are single-electron (fermion) creation
and annihilation operators for Kannier functions or
orthogonalized (from site to site) covalent crystal-6eld
functions labeled by ion site R, spin a-, and orbital
index n, which runs over the single-electron functions
needed to describe the magnetic shell electrons. By
inspecting the spin indices on the operators in X(R,R')
it is evident that the first term represents the spin-
independent electrostatic interaction of two electrons
on different ions, and the second term represents a spin-
dependent interaction of two electrons on different ions.
The coeKcients E and Jmay be related to more funda-
mental parameters by making a specific model of the
interactions, for example, Anderson's superexchange
theory, '" for which it can be shown that

' P. W. Anderson, Phys. Rev. 115, 2 (1.959).

and
P3C(R.;,R„,) fz R„,,z R„,), (3.6)

(ZzR04, ,44R„;, ,44R, , 44RNz,
l
3Cr

X f z Roz, ,z 'R.;, ,z 'R .. .z RN, )
= (zzzR„, ,zzR„;

f
3C(R,,R„;)

+3C(R.;,R,) f
zz'R, ,zz'R. ;) . (3.7)

between the crystal states defined in Sec. II ~ Because
Xl involves only pairwise ion interactions, these matrix
elements are of only three types: those that are diagonal,
those between crystal states where the state of one ion is
changed, and those between crystal states where the
state of two ions is changed. Explicit expressions for
these three kinds of matrix elements are, respectively,

(44R01 ' ' ' 44RNy f
3C1

f 44Roz, ' ' ',Z4RN. )
(zzR„;,zzR„, f 3c(R„;,R„,)

Rns~Rmg

+3C(R, ,R„;)f 44R„;,zzzR, ), (3.5)

(44Roz, ,ZzR. ;, ,44RN,
f
3Cr

X fz Roz, . ,4
'R.;, ,4 RN, )

= P (zzR„,,zzR„; f3C(R„,,R„,)
Rmg
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From the form of 3C(R,R'), it is easy to show, by anti-
commuting the operators and relabeling dummy sum
indices, that X(R,R') =K(R'R), so that in the matrix
elements above only 2K(R„;,R;) need be used. The
factors of ~~ needed to avoid double counting are to be
placed in the coefBcients E and J.

To compute a matrix element the appropriate two-
ion states must be constructed as antisymmetrized
products of the linear combinations of Slater deter-
minants that diagonalize the single-ion Hamiltonian
3C(R„,). The form of a single-ion eigenstate is

&1&&1 &l&&l

Xat(R„&o~&rq) . a~(R~;o&rrr) ~0)& (3.8)

where / is the number of electrons on the ion, and the

coefFicients 3 are determined in the course of the
single-ion crystal-field calculation. The form of a two-
ion state is then

ir&R „pR.;)

Q A(gR, ;kyoto, ,k ro()

k1, e1 k[, e] n1, o1 ng, ol

XA (pR„;;nq&rq» rt, ~o&)a"(R„,ork&) a'(R, oikr)

Xa~(R,o»rr) a~(R, o&rr&) ~0), (39)

which is a linear combination of 21-electron Slater deter-
minants for the electrons of the two ions, the coefficient
of each such determinant being a product of the coef-
ficients of the single-ion l-electron determinants of
which it is built. Using Eqs. (3.1) and (3.9), two-ion
matrix elements have the form

(r&R„,,pR„;
~
2K(R„;,R„,) ~

p'R„;,p'R„;)

~ ~ ~ ~ ~ ~ ~ ~ ~ P A (pR„, ;4&& .»4~()
f41&the&A3&%4 tr&K ts]&g] tAt&g f trs1 &0] sl) &0'$ k1& 81 k J& 4$ k1 & 41 k$ & f $

XA*(pR~;; rrrgo&& &rrrro()& (p'R~, ; kg'~r'
&

k&'~&&')A (p'R~;; r~r'r& &rrrr'or. ')

X(0~ a(R.;o&m() a(R„;oping)u(R, orkr) a(R„,erkg)

XL2E (R;,R„,; rr &n&rr an 4)ut(R, &rrr q) at(R„;o 'n 2)a(R„;o'tea) a(R, o n4)

+2J(R &,R», n&n&n&n4)a" (R &orrr)a (R„;o'n2)a(R„;on&)u(R„,o'rr4) j
Xat(R, oq'k&') ~ a (R,e&'kr')a (R„; '

orrrr) &at(R ~or'mt')
~
0). (3.10)

The matrix element of creation and annihilation opera-
tors is computed in the usual way, either by anti-
cornmuting all annihilation operators to the right or
all creation operators to the left. The result is a
linear combination of E's and J's. At this point
it is convenient to observe that there are two simple
selection rules on this matrix element. First, be-
cause the interactions involve electrons by twos,
one on each ion, the two 2l-electron Slater deter-
minants being connected can diBer at most by the
change of state of one electron on each ion. Secondly,
inspection of the indices on the operators in Eq. (3.1)
shows that for the direct term (E) the spin of the state
on an ion cannot be changed, but there is no constraint
between the spins on the two ions, while for the ex-
change term (J) the spin on an ion can change so
long as the initial-state spin on one ion is the same as the
final-state spin on the other ion. These rules can be
used to eliminate many matrix elements by inspection,
as will be seen later.

Cr~03, with the Cr'+ ion, is a nice example for the
general approach just described, because the single-ion
problem has been treated in elaborate detail by many
workers due to the great interest in the Cr'+ ion in
ruby. Further, it so happens that the single-ion states

giving rise to the excitons discussed in Sec. II have a
very simple structure. In the cubic approximation
where trigonal crystal field and spin-orbit eftects are
neglected, the ground- and excited-state manifolds are,
respectively, 4A 2 and 'E. Inspection of numerical
eigenvectors of the Cr'+ A1203 Hamiltonian in the
Sugano-Peter" approximation shows that other cubic
states are mixed into A2 and 'E by the trigonal field
and spin-orbit coupling with coeKcients that are always
less than 10 '. This is also true of the amount of mixing
of 432 and 'E into each other. The order of magnitude
of these results is not expected to change much for the
Cr'+ ion in Cr203 as the optical spectrum suggests that
the crystal-field parameters in ruby and Cr&03 are of
comparable magnitudes. Thus, to a very good approxi-
mation the single-ion states entering the present dis-
cussion may be taken as cubic 432 and 'E functions,
chosen to transform irreducibly according to C3 double
group representations so that no ofI'-diagonal crystal-
field matrix elements vill exist within a manifold.
These functions are linear combinations of Slater
determinants in which each of the three t~, cubic 3d
orbitals, commonly labeled $, p, and f, are singly oc-

"S.Sugano and M. Peter, Phys. Rev. 122, 318 (1901}.
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I
~,««., l

—
I ~,a,~R„,I,

I
'3 tag& R„,I

—
I
'2 pa 4& R„,I,

I'Aga6tR, I
—I'A2a~tR, I,

I
'Ea4tR,

I
—

I
'Ea5&R, f,

I'Eat&R„;
f
—

I
'Ea6&R, I,

(3.12)

where
I pR-~ I

—=6«-~l~r I~R„,) and R, is taken as a
down-spin site. As in Sec. Il, IpR„,& here denotes a
crystal state that diif ers from

I G) only by the excitation
of the ion at R„;from its state in

I G) to the state p. The
matrix elements required are of the type of Eq. (3.5)
and hence are sums of two-ion diagonal matrix elements.
Since all other terms are the same for all

I pR, I
and

disappear in taking diGerences, only the terms involving
R; need be computed, and these are of two kinds, de-
pending on whether the ion other than R; is an up- or
down-spin site. Using Eqs. (3.10)—(3.12), and (3.5),
the contribution to all five exchange splittings of Eq.
(3.12) from up- and down-spin neighbors is computed
to be b(R, R') and —8(R,R'), respectively, where b(R, R')
is given by

b(R,R')—=—; g J(R,R', hajji), (3.13)

which is an eminently sensible result. Since it is true
that the interactions with arbitrary up- and down-spin

~ J. S. GrifFith, The Theory o& Transitional Meta/ lons (Cam-
bridge University Press, London, 1961).

cupied. The linear combinations are easily found" to be

I
'~ +a a '&=

I TTT),

I'~t+t a~')=3 '"CI TTl&+ ITlT&+ IlTT&j,
I'~t —t,«'&=3 '"LllTT&+ ITlT&+ IllT&),
I'~t —2,as&&= fill&, (3.11)

I'E+ 'u+, att)-=3 ' 'Ce" 'ITlT)+. e~~t6flTT)
+e*'.~'I TTl&3,

I
'E--'I- «&= 3 '"Le"'IlTl&+e'""ITll)

+e'""IllT)j,
I'E—-'I+ a5&&= 3 '"Ce""IlTl)+e*"ITll)

+e*"'IllT) j
I

E+xN ya4t&=3 I Ce'~~ ITlT)ye"~~ flTT)
+e""ITTl)j

where

, , s)=-a'( Ua'( tn)a'( d)I0).
The labeling on the ion functions gives the cubic origin,
the trigonal representation, and an arrow' to indicate
the sign of the s component of spin. Because the depar-
ture of the true eigenstates from those above is so small,
all large interion eGects should be found using these
states.

Following the discussion of Sec. II, five single-ion
exchange splittings of the 43~ and 'E levels can be
defined as

neighbors cause equal ground and excited-state ex-

change splittings, then the actual splittings obtained

by summing the contributions from all ions will also be
the same for the ground and excited states. This result
would be changed if the effects of admixtures of other
cubic crystal-6eld states into the 4.4~ and 'E states
were included. These contributions, for the case of the
ground-state energy, are precisely the ones Good-
enough and Stickler" recently introduced ad hoc and
referred to as excitonic superexchange terms, and they

appear rather naturally in this formulation of interion
interactions. The reason for the term "excitonic super-
exchange" is that admixtures of higher-lying cubic
states into the ground state would lead to two-ion
contributions to (G I

BCr
I G) of the form

at(rR, 4a,R'Ix(R, R')
I
4A, R,rR'), (3.14)

where F is the admixed state and 2 is the admixture
coeKcient, and this is the sort of matrix element to be
considered below in discussing transfer-of-excitation in

the exciton problem. Contributions of this sort to the
exchange splittings in Cr203 discussed here are not ex-
pected to be large because the admixture coefIicients
are so small. It is unfortunate that the excitons as-
sociated with the upper excited levels are not observable
in Cr203, as discussed in Sec. II, since the result of equal
ground- and excited-state exchange splittings cannot
then be checked experimentally. However, the expres-
sion for 8 will be useful later in discussing the size of
certain transfer-of-excitation matrix elements.

In order to explain the observed large intensities of
lines 3 and 4 in his assignments, van der Ziel has pro-
posed that the interion interactions may cause an e8ec-
tive single-ion coupling of the upper states for which a
single-ion intensity mechanism does not exist and the
lower excited states, for w'hich a single-ion intensity
mechanism does exist. A generalization that includes
this possibility is to ask if there are matrix elements
between upper excited-state excitons and lower excited-
state excitons of the same symmetry, for example, be-
tween F4E excitons and F~E excitons. This would in-
volve matrix elements between sublat tice excitons
generated from upper and lower excited states, which,
from Zq. (2.7) would have the form

=Span P e
—'" r "(R.;FIKIR„;I"&, (3.15)

where F and F' are the upper and lower excited states,
respectively. Such possibilities can be eliminated using
the two selection rules mentioned above. The specific
mechanism suggested by van der Ziel is given by the
T „=0 term in Eq. (3.15) for i=j, which is a matrix
element between crystal states of the type in Eq. (3.6)

"J.B. Goodenough and J. J. Stickler, Phys. Rev. 164, 768
(1967).
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where the two states diBer only by the change of the
state of one ion. From Eq. (3.11) it is evident that to
couple the upper and lower excited states of any ion re-
quires a single-electron spin Qip on the ion which can
only be done by the exchange term in X(R,R'), and then
only if the initial-state spin on one ion is the same as the
final-state spin on the other ion, and vice versa. But
since the state of one ion remains the same, its initial
and final spins are the same, which forbids a spin Hip

on the other ion. The other terms in Eq. (3.15) are
matrix elements of the type in Eq. (3.7) where the states
of two ions change, and describe nonresonant transfer
of excitation in which, for example, a down-spin ex-
cited state deexcites while an up-spin excited state ex-
cites. This always necessitates changing the state of
one of the ions from the ground state to an upper ex-
cited state, and Eq. (3.11) shows that a forbidden two-
electron change on the ion is required. These selection-
rule restrictions can be avoided by allowing admixtures
of other cubic crystal-field states into 'E or 'A2, but
the size of such contributions is reduced at least by one,
and sometimes a product of admixture coeflicients A.
The intensity obtained from these mechanisms will be
nominally proportional to (AM jhow)2, where M is the
interion matrix element and AE is the single-ion ex-
change splitting. Even assuming the interion matrix
element could be as large as the single-ion exchange
splitting, the intensity coeKcient would be no more than
~' or 10 ' for the largest .0, and this is clem, rly not
adequate to account for the equal order-of-magnitude
intensities of lines 3 and 4 compared to lines 1 and 2.

The restriction to single-electron changes on an ion
restricts large transfer-of-excitation matrix elements to
ones involving the two lower excited states, which
differ from the ground state by only a single-electron
change. Since this change always involves a single-
electron spin Qip, only the exchange term is effective,
and the spin restrictions on this term allow a nonzero
matrix element only for transfer of excitation between
ion types 1 and 3 or 2 and 4, where the ground states
are the same. These are, it will be recalled from Sec. II,
precisely the matrix elements which are measured to be
large in the assignments proposed in this paper. The
matrix element H&3, from Eq. (2.7), is given by

H~3 ——6H~„(fourth nearest neighbors)

+ (farther neighbor terms) . (3.17)

The pertinent two-ion matrix elements for transfer
of excitation between ion types 1 and 3 for the states
giving rise to 3-like and E-like excitons are, respectively,

and

(4A ~ae~ R„~,'Ea6& R„3l
x

l
'Ea6& R~g&'A 2agt R,3)

(3.1g)

('A2a, &R„g,'Ea4tR. glxl'Ea4tR g, 'Agag&R. 3).

Using Eqs. (3.11) and (3.10), these two matrix elements

s 3

Cg

fourth nearest neighbors. These are located three in a
plane above the ion and three in a parallel plane below

the ioil, and the three ions in each plane form equi-

lateral triangles whose centers have the central type-1
ion's c axis passing through them perpendicular to the

planes. This situation is illustrated in Fig. 7 by a
view parallel to the type-1 ion's c axis, including the six

ox& gen ions through which coupling to the six neighboring
Cr'+ ions takes place. The (, q, g orbitals on each ion are
shown schematically and labeled in a fashion consistent

with the transformation properties assumed for the

single-ion states in Sec. II. The next task will be to
evaluate the form of the transfer-of-excitation matrix
element between arbitrary ions of types 1 and 3, and

when this is done it will be clear that the matrix element

is the same for all six nearest type-3 neighbors, so that

H&3= (k=0, 1lacl k=0,3)

Tm ta

(3.16)
ORDER OF PLANES, TOP 80TTOM

cr

which is a sum of matrix elements of the type of Eq.
(3.7) for transfer of excitation between any particular
type-1 ion and all other type-3 ions. The largest transfer-
of-excitation matrix elements are expected to occur be-
tween the type-1 and type-3 ions that are closest to
each other. In Cr203, a type-1 ion has as its nearest
type-3 neighbors six equidistant ions which are its

cr

cr

FiG. 7. Schematic diagram, looking parallel to c axis, of cubic
orbitals on a type-1 ion and its six nearest-neighbor type-3 ions.
Intervening oxygens are also shown. All orbital lobes point dove,
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are computed to be

—;(LJ(R„„R„„.P~~~)+ J(R „R.„g~~~)
+J(R~(,R~3) |1g)+e+'&~t J(R„),R„pi g$$g)

+J(R.„R.„f ~g)+ J(R.„R., ; 8-1-P)]

+e+' '13J(R„),R„g, i'$8)+ J(R„g,R„3, $gq$)

+J(R g, R„,; gi 1 rl)]), (3.19)

where the upper and lover signs are for 3-like and

E-like excitons, respectively. Inspection of Fig. 7 sho~s
that the J(ijji) which are spatially equivalent for the
six type-3 ions with respect to the intervening oxygen
ion always enter these two matrix elements with the
same phase factor, so it is evident that the matrix ele-

ments for all six neighbors are equal. Both the 3-like
and E-like matrix elements differ from 8 only by the
way the individual J(ijji) are phased before being

summed, the phasing being such that if all nine were

equal both matrix elements would vanish. But all the
J's will not be equal since only those orbitals which

overlap appreciably due to covalent mixing via an

intervening oxygen will have large J's, which orbitals
these are depending on their spatial orientations. It
seems reasonable, therefore, to estimate that both matrix
elements may be roughly as large as ~~b. Indeed, they
could be larger than 8 since the J(ijji) may have

varying signs. Now b can be estimated experimentally
from studies of the optical absorption or emission

spectrum of heavily doped ruby, which shows lines due

to various kinds of near-neighbor coupled Cr'+ ion

pairs. The spectra, of fourth near-neighbor pairs, which

are the kind involved in the matrix element H», have

been identified and used to determine" that the ground
state J of X„„,= JSi S2 is about 10 cm '. Since a
little thought shows that J and 8 are related by 8= 2J,
then both the two-ion matrix elements above are
estimated to be on the order of J, or about 10 cm '.
The total E-exciton Davydov splitting, 2H~&, would

then be estimated, using Eq. (3.17), as 120 cm ', which

is of the same order of magnitude as the experimental
number. The inclusion of spin-orbit and trigonal held

admixture of other cubic single-ion states will, as in the
result of equal ground- and excited-state exchange
splittings, cause some modi6cations of the results of the
transfer of excitation discussion above. In particular,
the requirements of the two selection rules that limited
transfer-of-excitation to same-spin ions via exchange
can be met for both the exchange and direct terms
between any ion types when not forbidden by over-all
crystal symmetry. The measured small but nonzero
values of II~2 and IIi4 for the 3-like excitons indicate
that these other possibilities do indeed occur. Because
these mechanisms are small, and because many appear
to be of comparable magnitude, it is extremely dificult
to be more precise about which enter and kow for Cr203.

~ L. F. Mollenauer and A. L. Schawlow, Phys. Rev. 168, 309
(1968).

This result concerning the role of exchange as an im-
portant transfer-of-excitation mechanism differs sharply
from the conclusions of other authors discussing ruby"
and Cr~03. ' These authors assumed that the exchange
interaction between two Cr'+ ions in differentstates,
say, the 422 and 'E, could be adequately represented
by a Heisenberg interaction JS~('A 2) S2('E).This inter-
action reproduces most of the static, or single-ion ex-
change splitting effects, but gives none of the dynamic
transfer-of-excitation effects because a spin operator
will not connect states belonging to different total-spin
manifolds, a difhculty that does not arise in the applica-
tion of total-spin Heisenberg exchange to ground-state
interactions where the excitons are spin waves and the
single-ion states involved are all in the same total-spin
manifold. It is by no means a new idea that exchange
should be treated in terms of pairs of electrons, but it
is only rather recently that serious efforts have been
made in this direction, notably in the present discussion,
and also by Elliott and Thorpe'4 in discussing orbital
effects in ground-state interactions, by Pryce" in dis-
cussing the pair spectra of ruby, and by Levy, "who
has recently developed operator techniques that would
eliminate much of the messiness encountered in the
computations of this section. It should also be em-
phasized that the results of this section are particular
to Cr203 in two aspects. The first is that the analysis
is reasonably tractable because the ground state is
almost exactly a cubic approximation orbital singlet
with the excited states also being well approximated by
cubic functions involving the same three single-electron
orbitals as the ground state, and because there are only
three electrons per ion. In materials like MnF2 and CoF2,
where the states of the magnetic ion involve considerable
spin-orbit and lower symmetry crystal-field mixing, the
formalism outlined at the beginning of this section
remains correct, but becomes much more unwieldy
to apply. The second aspect particular to Cr.03 is that
there are more than two magnetic ions per unit cell, so
that the large transfer of excitation between ions whose
spins in tG) are the same appears as a k=0 Davydov
splitting rather than contributing to exciton dispersion,
which is more dificult to observe experimentally.

To conclude, the main result of this discussion is to
show that by treating the interion interactions on a
first-principles basis, the large transfer-of-excitation
mechanism in Cr203 can be identi6ed as interion ex-
change between ions whose ground-state spins are the
same, and can be estimated, by relating it to single-ion
exchange splittings, to be of an order of magnitude con-
sistent with experiment. Finally, it can be observed from
inspecting the single-ion states in Eq. (3.11) that the
ground-state H»'s are exactly equal to 8, so that large
Davydov splittings are also expected in the magnon

"G. F. Imbusch, Phys. Rev. 153, 326 (1967).~ R. J. Elliott and M. F. Thorpe, J. Appl. Phys. 38, 802 (1968)."M. H. L. Pryce, Bull. Am. Phys. Soc. 13, 415 {1968).'6 P. M. Levy, Phys, Rev. Letters 20, 1366 (1968).
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spectrum. A careful experimental study of the entire

low-energy absorption spectrum of Cr~03 has not been

made, but the results of such a study would serve as a
good test of the analysis presented in this section.

IV. EXPERIMENTAL

In this section three new kinds of experimental data
on lines 1-5 will be presented and discussed: the tem-

perature dependence of the positions and integrated
intensities, the uniaxial stress dependence of the posi-

tions, and the circular polarizations in an axial Zeeman

experiment. In addition, the behavior of line 5 in a
transverse Zeeman experiment has not been reported
previously.

Single-crystal samples from several different sources

were used in these experiments. Flame-fusion-grown

boules were obtained from Dr. R. A. Lefever of the
Sandia Corporation, Qux-grown Qakes from Dr. Della
M. Roy of the Pennsylvania State University Materials
Research Laboratory, and some crystals grown by
vapor transport from R. C. Folweiler of the Lexington
Laboratory, Cambridge, Massachusetts. The line-

widths were largest in the Qame-fusion samples, nearly
8 cm ' for line 1, smallest in the Qux-grown samples,
about 2 cm ' for line 1, and intermediate in the vapor-
transport samples, about 5 cm ' for line 1. In this con-

nection it should be mentioned that four pieces of fine

structure on line 1 and two pieces on line 2, previously

reported by %ickersheim' for his Game-fusion samples,
were clearly observed in these Qame-fusion samples. The
Qame-fusion samples also display a weak spectrum
similar to lines 1-4 but displaced to lower energies

about 200 cm ' with diGerent energy separations.
These features are not present in the other two samples
and are probably due to defects in the Qame-fusion

crystals. It is unfortunate that the Aux-grown samples
grow' in thin platelets perpendicular to the c axis and

hence can only be used in axial experiments where only
lines 1 and 4 are observed. Both axial and c-axis-in-the-

plane samples were prepared from the Qame-fusion and
vapor-transport crystals, and except for linewidths,
the axial spectra of all three kinds of crystals were the
same, confirming the polanzations of the lines. The
4.2'K locations of lines 1—5, in cm ' referred to vacuum,
agree with those given by Kickersheim to within 0.5
cm-' for all samples, and are 4-5 cm ' less than the
positions reported by van der Ziel. ' Because the back-
ground absorption is very large in Cr203, presumably
because of charge transfer absorption, it is necessary to
use rather thin samples in an optical absorption experi-
ment. Kith the exception of the already thin Qux

platelets, crystals used were ground and polished to
thicknesses ranging from 25 to 110 p. To be sure that
surface-roughness effects were not entering the data, a
Qame-fusion sample was etched with a molten mixture
of K2S207 and KHSO4 to relax surface strains, and it
was found to give the same data as unetched samples.

The temperature-dependent data were taken photo-
metrically, the detector being an RCA 7265 photo-
multiplier (S-20 surface). A Jarrel-Ash l-m Ebert
spectrograph operated in eighth order, giving a spectral
resolution of about 0.2 cm ', was used principally,
although some of the higher-temperature data were
taken using a Spex g m Czerny-Turner spectrograph in
first order, giving a spectral resolution of 1.5 cm '.
Kavelength calibration was obtained from a neon
source shone into the spectrometer during the experi-
ment. The samples were mounted in a Linde LNI-15-D
cold finger helium Dewar with the sample holder in
good thermal contact with two carbon resistors, one
for heating and one for measuring the temperature.
Accuracy of the temperature measurement is estimated
to be 1'K or better between 4.2 and 77.2'K and2. 5'K or
better between 77.3 and 273'K, which was considered
adequate for the studies described here. Temperature
stability in the Dewar was better than +0.5'K. In
order to determine the integrated intensities, the output
of the 7265 photomultiplier was fed to a calibrated
Hewlett-Packard 7561A logarithmic converter, which
drove a chart recorder. Use of the converter gives a
signal of known proportionality to nd, n being the
absorption coeKcient and d the sample thickness, and
makes all multiplicative background effects from the
optics, instruments, and material additive. A current
source inserted in parallel with the photomultiplier
preceding the log converter was used to zero out any
additive background signal present at the input of the
log converter when the carefully masked sample was
covered. This correction was small and frequency-
independent. The area under the absorption, as re-
corded by the chart recorder, is then of known pro-
portionality to

dE hc
a() )dX=bc a(E)—=—a(g)dg (4 l)

g2 gS

This area was measured with a planimeter. The addi-
tive background could be sketched in very accurately
at low temperatures where the lines are sharp, and ex-
trapolated from this as the temperature was increased.
Line positions at high temperatures where the lines are
broad were determined as the point about which the
line had equal area on the right and on the left.

The magnetic-field data were taken photometrically
with the detector and Jarrel-Ash spectrograph described
above. The field was produced by a Lockheed super-
conducting magnet, whose sample chamber is ar-
ranged so that the cooled magnet core can be used as a
cold finger to cool the sample. The sample temperature
was measured to be about 16'K. Linearly and circularly
polarized light was obtained using Polaroid HN22 and
HNCP 37 neutral sheet polarizers, respectively, the
polarizer being placed between the sample and the
spectrometer.
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Uniaxial stress was obtained pneumatically by apply-
ing a known pressure from a helium gas bottle to a large
piston of known area. The piston was on the end of a
long stainless-steel rod that extended, inside a stainless-
steel guide, down into a large glass helium Dewar, and
pressed on the sample. Because very thin samples were
used the pressure was applied to the sample's large
Oat surfaces, and since the light must also be prop-
agated normal to these surfaces, the light was sent into
a small hole in the stress rod, refjected down the inside
of the rod by a right-angle mirror, passed successively
through a small aperture in a copper pad, a transparent
sapphire plunger, the sample, a transparent sapphire
anvil, and the aperture of another copper pad, and then
rejected back out of the system by a final right-angle
mirror through a small hole in the stainless-steel base.
The sapphire pieces delivered a reasonably uniform
stress to the sample. Data were taken photographically
on Kodak type 103a-U plates using a Bausch R Lomb
2-m spectrograph in second order, giving a spectral
resolution of about 0.5 cm '. Wavelength calibration
was obtained with a neon lamp whose spectrum was
slightly superposed on each data trace.

The unpolarized transverse Zeeman spectrum is
shown in Fig. 1, and was described in Sec. I. These
data confirm that published by van der Ziel, ' but
are of considerably better quality. In Fig. 8 is shown the
circularly polarized axial Zeeman spectrum of a Qux-

grown sample for light propagating along the field direc-
tion. Both lines 1 and 4 are polarized in the same way,
with the higher and lower energy line of each split pair
being, respectively, left and right circularly polarized.
As shown in Sec. II, this experimental result constitutes
strong evidence that both lines 1 and 4 are indeed
transitions to I'g E exciton states.

The shift with temperature of the positions of lines
1-4 was measured from 4 K up to the temperatures
where the lines become too broad to be observable,
these temperatures being about 220'K for lines 1 and 4,
and about 190'K for lines 2 and 3. The shifts, which
resemble those measured for the E lines in ruby, are
to lower energies as the temperature increases, and are
quite large, 20, 21, 30, and 35 cm ' for lines 1, 2, 3, and
4, respectively, at 180'K. These over-all shifts pre-
sumably are due to static and dynamic phonon and
magnon eBects, and probably would be susceptible to an
interpretation on this basis. Of central interest to the
present discussion, however, is the behavior of the sepa-
rations of lines 1 and 4, and 2 and 3, because - the analysis
of Sec. III has shown the principal mechanism for their
separations to be the exchange interactions responsible
for magnetic ordering and it is expected that as the mag-
netic order in the crystal is destroyed by thermal Huc-
tuations this mechanism will be less and less efI'ective
in producing an energy separation. Therefore the varia-
tion with T/T& of these two separations, normalized
to their 4.2'K values, has been plotted in Fig. 9 along

RIGHT
CIRCULAR

POLARIZATION

LINE I

COMPONENTS LINE 4
COMPONENTS

IQ8cm ~

ENERGY
INCREASING

LEFT
CIRCULAR

POLAR I 2ATION

H ~509kG
T~I6 K

FIG. 8. Circular polarizations of lines 1 and 4
in axial Zeeman experiment.

with the reduced sublattice magnetization deduced for
Cr203 by Hornreich and Shtrikman. "Both splittings
do indeed collapse rather well with the magnetization,
although it is somewhat surprising that the 1—4 sepa-
ration decreases faster than the magnetization since it
seems likely that the separation would depend more on
the presence of short-range order, which disappears
more slowly than the long-range order which the mag-
netization measures, In view of the extreme difhculty
in locating the positions of the lines at high tempera-
tures where they are very broad, the detailed behavior
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FrG. 9. Temperature dependence of reduced sublattice mag-
netization and changes of the energy separations of lines 1 and 4,and 2 and 3, normalized to their low-temperature values.

27 R. Hornreich and S. Shtrikman, Phys. Rev. 161, 506 (1967).
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should not be taken too seriously, however. Rather, the
interpretation should be that the splittings follow the
magnetization well enough to provide good evidence
that the exchange interaction is indeed the correct
mechanism.

Figure 10 shows the variation with temperature of
the per-ion integrated intensities of lines 1—5 for a
vapor-transport-grown sample. The data for other
samples are qualitatively the same, although there does
appear to be some sample dependence of the 4.2'K
intensity of line 5, it being strongest in the Game-fusion

samples, and of the 4.2'K relative intensities of lines 1

and 4, these being nearly equal in the vapor-transport
and Aux-grown samples and in a ratio of about 2:1,
respectively, in the Game-fusion samples. It can be
noted that in the model of Sec. II, the intensities of
lines 1 and 4 would be equal, again suggesting the effects
of some sort of defects in the Game-fusion samples. With
the exception of line 1, the low-temperature intensities
in Fig. 10 agree fairly well with those given by van der
Ziel, which were for a Qame-fusion sample. The most
striking feature of the data is the increase in intensity
of lines 1 and 2 with increasing temperature, since it is
usually observed that as a line broadens with increasing
temperature, its peak intensity decreases to conserve
the area under the line. The increase slows down at
about 150'K and it appears that, at least for line 1, a
peak occurs at this temperature. The intensities of the
other three lines are nominally constant with tempera-
ture although there may be some inclination, which is
dificult to establish definitely, for them to decrease
slightly as the temperature is raised. Unfortunately, no
satisfactory explanation of the behavior of lines 1 and 2

is presently available. It can be noted that Nelson and
Sturge" have reported similar behavior for the E~ and
E2 lines in ruby, although the increase observed by them
was by no more than 30 jo, while it is found here that
line 1 increases its intensity by nearly a factor of 5.
Sturge attributed the phenomenon in ruby to a phonon-
induced increase in the odd component of trigonal
crystal field, which is a part of the chain of perturba-
tion mechanisms required to explain the dipole moment
of the 'A~~'E transition of the Cr'+ ion. Whether
this mechanism is responsible for the phenomenon in
Cr203 remains an open question. %hat is required is a
careful analysis of the thermodynamics of a magnetic
insulator with respect to the optical spectrum, and this
does not appear to have been undertaken by anyone at
the present time. A past difhculty in doing such an
analysis for Cr203 has been the lack of a consistent low-
temperature assignment for the sharp lines in the spec-
trum. This difhculty, at least, has been remedied by the
present work.

The effect of uniaxial stress applied in the L00011,
$1120$, and $10101 directions is to shift lines 1—5
linearly to lower energies by amounts ranging between
0.042 and 0.092 cm '/kgmm ', depending on the
stress direction and the line. It was hoped that stress
would have a su%.ciently profound influence as to pro-
duce effects like those obtained by applying a magnetic
field, and that, in particular, a transition to the missing
3 &+ level might be induced; however, this is clearly not
the case since the uniform shifts observed indicate that
the levels do not interact with one another for the
magnitude of stress applied, which was as large as
150 kg~'mm'. The over-all shifts are due to changes in
single-ion crystal-field parameters and changes in
interion interaction parameters, and may be compared
with the results of Feher and Sturge" on the uniaxial
stress dependence of the E lines in ruby, which are ob-
served to shift linearly to lower energies with slopes
ranging from 0.017 to 0.026 cm 'jkg mm ', depending
on the stress direction and the line. The shifts in Cr~03
are in the same direction but somewhat larger, possibly
indicating contributions due to interion interactions
not present in ruby.

We have been concerned here primarily with single
excitations near the center of the Brillouin zone. These
have distinct polarization properties since the zone center
is a region of high symmetry. I.ine 5, on the other hand,
shows mixed polarization. Its properties suggest that it
is a magnon sideband of line 1, i.e., a double excitation
involving the lowest 'E, E excitons, and magnons (also
having E symmetry at the center of the zone) through-
out the zone. Selection rules allow such a process and in
~ and ~ polarization at all special and general points. In
an axial magnetic field, line 5 splits uniformly (see

'8D. F. Nelson and M. D. Sturge, Phys. Rev. 137, A1117
(1965).

» E. Feher and M. D. Sturge, Phys. Rev. (to be published).
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Fig. 1) with a g value of 3.3&0.3. The large uncertainty

is due to the initial width and weakness of the line

which is compounded when it splits in a field. To a first

approximation we would expect a magnon sideband to
have a g value equal to g„,—g „or 2.7. Between 4
and 140'K, beyond which line 5 is too broad to observe,
the separation between line 5 and line 1 falls somewhat
faster than the sublattice magnetization measured in

neutron scattering. In fact, probably coincidentally,
it falls like a Brillouin function for spin ~. This differ-

ence may arise from the efI'ect of exciton-magnon cou-

pling on the energy renormalization. Zone-boundary
magnon energies are not yet known for Cr203, but we

can extrapolate Samuelsen's neutron data" out to the
zone boundary, and find an energy =250 cm '. An ex-

citon-magnon density of states peak (line 5) 227 cm '
from the k =0 exciton energy (line 1) is then reasonable.
Wickersheim' has previously assigned line 5 as a
vibronic, but with the additional information that we

~ L, M. Corliss and J. M. Hastings, J. Phys. (Paris) 25, 557
(1964)."E. J. Samuelsen, Phys. Letters 26A, 160 (1968).

now have on its properties it appears that his assign-

ment was incorrect.
In summary, this section has presented some new

data for lines 1-5, of which the circular polarizations of
the magnetically split components of lines 1 and 4 and

the temperature shifts of the separations of lines 1

and 4, and 2 and 3, confirm very well the reassignments
made in this work. Unfortunately, the temperature-
dependent integrated intensities, perhaps the most
interesting data, remain unexplained and should be a
good topic for future study.
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Direct measurements are reported of the dependence of the anisotropy torque on the orientation of an
applied magnetic field in the ac and bc crystallographic planes of ferrimagnetic Fe,Ga2, 03 for @=1.11.
Temperatures between 4.2 and 294'K and applied fields up to 110kOe were used. Anisotropic spontaneous
magnetizations, as well as isotropic susceptibilities and field-dependent anisotropy energies, were determined
by comparing the experimental data with a new thermodynamic analysis of the magnetic properties of
spontaneously magnetized orthorhombic crystals. The larger of the values obtained at 4.2'K for the zero-
field anisotropy energy (3.22)&10' erg/cm' and 5.65&(10' erg/cm' in the ac and bc planes, respectively) is
the largest value of this quantity measured so far in any insulator. The contributions of classical dipolar
interactions to the zero-field anisotropy energy at O'K are calculated to be 1.22)(10 and 4.19X106erg/cm
in the ac and bc planes, respectively. The remainder of the anisotropy energy is shown to be probably due to
one-ion anisotropy or antisymmetric exchange or both. The largest values obtained for the fractional anisot-
ropy of the spontaneous magnetization (0.24 and 0.55 in the ac and bc planes, respectively, at 294'K) are,
to our knowledge, the largest values of this quantity measured so far in any material. It is found, moreover,
that the anisotropic part of the spontaneous magnetization does not tend to zero as the temperature ap-
proaches O'K. Direct measurements of the anisotropic magnetization are reported for 276 and 294'K, and
the results are found to agree satisfactorily with those deduced from the torque measurements.

I. INTRODUCTION

1
~ALLIUM iron oxide, Fe,Ga2,03 (where 0.7(x~ (1.4), was erst synthesized by Remeika, ' "who

found it to be both ferromagnetic and piezoelectric. In
1964 Rado' reported that it is the first ferromagnetic

' J. P. Remeika, J. Appl. Phys. 31, 263S (1960).
» A brief report on that part of this work which deals with the

anisotropic spontaneous magnetization was published in Phys.
Letters A28, 318 (1968).

~ G. T. Rado, Phys. Rev. Letters 13, 335 (1964); in Proceelings
of the International Conference on Magnetism, Eottingham, 1964

material known to exhibit the magnetoelectric eGect.
Other authors have studied its spontaneous moment and
susceptibility, '4 its crystallographic structure, " its

(The Institute of Physics and The Physical Society, London,
1965), p. 361; J. Appl. Phys. 37, 1403 (1966).' C. Nowlin and R. V. Jones, J. Appl. Phys. 34, 1262 (1962).

4 A. Pinto, J. Appl. Phys. 3?, 4372 (1966).' S. C. Abrahams and J. M. Reddy, Phys. Rev. Letters 13, 688
(1964); S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J.
Chem. Phys. 42, 3957 (1965).' E. F. Bertaut, G. Buisson, J. Chappert, and G. Bassi, Compt.
Rend. 260, 3355 (1965).


