
PH YSICAL REVIEW VOLUM E 179, NUM BER 2 l 0 MARCH 1969
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The frequency- and 6eld-dependent dielectric constant e(u, E) has been calculated for the uniform-6eld
state of a two-valley model of Gunn-instability semiconductors, using a phenomenological approach based
on momentum balance and particle conservation. In this model, four plasma modes are obtained as solutions
of ~{co~,E) =0, and the dependence of all four modes on the electric 6eld has been determined. We show
that in the neighborhood of each of the critical 6elds E,& and E,2 defined by oo{E,&,2) =0, where 00 is the
dc differential conductivity, the frequency of one of the plasma modes is purely imaginary and goes to zero
as E ~ E,& and E~ E,&, the mode becoming unstable for E&E,1 and E&E,2, respectively. Critical Quctua-
tions associated with the soft modes have been investigated. The density, current, and 6eld Quctuations
become temporally long-range as E~ E,&,2. The field {voltage) noise spectrum becomes sharply peaked
at co =0 in these limits. We have also calculated the field dependence of the optical properties for frequencies
in the neighborhood of the zero-Geld plasma frequency and in the low-frequency region. At the critical
Gelds the medium becomes nonabsorptive in the zero-frequency limit.

I. INTRODUCTION
' 'N an equilibrium system undergoing a phase transi-
t ~ tion one often finds a dynamical mode whose fre-
quency goes to zero at the transition, and the existence
of such a soft mode is intimately related to the occur-
rence of critical fluctuations. In nonequilibrium systems
transitions can occur, for instance, from one steady state
to another, which have many of the characteristics of
a phase transition. In semiconductors exhibiting nega-
tive differential conductivity such as GaAs, transitions
occur from a dissipative state with a uniform held dis-
tribution to one which is highly nonuniform for E.&&8
&E.2.' The current-held characteristic is shown sche-
matically in Fig. 1. We have studied the occurrence of
soft modes associated with the transitions at E,I and
E,2. General considerations suggest that the modes re-
lated to these transitions are longitudinal excitations
(plasma modes), the frequencies of which are obtained
as the zeros of the held- and frequency-dependent dielec-
tric constant. In Ref. 2, we showed that the frequency
of a plasma mode goes to zero along the imaginary axis
whenever the static differential conductivity goes to
zero. For a two-valley model of Gunn-instability semi-
conductors, we find four plasma modes. In addition to
the two modes which are oscillatory for su6iciently high
carrier concentrations and low fields, at the onset of
electron transfer two pure relaxation-type modes ap-
pear, one of which is the soft mode which goes to zero
at E~ E,l.' The poles corresponding to the former two
modes will usually not reach the imaginary axis for
E&E.&. This may occur only for particular values of
the carrier concentrations such that the zero-field values
of these modes lie close to the imaginary axis. For
sufficiently low carrier concentrations (n, & 10'~/cnr'), '

all four modes are purely imaginary for all values of the
field, and the mode which lies closest to the real axis for
E=O is the soft mode which goes to zero as E' —+ L~",&.

These results diGer from those obtained by Conwel14

for the two-valley model. Only two modes were con-

sidered, and we find that the mode assumed by Conwell

to be the soft mode is the correct soft mode only for very
low carrier concentrations (n, &10"/cm'). ' Further-
more, a soft mode was obtained only for a certain range
of carrier concentrations in contradiction to general con-
siderations' as well as to simple physical arguments. 4

For E&&E,2, the frequency of all four modes will be
purely imaginary for carrier concentrations ~,&10"
because of the low mobility of the upper valley. ' In all

cases the purely imaginary mode nearest to the real axis
is the mode which goes to zero as E—+ E,2.

Associated with the soft modes we hnd that the cur-

rent, density, and held fiuctuations become temporally
long-range. This divers from most phase transitions
where typically some correlation function becomes
spatially long-range.

ECl .Eca

FIG. 1~ Current-Geld characteristic (schematic) ~

' K. Conwell, Phys. Rev. Letters 21, 288 (1968).
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' J. 3. Gunn, Solid State Commun. 1, 88 (1963).' E. Pytte and H. Thomas, Phys. Rev. Letters 20, 1167 (1968};
20, 1466 (1968).

'This value of e, depends, of course, on the particular values
assumed for the mobilities of the two valleys.
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II. BEHAVIOR OF PLASMA MODES FOR
E=o AND E=E,1, 2

We consider a system which is in a steady state in the
presence of a spatially uniform time-independent held

E, and study its linear response to an additional external
field

We write p(pi, E) as a sum of an even and an odd func-
tion of co in the form

p(pi, E)= p'(co, E)+ (4vri/pi) a'(pi, E), (12)

where p'(pp, E) and a'(pi, E) are even in p& and regular at
co=0. Because of the property

bE-i(ri) = &E-P(q~)e*'«'--ii. (1) p(—~*~ E)="(~E)& (13)

The conductivity tensor o is defined by the relation

b3
" (q(d) = e(qco E) ' bE (q4l)

where bE"' is the total additional field

/Eton' —bEext+ bEind (4)

The induced field bE' " is the screening field produced
by bj' . From Maxwell's equations, one obtains the
relation between bE'" and bj'

+cPqX(qX&E' ) = —4'~&j'"P (5)

which can be solved for bK' ~. The result can be ex-
pressed in terms of a dynamical screening tensor

in the form

4m.

s(q~) = (~'&—"qq)
GO

—C g

(6)

bE'"(q~) = —(i/~) s(q~) ~j'"(q~)

The linear response tensor x and the conductivity tensor
o are thus related by

pp=L1+(i/pi)e s] 'e=e [1+(i/pi)s eP' (8).
We assume that the field K is applied along a symmetry
direction of the crystal, and consider only waves which
propagate along the same direction (q~jE). This direction
is then a principal axis of both tensors x and o, and the
corresponding principal values A: and o. describe the
parallel longitudinal response (hE~~q, E) of the crystal.
From Eqs. (6) and (8) it follows that they are related by

~= a/P1+(4~i/~)a5= a/p, (9)
where

p= 1+(4pr2/cQ)a (10)

is the longitudinal dielectric constant for the E direction.
We shall be interested only in the parallel longitudinal
response, and we restrict the discussion to the q= 0 limit.

The plasma frequencies are the poles of the response
function ii(pi, E) which, on account of Zq. (9), are ob-
tained as the solutions of

p(pp»E) =0.
We first show that under certain regularity conditions,
this equation has solutions which go to zero as E—& E,i,2,
independent of the properties of any particular model.

The additional current induced by bK'"' is given in
terms of the linear response tensor x by

bj' (qpi) = pc(qpp, E) bE' '(qpp) . (2)

the functions p'(p&, E) and a'(pp, E) are real on both the
real and the imaginary co axes. On the real axis, they are
equal to the real parts of the dielectric constant and the
conductivity, respectively. We assume that these func-
tions have Taylor expansions

p'(~, E)= «(E)+pp(E)~'+ "
a'(pi, E)=ap(E)+ap(E)pi'+

(14)

with a finite radius of convergence, and that the coeffi-
cients are continuous functions of E for E=E,i,2. The
static differential conductivity p.p(E) vanishes for
E=E,~,2. We assume further that the static dielectric
constant pp(E) is positive for these values of the electric
field. These assumptions may be shown, from Eq. (55)
below, to be satisfied for the two-valley model. Writing
Eq. (11) in the form

a'(pi„,E)
co~= —4~i

p'(~»E)
(15)

we see that for E sufficiently close to E,&,2 there exists
a solution

+o(' )pp(E) pp(E)

which is purely imaginary and goes to zero proportion-
ally to ap(E) as E~ E,i or E~ E,p. Therefore, for E
sufFiciently close to either of these critical fields, there
exists a plasma mode which shows a pure dielectric
relaxation behavior with a relaxation time going to in-
Gnity as E—+ E,&,&. When the difIerential conductivity
changes sign, these modes become unstable. These re-
sults were derived for E—+ E.i in Ref. 2. It is clear, how-
ever, that these considerations are equally valid for

If we consider the case of n-type semiconductors, we
can write the electronic susceptibility as a sum of inter-
band and intraband contributions in the usual way. For
frequencies such that ~&&E, where E, is the bandgap,
the bound electrons will contribute only to the static
dielectric constant pi of the lattice, and Eq. (10) may be
written'

p(pp, E)= pi+ (4s.i/pi)a. (pp, E), (17)

where a, (ip, E) is the conduction-electron contribution,
and where e~ is assumed to be independent of E.

In the zero-Geld limit all the conduction electrons will
be near the conduction-band minimum such that no

~ In this paper, the interaction of the plasma modes with the
optical phonons will be neglected.
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transfer can take place to any other parts of the conduc-
tion band. Then assuming the Drude form for the
conductivity

n,e'
o,((a) =i

tÃy GO+'lay

the dielectric constant may be written

y' /2

A

Ci
ii ~p2

8

Here

coo

o(M~O) = o~ 1—
N (oo+2'y 1)-

(19)
FIG. 2. Behavior of the zero-field plasma modes as a function of

~p fOr fixed y1.

A: y1/up=0. 4, B: y1/cop=2. 0, C: y1/up=3. 0.

(20)

is the plasma frequency in the limit p&= 0, n, is the num-
ber of electrons in the conduction band, m~ their effec-
tive mass, and 1/y2 a phenomenologically introduced
relaxation time.

The solutions for the plasma modes obtained from
Eq. (19) may be written

~2 2,2= &[o2o2—V22/4]'~2 —A 2/2.

dependence of the total eRective mass) were correctly
given by this model, in addition to satisfying the re-
quired dispersion relation. However, as will be shown
below using a more realistic two-valley model, a con-
siderably more complicated dependence of o(o2,E) on oo

is obtained for intermediate frequencies, and several
field-dependent parameters need to be considered. For
zero frequency and low fields and for high frequencies,
the limiting forms considered by Conwel14 may be ob-
tained from this expression.

For coo&~~,
o2n2, 2 = oooo 2'y&/2

&
(22) III. TWO-VALLEY MODEL

which is the usual expression for a weakly damped
plasma frequency. However, when pj&2|do, the plasma
frequencies co», 2 are both purely imaginary. For»&)Mp
we obtain

M@1= 2 rl ) Ny2= 1o20 /Yl ) (23)

where the mode with the largest imaginary part has
been labeled ~». This convention will be used through-
out the paper. The ratio y2/s)o depends on the carrier
concentration. The frequency ~0 is proportional to
n. 't', while p& depends much more weakly on n. . The
behavior of co», 2 for a fixed value of y~ and for decreas-
ing values of &oo is shown in Fig. 2. For o2o —& 0 (carrier
concentration going to zero), the plasma poles approach
the limiting values

G)»= —fly &
(d&2=0

& (24)

and the weight of the poles in the response function
K(cv,E) goes to zero.

In Ref. 2, a simple model for o(&o,E) was used to inter-
polate between the limits E=O and E=E,j. In this
model it was assumed that the effect of the electric field
and the various microscopic scattering mechanisms, the
heating of the electrons and the transfer to the low-
mobility local minima, could be described by a single
phenomenological parameter chosen so as to reproduce
the experimentally observed behavior of the differential
conductivity. ' Both the zero-frequency limit and the
high-frequency limit' (apart from neglecting the Geld

'Physically, therefore, this parameter does not refer to the
relaxation time of the electrons in the central valley as assumed in
Ref. 4.' See, for example, V. L. Bonch-Bruevich, in Proceedings of the

Electron transfer can in general take place to a num-
ber of equivalent valleys. In GaAs the conduction-band
minimum is at the center of the Brillouin zone. The
next higher minima are along the (100) directions 0.36
eV above the bottom of the conduction band, and ap-
pear to be located at the edge of the Brillouin zone and
to have I& symlnetry. ' Additional local minima along
the (111) directions with 1.2 symmetry are, based on
experimental evidence, believed to lie at higher energies,
whereas theoretical calculations place these minima
either a yp V below or at about the same energy. ' In
agreement with other recent calculations of transport
properties of GaAs, only the X& minima will be taken
into account explicitly. ~" These minima will be for-
mally treated as a single valley. Thus intervalley scatter-
ing among the equivalent X2 valleys (which is the domi-
nant mechanism determining the mobility of the upper
valleys" ) will formally be treated as intravalley
scattering.

The dielectric constant o(&o,E) will be calculated using
a phenomenological approach based on momentum
balance and particle conservation. It will be expressed
in terms of several Geld-dependent (but frequency-
independent) parameters which have to be determined
either experimentally or by microscopic calculations.

Calculations of transport properties in GaAs, apart
from a recent calculation using the Monte Carlo

International School of Physics "Enrico Fermi" Course XXXIV,
edited by J. Tauc (Academic Press Inc. , New York, 1966), p. 331.' See Ref. 10 and further references listed in this paper.

9 P. N. Butcher and W. Fawcett, Phys. Letters 21, 489 (1966).' E. M. Conwell and M. O. Vassell, Phys. Rev. 166, 797 (1968)."A. D. Boardman, W. Fawcett, and H. D. Rees, Solid State
Commun. 6, 305 (1968).
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(Bnl/Bt)+div(nlvl) = —R12,

(Bnl/Bt)+div(nlv2) = —R21,

(25)

(26)

rn $B(n v )/Bt+V (n v v ))+V p
=nleE"' S11 S12,—(27—)

method, "have been based on approximate solutions of
coupled Boltzmann equations for the (000) and the
(100) valleys. In these calculations it is assumed that
the distribution function may either be represented by
the first two terms of a spherical harmonic expansion"
or by a displaced Maxwellian in each valley. ' The values
for the critical fields obtained by these two methods
diBer to a certain extent, with the approach based on
the displaced Maxwellian distributions giving the larger
values. Intermediate values are obtained by the Monte
Carlo calculation. The higher values in the case of dis-
placed Maxwellian distributions are"attributed to under-
estimation of the number of high-energy carriers when
polar scattering is dominant. "This allows less transfer
to the (100) valleys. The lower values obtained using the
two-term spherical harmonics approximation result
from the underestimation of the inelasticity of the scat-
tering processes allowing the carriers to heat up more
rapidly and transfer to the (100) valleys. In the Monte
Carlo calculation the distribution function in the central
valley is found to be strongly asymmetric up to fields
far in excess of the threshold field Ec».»»

The results obtained for field-dependent parameters
such as the drift velocity by the di6erent approaches are,
however, in very good qualitative agreement. For the
numerical calculations, we have made use of the results
of Ref. IO primarily because in this paper the field de-
pendence of all the required parameters is given ex-
plicitly (in graphical form). These include the fractional
occupation of the central valley, the mobilities in the
central valley and in the X» minima, and the rate of
change of these quantities with the electric field. These
quantities are not all independent, but because they
have all been calculated in the same approximation, the
results should be internally consistent. We wish to
emphasize, however, that our formal expressions are
not dependent on the results of any particular approxi-
mation procedure.

The particle density, effective electron mass, and the
drift velocity will be denoted by n», m», and v» for the
central valley, and by n2, m2, and v2 for the upper valley
where n»+ng = np. Particle and momentum balance then
lead to the following four equations:

the number of electrons. Thus,

Rl 2 nlrl(V1)

R2 1 n2r2(V2) ~

(30)

where the relaxation frequency tensor y» and y2 will, in
general, be velocity-dependent. Finally, S» and S» are
the momentum losses due to intervalley scattering. We
assume that the average momentum loss in an inter-
valley scattering process is equal to the average electron
momentum in the respective valley (although the actual
momentum loss will be somewhat larger). Thus,

S12 ntlvlR1 2 nlrnlvlr1(V1)

S21 rn2V2R2 1 n2n22V2r2(V2) ~

(32)

In the general case, we would also need expressions for
the partial pressure tensors p» and p2, but we shall re-
strict ourselves to the spatially uniform case (q=0) for
which the momentum diGusion terms vanish.

We consider first the stationary state in the presence
of a uniform Geld E. Then the intervalley scattering
rates R» 2 and R2„» must be equal such that

or

n»r» n2rg (33)

n»= ncaa
r»+ r2

(34)

n2— nc ~

r»+r2

From Eqs. (27) and (28) we obtain, by using Eq. (33),

The transfer rate r» from the central valley to the upper
valley will depend strongly on the drift velocity v». It is
almost zero below a certain threshold because the trans-
fer can take place only when the electrons in the central
valley have been heated sufliciently by the Geld so that
the tail of their distribution extends to energies higher
than the energy of the X» minima. Above this threshold,
r» increases very rapidly with v». The dependence of
the reverse transfer rate r2 on the drift velocity is
much weaker and will be neglected in our numerical
calculations.

Further, S»» and S22 are the momentum sinks due to
intravalley scattering. We write

Sll nln21/1(vl) ' Vl S22 n2n22/2(V2) ' V2

n22(B(n2v2)/Bt+V ' (n2v2v2))+ V 'p2
=n2eE"' —S22—S21. (28)

In these equations,

vl = (e/ntl) (pl+ rll) —' E= pl(vl) .E,
v2= (e/rn2)(y2+r21) 'E= p2(v2) E,

(35)

R»2 ——R» 2
—R2„»=—R2») (29)

where R» & and R2» are the intervalley scattering rates.
We assume that the scattering rates are proportional to j =e(nlvl+nlv2) (36)

where we have introduced the mobility tensors p» and
122 of the two valleys. Using Eqs. (34), the current
density
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r»v~+r~v»
j=enc-

&»+&2
(37)

can be expressed as a function of the two drift velocities, will be a principal axis of the tensors yp, yp, rg, equi, and
a..The principal values for this direction will be denoted
by the corresponding light face symbols. For the com-
ponent o,(co,E) describing the response to a parallel
Geld BEi(E we find

ze

n2 i

i�@2

1— —eii —ezi
i

. (43)
812 QP+ZF2 4)+SR j

BEezz(() —Bpext(~) e i~t—

If we solve Kqs. (35) for vi and vz as functions of R and
substitute into Eq. (37), we obtain the steady-state i — —N»2 —Q22
current-Geld characteristic.

In order to obtain the frequency-dependent conduc-
tivity we consider the changes induced by the additional
electric Geld +

Then
ni(/) =ni+Bn,

nz(i) = n, —Bn,

vi(/) = vi+Bvi

vz(/) =vz+ Bvz.

The deviations from the steady-state values bn, bv»,
and hv& may be related linearly to the perturbing field
BR~' by means of the particle and momentum conserva-
tion laws. We obtain from Eqs. (25)-(28)

(~+zE)Bn z(nlBvi 'drlldvi n2Bvz'dr2/dvz)

LniBvi (I—eii)+nzBvz e»] (col+zl i)
=z(n, e/nz, )BE"&, (38)

jniBvg'eiz+nzBvz (I—ezz)$ (s&1+zrz)

= z(n;/~, )BEz z,
where O, I,& is defined by

uo drI,
ezra= — vi (aul+ir, )-'& (k, l =1, 2) (39)

(@+zan dvz

Here, we have introduced the parameters

Hi= (vi—vz) (dri/dva), 8z = (vz —vi) (drz/diaz) . (44)

The +~i represent correction terms which vanish in the
zero frequency and high frequency limits, as well as in
the zero field and the high Geld limits. They are in-
significant except for intermediate fields E,»& E&E.g.

As can be seen from Eqs. (38), F& and rz are
essentially the drift velocity relaxation frequencies, and
R is the charge transfer relaxation frequency. Further,
8» and 82 determine essentially the contributions to 8Z
due to electron transfer from the lower to the upper
valley and vice versa. The mechanism responsible for
the Gunn instability is the steep increase of 8» as
E~ E.». In fact, as a first approximation, the Geld
dependence of all the parameters except 8» could be
neglected for Gelds up to E.».

For the response to a perpendicular Geld SEE E we
obtain

/ni 1 nz 1
0„((o,E)=ie'i — +— . (45)

Enzl M+zFli nz2 fd+zT21

and where we have introduced the parameters

d
r~ —— ((y~+rzl) v~j, (k=1, 2)

dvg

E=ri+rz.

(40)

The perpendicular conductivity does not depend on 8»,
and, therefore, does not show any anomalous behavior
associated with the Gunn instability.

From Eq. (43) the static parallel differential conduc-
tivity is given by

The change in current density is given by

Bj 8LnlBvl+nzBVQ+ (vl vz)Bn], (41)

The Grst two terms are due to the velocity change of
carriers in the lower and upper valley, respectively, and
the last term describes the current contribution pro-
duced by the intervalley transfer of carriers. %hen bn,
Bv», and bv2 are eliminated in terms of 8E"' by means
of Eqs. (38), we obtain the differential conductivity
tensor e,(co,E) defined by

n» tI» n2 82
,(E)=. 1——+ 1—— . (46)

m»I'» R m2I'g R

It has been plotted as a function of the electric Geld in
Fig. 3 using values for the field-dependent parameters
which will be discussed below. The calculated difI'eren-
tial conductivity is in qualitative agreement with the
measured velocity-field characteristics.

In the high-frequency limit we obtain the correct
limiting form'

Bj(co)= e, (co E) BE"'(a&) . (42)
'Ln e

o.(co,E) —+ (47)
We assume that Eqs. (35) have unique solutions vi, z

as functions of R. %ith E along a symmetry direction of
the crystal, the drift velocities v» and v2 and the current
density j will then be parallel to E, and this direction

where
i n» 1 n2 i

+
jeff nc ~1 nc ~2

(48)
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I2 I& I6 IS

E (kV/cm)

Collecting these results, we obtain

e 1 e 1
r,=— I'2=-

'riil Pl(1+&1) iri2 P2(1+&2)

R= n,r2/mi,

Pi—= ei(dri/dv, )= —yR/(1+zi),
Qi= vg (dri/dr i) = —(pi/pi)yR/(1+si),
8i=d i—d 2= —(pi 12/I—i)yR/(1+si)

(53)

Here we have introduced the logarithmic derivatives

d inn»
y=

d lnE

FIG. 3. Field dependence of the static differential conductivity.

The sum rule

d lIlp, », 2

Z», 2

d lnE

(54)

de) nce
0.'(co,E—)= (49)

is also satisfied.
We note, however, that for intermediate frequencies

the expression for the conductivity given by Eq. (43)
has considerably more structure than the simple model
used for o.,(co,E) in Ref. 2.

In the subsequent calculations, we assume r2 to be
field-independent, such that 8~ ——0, and o.~» ——o..2=0. It
will be convenient to rewrite the expressions for I'», I'2,
R, and n»(dri/dii). By means of the definitions Eqs.
(35) we eliminate the velocities ii, v& and the combina-
tions (yi+ri) and (yi+r2) in terms of the mobilities.
Then choosing the field as the independent variable,
we obtain

which measure the strength of the field dependence of
the number of electrons in the central valley and of the
mobilities p» and p,2. The choice of the parameters n»,

p», &, Y, and s», 2 is somewhat arbitrary and was motivated
to a large extent by the fact that these particular pa-
rameters could be obtained most directly from existing
calculations of static transport properties. "We note,
however, that the transfer rate r» which is very diKcult
to estimate directly has been eliminated from these
expressions.

For the numerical calculations we make use of the
results of Figs. 12—14 of Ref. 10, where n», p», and p2
have been plotted as a function of the electric field. We
use the values calculated for Dii=5X108 eV/cm,
D,,' = 1X10' eV/cm with nonparabolicity (NP) of the
central minimum included. (The parameters Di2 and
D,,' are defined in Ref. 10.) For the zero-field mobilities,
we therefore use

mi, m dpi, g/dE

dri Edri/dE

dvi dpi//dE

(50)

pi(0) = 5200 cm'/V sec,

g, (0)= 145 cm'/V sec.

The slopes of the curves which are needed to calculate y,
s», and z& were estimated directly from the figures. For
the additional field-independent parameters required we
used the following values'.

t d Inp, ,,)=»,~l 1+
dlnE I

d'v», g dp», 2=p», s+E ns»=0.072mo, m2=0.36mo, r2=4.0X10"sec ',

yi(0) =4.7X10"sec '

y, (0)= 3.4X 10"sec '.ri+ r2 ricr2/&1 ~ (51)

where mo is the free-electron mass. (The value for ri is
discussed below. ) The corresponding zero-field values

Further, from the steady-state condition Eq. (34) we for yi and ym are
may write

df» n, r2 dn»

n»' dE
(52)

By assumption, r2 is independent of the field such that In Ref. 10, the mean drift velocity-field charac-
teristic was calculated using the same distribution func-
tion and choice of parameters as in the calculation of n»,
p, », and p, 2. The calculation of the static di6erential con-
ductivity from Eq. (46) using the values just discussed
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then serves as a consistency check. As shown in Fig. 3„
we obtain for the critical fields

(43), we obtain

COp

E,i 2.9——kV/cm, E,2= 12 kV/cm

in agreement with the values given in Ref. 10.12 It should
be emphasized, however, that the agreement with ex-
perimentally determined drift velocity - field character-
istics is far from satisfactory. In particular, the values
obtained for E,2 are much larger than those calculated
theoretically if a minimum is observed at all. In the
high-field region, the explicit numerical calculations in
this paper must therefore be regarded as preliminary
model calculations.

Limiting forms of the dielectric constant for a two-
valley model have been given by Conwell, 4 neglecting
the field dependence of the mobilities p1 and p2 which is
a reasonable approximation for E&E,1. For zero fre-
quency and for co=y1«r1, the expressions we obtain
differ from those given by Conwell by the appearance of
F1 and F2 instead of yl and y2 and by the correction
terms o.k~. For low fields r 1&&pl and el, g

=0. Then because
r2«r2 the results are essentially the same. For fields
F.=E.1, Conwell assumes that »«rl. For this case the
momentum loss due to intervalley scattering is the
dominant process, and the results disagree. Further-
more, using the high-energy value' of the transfer time
v-1 2 for rl ' overestimates the value of rl. The condition
r&)&» is, in fact, difficult to realize experimentally. The
transfer rate rl is an average of the energy-dependent
transfer ra, te rl 2

' over the electron distribution. It is
de.cult to estimate because of the rapid decrease of
71 2 after the onset of electron transfer. We have instead
estimated the value of r1 from the values of nl and r2,
using the steady-state condition

nlri (n nl)r2 ~

The transfer rate ~2„1 ' is a very slowly varying func-
tion of the energy, and for r2 we have used the value of
~2 1

' at the bottom of the X1 minima. "This gives the
value for r2 quoted above. The value of r1 for E=E,1

obtained in this way,

ri(E,1)=1.0X10"sec ',
is more than two orders of magnitude smaller than the
value assumed by Conwell. 4 For E=20 kV/crn we
obtain

r1=4.6X10"sec '

which is still only of the same order of magnitude as p1.
The high-frequency form assumed by Conwell is

identical to our Eq. (47).

Iv. FIELD DEPENDENCE OF PLASMA MODES

From the definition of the dielectric constant Eq. (17)
and the expression for the differential conductivity Kq.
"See Fig. 9, Ref. IO."E.M. Conwell and M, O. Vassell, Trans. IEEE Ed-13, 22

{'I966).

0(40,E) =04 1—
40 (1 4211 4222)

n1 81
X 1 & &12 +22

n, co+iF1 o)+iR

n2 PE1 1 82
+—— 1 —s

n. m 40+iF +iR
&11 O'21 (55)

cv„1&')= —jF2

u2( ~= —&r2,
(57)

the first of which consists predominantly in a motion of
the carriers in the upper valley, while the second has a
strong transfer character. For r2 ——0, we obtain the
modes discussed in Sec. II for a single valley (here the
upper valley) in the Hmit where the carrier concentra-
tion goes to zero.

In the high-field limit EO)E,2, the carrier concentra-
tions n1 and n2 approach field-independent values. '4

Then, y=0 and dri/dv, =0, and the dielectric constant
takes the form

Np n1 1 n2 181 1
0(4d, E)=01 1—— — +—— . (58)

M n M+'l F1 n ts2 +zF2
$ee Flg. I4, Ref, Io.

with 400 as defined in Eq. (20). We now assume r2 to be
field independent and set 82=n21=n22=0. Then, the
condition Eq. (11) determining the plasma frequencies
takes the form

40 (40+iF1) (40+iF2) (40+iR) 241—1402 (40+iI'2)
—

400 2( ni/n, ){(01+iF2)l 40+i(R—01)j—i4240}

400 (n2/n. ) (mi/m2){ (00+2F1)(40+iR) 24 140}

(56)

with &12 defined in Eq. (53). The physical nature of
the plasma modes is characterized by the relative mag-
nitude of the three terms contributing to the additional
current, Eq. (41). If one of the first two terms pre-
dominates, the mode is essentially a plasma oscillation
of the electrons in the corresponding valleys. If the third
term is the dominant one, the mode consists mainly of
a transfer of electrons between the two valleys.

Ke consider first some simple limits. For low fields,
no electron transfer takes place, and ni ——n„n2=0,
ri 0, R=ri. Further——, dr, /dv, =0 such that 81=$1=$2
=0. Then, the dielectric constant reduces to the form
given by Eq. (19), and we obtain the two plasma modes
for the e1ectrons in the central valley. By expanding the
expression (55) for 0(40,E) in the small quantities n2
and dri/dvi, we can study the emergence of the addi-
tional plasma modes. We find that at the onset of
electron transfer two purely relaxation-type modes
appear with frequencies
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co»('~ =—iFj. (61)

Note, however, that the limit m~= 0 is not reached even
for very high fields. According to Eq. (33), this would
require either r2~ 0 or r~ —+Do, whereas the intervalley
transfer times ~~ 2 and r~ ~ both tend to Gnite values
for high energies. "For the highest Geld value considered
below, E= 20 kV/cm, the value of ni/n, is still as large
as 0.08.'4

In the general case, the plasma frequencies have to be
found as the roots of the expression (56) which is a
fourth-degree polynomial with complex coefficients. We
have determined these roots numerically on a computer
using a subroutine developed for this purpose. "Figures
4(a)—4(f) show the results obtained for the behavior of
the plasma frequencies as the Geld is increased continu-
ously from E=O to E=20 kV/cm for various carrier
concentrations. In these calculations, all the parameters
are assumed to be independent of the carrier concentra-
tion except for oro which is proportional to n„'".The be-
havior of the plasma modes for a given value of n,
depends, of course, on the particular values of the field-
dependent parameters used in this calculation. The
values of these parameters may di6er from sample to
sample. Thus for the low-field mobility»&(0) there is
considerable scatter in the reported values, even for a
given carrier concentration. For the modes co„~,~(",
because the ratio yi/rao is the relevant parameter at
least for low fields E&E,&, different values of &&i(0) may
be approximately accounted for by scaling n, such that
yi/~0 remains constant. Because of the assumption that
only coo depends on n„ the static di6erential conduc-
tivity will go to zero at E,&=2.9 kV/cm and E,&=12
kV/cm, when we use the field dependence of the param-
eters discussed in Sec. III, independently of the carrier
concentration. Accordingly, soft plasma modes are ob-

"We used a subroutine written by I. Gargantini based on an
algorithm developed by P. Henrici and I. Gargantini, in I'roceed-
ings of the Symposium on Constructive Aspects of the Fundamental
Theorem of Algebra, bausch/ikon, 1967, edited by B. Dejon and P.
Henrici (Wiley-Interscience, Inc. , New York, to be published).
The calculations were performed on an IBM $6Qj40 computer.

This is equivalent to a two-valley model with zero inter-
band transfer and with effective momentum relaxation
frequencies Fj and F2, which in general has three plasma
modes. By expanding the expression for e(co,E) Eq. (SS)
in the small quantity dr&/d»i we find that the residue of
the fourth pole vanishes in the limit dr&/di&& ~ 0 at a
frequency

(S9)

and that it is predominantly a transfer-type mode.
Since in addition n~&(n2 in this limit, two of the other
three modes are essentially upper-valley modes with
frequencies approximately given by

co» gi'&=a(»' —I'2'/4)'" —ip2/2, (60)

and the last one a lower-valley mode with frequency

tained at these Gelds for all values of the carrier
concentration. "

We Grst consider the region E&E,&. For sufficiently
large carrier concentrations such that yi/&0o(2, the
zero-Geld values of the plasma modes ~„~,2(" will have
both a real and an imaginary part. The initial increase of
the real part and corresponding decrease of the imagi-
nary part is due to the initial rise"" in the mobility
&ii(E), which decreases the ratio I'i/coo. For low fields,
this eGect dominates over the decrease in n~ due to the
transfer to the upper valley. For carrier concentrations
such that I'&/~00= 2.0 as in Figs. 4(c) and 4(d), this effect
is particularly large. For suSciently low carrier concen-
trations, all four modes will be purely imaginary in the
low-Geld limit. In all cases, the purely imaginary mode
which lies nearest to the real axis for E=O is the soft
mode which goes to zero as E—+ E,~. Except for the
lowest carrier concentration considered (m, = 10'4/cm~)
this is always the transfer-type mode ao»('~ with the
initial value io»i'&= ir2. Fo—r r&,& 10'4/cm' the mode
co»('&, which is predominantly a lower-valley mode, lies
nearest to the real axis. In the zero-field limit this is the
mode c0» discussed in Sec.II.For», = 10"/cm', it differs
from its limiting form &u»i'&= iau02/—yi only by a few
percent. This is also the low-frequency mode considered
by Conwell. 4 It is the soft mode, however, only for very
low carrier concentrations such that coo'/yi&rn.

In the region E.i(E&E.~, the results (dashed por-
tions of the curves) have physical significance only for
the case where a uniform-Geld state is produced by suit-
able initial conditions, and only as long as the Geld stays
approximately uniform. It is interesting to note that
this uniform-field state is unstable with respect to one
mode only, no other mode becoming soft in this region.
The large negative imaginary value of co»"' for inter-
mediate fields is due to the fact that for these fields
s~= —1," so that F~ becomes very large. When F~ be-
comes comparable to F2, the modes ~„~(" and co»("
repell each other and change character: The strongly
field-dependent lower-valley mode co»('& changes into
the weakly Geld-dependent upper-valley mode ~»(2),
and vice versa, as F~ becomes larger than F2.

For E&E,2, all the modes are purely imaginary due
to the low value of the mobility in the upper valley,
except for the highest carrier concentration considered
(n.= 10"/cm'). Only then is the ratio F2/ado less than 2.
In this case, the soft mode associated with the upper
critical Geld E,2 is the transfer-type mode co»"'. For
lower carrier concentrations, the upper-valley mode
co»(2) is the soft mode at E,2.

Thus, for n= 10"/cm', the soft mode remains of pre-
dominant transfer character as the Geld is increased from
E&E.~ to E&E,2. For intermediate carrier concentra-

' Gunn oscillations have, however, been observed only for rela-
tively low carrier concentrations, n, &10"/cm'."See Fig. 13, Ref. 10."As discussed in Ref. 10, an improved calculation of the mobil-
ity pI may, however, not $how @n initial inCreaSe.
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F&G. 4. Field dependence of the plasma modes for difFerent carrier concentrations. For clarity the purely imaginary modes have been
drawn slightly o8 the axis. The broken line shows the behavior of the modes for E,1(E&E,2. Note the change in the ordinate from
a linear to a logarithmic scale.

tions, the soft mode eu»(2) changes from transfer-type
for E&E. to an upper-valley mode for E&E,. For
n, =10"/cm', it changes from the lower-valley mode
cd»(" for E&E, to the upper-valley mode cd»('& for
E)E,

For carrier concentrations in the range iX10" to
3X10"/cm' the plasma modes rupI, I&'& in GaAs interact
strongly with the longitudinal optical phonons. "This
interaction may be included by replacing e~ in the expres-
sion Eq. (17) for the dielectric constant by the fre-
quency-dependent quantity'p

lip fico Cdg

«(Irr) = &I~+
Cd —Cd

where cd& is the transverse optical phonon frequency.

"A. Mooradian and G. B. Aright, Phys. Rev. Letters 16, 999
(1966); A. Mooradian and A. L. McWhorter, ibid. 19, 899 (1967).

'0 See, for example, F. Stern, in Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic Press Inc. , New York, 1963),
Vol. 15, p. 300.

V. OPTICAL PROPERTIES

(n+ik)'= r(ar, E) . (63)

By making use of Eq. (12), we can write for the real and
imaginary parts

n' k'= e'(rd, E), —
2nk = (4rr/rd) rr'(ra, E) . (64)

%e have calculated n and k together with the reQectivity

(n —1)'+k'
R=

(n+1)'+k'
(65)

Because for small q there is no difference between the
longitudinal and transverse dielectric constant, the
transverse response of a system and, therefore, its
optical properties will strongly depend on the behavior
of the plasma poles. The optical properties are most
conveniently expressed in terms of the index of refrac-
tion n and the extinction coeKcient k, dedned for real
cd by
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Fio. 5. The index of refraction, the extinction coefficient, and the reactivity for frequencies co=coo for several
values of the 6eld, for tvvo diGereni carrier concentrations.

as a function of frequency for various values of the elec-
tric field for the two-valley model. discussed in Sec. III.
Figures 5(a)—5(f) show the results for frequencies in the
neighborhood of ~p for two different carrier concentra-
tions. fn the zero-field limit, e(cd) is given by the single-
band Drude formula Eq. (19), and the corresponding
frequency dependence of n, k, and (R is well known. "
For high carrier concentrations such that yi(&orp, the
reflectivity which is close to 1 for co&cop drops sharply
at co=cop, and for Go))Mp approaches the limiting value

(66)

from below. For GaAs, ~~=12.5 and (R„=0.31. When
yi/~0 increases, the drop in R becomes flatter, and for
yi))orp, the reflectivity is approximately independent of
frequency equal to its limiting value (R„. In the high-
fleld limit, ni«n„and e(~) . is again given approximately
by a single-band Drude formula, now for the upper
valley. Here, however, I'2/~oo is not small compared to
two because of the low mobility in the upper valley, and
the frequency dependence of the reflectivity is conse-
quently very flat. For cu))coo (but still smaller than the
band gap), the reflectivity approaches the limiting value
(R„ for all fields.

In order to observe a large e6ect due to the electric
field, it is necessary to have a high carrier concentration
and to go to very high flelds. We see from Figs. 4(e) and

4(f) that for the high carrier concentrations, the poles
co„~ 2(" move only a relatively short distance towards
the imaginary axis as the field increases from E=O to
E=E,&. The corresponding change in the reflectivity
curve shown in Figs. 5(c) and 5(f) is then also small.
However, for E&E,~ all the curves are nearly flat in the
neighborhood of cop.

Because of the large amount of heat generated for the
high values of n, and E required such experiments may
be dificult to perform in GaAs. Gunn oscillations due to
the electron transfer mechanism have, however, recently
been observed in strained n-type Ge,"and here the con-
ditions are much more favorable. Because the mobility
in the central valley is much larger than in GaAs, par-
ticularly at low temperatures, much smaller values of
n, are needed in order to satisfy the condition yi/ado«1.
The critical field E,i is also much less than in GaAs.

It follows from the above discussion that the field de-
pendence of the optical properties for the carrier con-
centrations and the frequency range shown in Fig. 5
reflect mainly the field dependence of the plasma modes
co„i ~ . The mechanism of electron transfer gives rise to(1)

"John E. Smith, Jr., Appl. Phys. Letters 12, 233 (1968).
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e= 0 = (2s(rp/pi)"' (67)

When the field exceeds the threshold for electron trans-
fer, the parameter ei rises very steeply with E. From
the expression for the dielectric constant Eq. (55) we
then find a frequency dependence of p'(pp) and o'(pr),
which is given by

I"g+R 1
p'(pi, E)= ppP+4w8i(rpP

Pi or +R
r~+R

o'(pi, E)=apP 8,
~

1——
R k I'i pi'+R'

(68)

where 6p and O.p' are the static dielectric constant and
the static conductivity for 8&=0,

orp ) &l orp

&p
——&, I——~() 0-p ————.

I",2j 4x- I'g
(69)

Thus, as pi decreases from values pp»R to pp=O, p'(pi, E)

an additional Geld dependent structure at the much
lower frequencies or=R. For a qualitative discussion of
this eGect in the 6eld range 0&E&E,j it is suKcient to
consider the frequency range or« I'~, because even at
E=E,j, R is still almost ten times smaller than F~.
Further, because np/(mpI'p)«ni/(miI'i) for E&E.i, the
contribution of the carriers in the upper valley may be
neglected. Ke shall also neglect the correction terms nI, ~.

Before the onset of electron transfer, p'(pr) and
p'(ip) are then given by their static values pp and
pp

——pi —4ir p p/I'i in the whole frequency range considered,
and the solution of Eqs. (64) shows the well-known fre-

quency dependence of a medium with constant 0 and
p. In the low-frequency region pi«4vrpp/

~
pp ~, one obtains

the usual skin-eGect behavior

increases from 6p to
r,+R

pp(E) = ppP+4s8iirpP
FgR'

(70)

and ir'(cp) decreases from opP(1+8i/I'i) to

p p(E) = p pP(1 —8i/R) . (71)

At the critical 6eld, 8~=R. In addition to lowering the
value of irp(E), the mechanism of electron transfer has
also a very drastic effect on the static dielectric constant.
It increases from pp(0) = p~(1 ppp /pi ) 'to pp(E i)
=«(I+pipP/I'iR) as the field increases from E=O to
E=E,i. For the high carrier concentrations pp(E)
changes from a large negative to a large positive value.
Thus for m. = 10"/cm', we find pp(0) = —2X10' while
pp(E, i) =+1.5X 10'.

At the critical field E,i Eqs. (68) take the form

rg+R co'
p'(pi, E.i) = pp(E. i) —4irp p'

FgR or'+R'

ri+R or'
p'(pi, E,i) = o p'

or +R
For low frequencies we then obtain from Kqs. (64)

e= happ(E, i)jii',

1 M pp(Eqi) pp
k= ——

2 R Lpp(E, i)]'i'
(73)

which shows that n goes to a constant while 4 goes to
zero in the limit or —+ 0. The same limiting behavior for
n and k is also obtained at E=E.g.

In Fig. 6, we have plotted the index of refraction and
the extinction coeKcient of the two-valley model for
the interesting frequency range and for the two 6eld
values E=O and E=E.i. (Note that rp which is equal

la 3
nz = l0 /cm

300

FIG. 6. The index of refraction and
the extinction coefFicient for frequen-
ciesco=r2for E=0 and E=E,I for two
di6erent carrier concentrations.
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tp E for E=0, deviates from E only by 20% at E=E,i.)
The results show clearly the transition from the skin-
eGect behavior at E=O to a nonabsorptive behavior at
E=E,& in the low-frequency region.

with

II(q&d) = (a&'—c'&7~)1+c2qq. (82)

The dynamical screening tensor s(qco) introduced in Eq.
(6) is proportional to II ',

VI. CRITICAL FLUCTUATIONS
II(q&0) s(q&d) = kn.aPl. {83)

The electric-Geld distribution changes from a uniform
distribution to one which is highly nonuniform at the
critical Gelds E.&,&. Consequently we expect any critical
Quctuations to be most pronounced for the field-fie1d
correlation function. The correlation function is defined
jn terms of the expectation value of the symmetrized
product (anticommutator) of the field density operators

Bt&/Bt+divj =0, (75)

. ecause the fluctuations of the applied field are as-
e zero, E in this expression may be taken to

refer either to the total field or the induced field. For
a spatially uniform time-independent state of the sys-
tem, these correlation functions depend only on the
d~erences r—r' and t—t', and we introduce the space
and time Fourier transforms S t&&x&(q&d) for real q and
co. Of interest are also the current- and charge-density
correlation functions S&'&(rt,r't') and S'»(rt, r't') defined
analogously.

We first Gnd the relations between the diGerent corre-
lation functions imposed by Maxwell's equations. Be-
cause of gauge invariance, the operators p(rt) and j(rt)
satisfy the continuity equation

S"'(q~) = 2kT Rex(qco) . (85)

Away from equilibrium {EWO), one may use a corre-
sponding relation to define a symmetric second-order
noise temperature tensor T~. In the most general case
when 5"' and x do not have the same principal axes,
we write the right-hand side as a symmetrized tensor
product,

S&&&(q~,R) = PkT&«Re&&(qco)+Re&&(qar) kTs j. (86)

In the case that both E and q are parallel to a symmetry
direction of the crystal, only the correlation function for
the current components paraQel to E is expected to show
critical Quctuations. For this ffuctuation we obtain

Yhus, Eq. (81) can be written in the form

S"'{q~)= (1/~')s(q~) S"'(q~) s(q~) (84)

Equations (77) and (84) express S&» and S& & in
terms of SU).

A«q&ibrium (E=O), the Quctuation S&'& can be
obtained from the external response tensor x introduced
in Zq. (2) by means of the fluctuation-dissipation
theorem, which in the classical limit hen(&kT has the
Nyquist form

where the second V operator acts on S&» from. the right.
We thus obtain for the Fourier transforms wllere K= 0'/t is the parallel longitudinal cpmppnent pf

x defined in Sec. II, and T~ is the parallel longitudinal
(77) noise temperature. Equations (77) and (84) expressing

the field- and charge-density Quctuations in terms of
the current-density Quctuations take the form

~'S"&(q~) =q S"'(q&) q.

Further, from MaxweB's equations it, foDows that

(B'E/Bt')+ &cX(&XE)—=II E= —4 (Bj/Bt), (78) S& &(q~,E)={4 /~)'S&'&(q~, E),
S (q,E)= (q/ ) S (q,E) . (88)where

which gives rise to the relation
~(V~,E)

{B/Bt)(B/Bt')S&»(rt, r't') = V S&'&(rt,r't') &', (76) S"'(&&0,E)= 2kTN ReK(qcu, E)=2kT~ R„- (87)
f(gM&E)

(Bs
II=

(
—c'V'& [1+c'VV

& Bt2
(79)

is the vectorial wave propagation operator. This leads
to the relation

As before, we take the q -+ 0 limit, i.e., we consider only
the long-range behavior of the correlation functions.
The noise temperature T~ will in general be a function
of co and E. In order to study the critical fluctuations,
we assume that T&«(&d,E) has a Taylor expansion

II S&a(r&rt't') II'= (4 ) (B/st)(B/ B')BSt(r&~&r' t'), t(80)
Tn (~,E)= Tz'(E)+L'T„&»(E)+. . . (89)

where the second II operator acts on S~~' from the
right. For the Fourier transforms we obtain with a finite radius of convergence. Then under the

same assumptions as in Sec. II, we obtain with the helpII(«).S&s&(q~) 11(q~)= (4&r~)~S&»(qco) (81) of Eqs. (12) and (14) the low-frequency behavior for the
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fluctuations in the critical regions E=E.~,2

&o 0p(E')
S&&'&(&o,E)= 2kTp&o(E) (90)

&o o p (E)+ (47r ) o po (E)

(4&r) '&rp(E)
S&s&(&o,E)=2kTwo(E), (91)

~'oo'(E)+ (4~)'~o'(E)

q'«(E)
S«'&(&d, E)= 2k TNo(E) (92)

~'oo'(E)+ (4~)'~o'(E)

derivation above. We expect that in this region the
fluctuations will increase exponentially for large times,
signaling the onset of the Gunn instability.

We have expressed the fluctuations in terms of the
noise temperature. It is of interest to note that when the
Coulomb interaction of the charge carriers is treated in
the random-phase approximation (RPA), the same
value is obtained for the longitudinal noise temperature
as when this interaction is neglected altogether. The
longitudinal current fluctuations in the RPA may be
written in the following form:

where in the denominators we have kept the second-
order terms in oo since ao(E) ~0 for E~E,&,o. The
corresponding long-time behavior of these correlation
functions is given by

Sp
&i & (o& E)

S&i & (o& E)=
(.(~,E)~

' (9S)

k Tycho(E)
Sv&(~ ~

—I~—~'l I~(&)

4orop(E) r'(E)

47rk Tup(E)
S&»(t i', E)= &

—
J c—c'f/~(E)

op(E)
(94)

o(&o,E)= 1+(4ori/&d)&&„o(o&, E) . (99)

where Sp&»(&d, E) are the fluctuations in the absence of
the Coulomb interaction. In RPA the true conductivity,

(93) with the Coulomb interaction included, is approximated
by the external response conductivity in the absence of
the Coulomb interaction, &&, o(&o,E), such that"

kT&&o(E)
S&»(&—t', E)=q' &

—
j t—s'

f /~(E)
4m. op(E)

where r(E) is the dielectric relaxation time

oo(E)

f g(i) ] go(i)
kT~ ———

2 Re&& 2
~

o~
' Re(&&., o/o)

(96) which may be rewritten

(100)

The definition of the longitudinal noise temperature Kq.
(9$) (87) then takes the form

4 oo(E)

Equation (16) shows that in the critical region it is
related to the soft-mode frequency &d,(E) by

g (i)

kTN
2 Re(o*&&,,p)

(101)

r(E) = —1/Imp&„(E) . (9&)

Equation (94) shows that the lifetime of the field fluc-
tuations goes to infinity as E~E,&,o and o(E) ~0.
Correspondingly, the field noise spectrum Eq. (91) ap-
proaches a 5 function at or =0. The current fluctuations,
Eq. (93), also become long lived. However, because of
the factor 1/r'(E), the magnitude of the fluctuations
goes to zero as E—+ E,~,2. The current noise spectrum
goes to zero as co-+0. The density Quctuations Kq.
(95) vanish in the q= 0 limit, since density correlations
must have a finite range. They show the same long-time
behavior for E-+ E,j,2 as the field Ructuations.

The above results apply directly only to the stable
regions E&E,~ and E&E,2. The unstable region E,j &E
&E,y requires a more careful treatment of the temporal
Fourier transforms and their inversions than in the

Then making use of the expression for e given by Eq.
(99), we obtain

g U)

kTN= — —=kT~',
2 Relc, ,o

(102)

where T~' is the noise temperature in the absence of the
Coulomb interaction.
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"Equation (98) has been derived only for a nonpolarizable
lattice, in which case &~=1.


