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The motional narrowing of nuclear-magnetic-resonance spectra is examined from the point of view of
Anderson. The relaxation function, which is the Fourier transform of the absorption spectrum, is used to
connect the experimental data with the stochastic model of the motion. The interaction of the spins with
their surroundings is treated as a stochastic process of the nature of a random telegraph signal with random
amplitudes. The possibility of incomplete narrowing is easily included. Two theoretical relaxation functions
are developed. The first function is derived from the assumption of a normal distribution for the phase
deviation, and the second results from a uniformly distributed phase deviation. Ammonium chloride and
titanium hydride are studied experimentally. The two theoretical relaxation functions are compared with the
experimental relaxation function. The relaxation function based on a uniformly distributed phase deviation
is in best agreement with experiment. Arrhenius activation energies are calculated and compared to those
obtained from linewidth data. The apparent second moment is related to the frequency of motion. The rela-
tion has the advantage of internal consistency and is not contingent on an assumed line shape. The activation
energies obtained from second-moment data are practically the same as those obtained by the relaxation-
function method. The correction for the effect of modulation on the relaxation function is derived. This
correction leads naturally to a relation between the observed line shape and the actual line shape. Partial
experimental verification of the theory of modulation broadening is given.

I. INTRODUCTION

'OTIONS such as molecular rotation, diGusion,
- ~ and chemical exchange a6ect the several quanti-

ties which describe nuclear magnetism. ' In most
instances, the resonance curve is sharply and mono-
tonically narrowed by the motion of the spins to a
width considerably less than the width in the absence
of motion. Generally, the shape of the NMR spectrum
is sensitive only to those motions with characteristic
frequencies greater than or equal to the rigid lattice
linewidth. The relaxation time TI is sensitive to both
low- and high-frequency motions. Consequently, relaxa-
tion-time measurements are informative over a larger
temperature range than are the linewidth measure-
ments. Nevertheless, continuous-wave data over the
temperature range in which the line shape narrows
contains important information regarding the motion
responsible for the narrowing.

The connection between line narrowing and random
motion which may occur in condensed phases was first
given by Bloembergen, Purcell, and Pound. ' Although
the BPP theory describes the experimental data rather
well, it fails to make full use of the experimental line
shape. The theoretical explanation of motional narrow-
ing has been improved by Kubo and Tomita, ' but the
underlying physical picture of the eGect as given by
BPP is undoubtedly correct. A recent rigorous theory

' N. Bloernbergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948). Hereafter referred to as BPP.' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
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of spin resonance and relaxation which describes mo-
tional narrowing has been given by Argyres and Kelley. '

An experimental approach to motional narrowing
could be based on Anderson's elegant theory. 4 In this
theory, the Fourier transform of the resonance spec-
trum is the quantity which reflects the motion of the
spins. We will call the Fourier transform of the reso-
nance spectrum the "relaxation function, " or more
briefiy, G(t). The advantages of working in the time
domain with G(t) are both theoretical and experimental.
First, the dynamical or temporal behavior of the local
field experienced by the spins is of primary interest.
rather than the average of the absolute value of the
local field, although the latter, more naturally evident
in the line shape, is also of interest. Second, as Anderson
clearly states, the moments of the shape function are
determined by the behavior of G(t) very near the time
origin, and they have very little to do with its general
course. For example, the second moment of the shape
function is actually independent of any temporal
behavior of the local field, whereas the fourth moment
mould be theoretically expected to increase as the
fluctuations in the local Geld become more rapid.
Experimentally, the second and fourth moments
appear to decrease as a result of motion. This apparent
discrepancy arises because, for a narrowed resonance,
the wings of the spectrum contribute Jarge portions to
the moments. On the other hand, the Fourier transform

3 P. N. Argyres and P. L. Kelley, Phys. Rev. 134, A98 (1964).
4 P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).
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of the spectral shape, being the average value of a
function with unit modulus, will have relatively
smaller contributions from the wings. The calculation
of G(t) from the observed spectral line shape will be
more accurate than the calculation of spectral mo-
ments while still making optimum use of the line shape.

It should also be pointed out that, since G(t) is also
the shape of the free-induction decay, ' an independent
check on cw data is available. ' Under certain circum-
stances, it may be that free induction will be the
superior method for obtaining G(t). A practical example
is that the calculation of G(t) from cw data involves
considerable labor, whereas, ideally, free-induction
decay produces G (t) directly.

In this paper Anderson's basic theory is applied to
two systems which exhibit motional narrowing. These
systems, which have been previously studied by other
investigators, were chosen as being representative of
the various types of motions which can be studied
conveniently by magnetic-resonance methods.

II. THEORY

A. Anderson's Theory

A brief resume of Anderson's theory of motional
narrowing as recast by Abragam~ will be useful. A
collection of nuclear spins is described by a Hamil-
tonian B, which consists of a Zeeman term, a smaller
term H j, which is responsible for the line broadening,
and a term F, pertaining to the motion of the atoms or
molecules which carry the spins. Let p, denote the x
component of magnetization, and define &c,(t) by'

()) si&rg~~ irrc—
It may be shown that the shape function g(co) is given by

oo

g(cl&)=- TrL&c (t)sc ) coscc&tdt.

p

The frequency co is the deviation from the resonant
frequency. The quantity Trg (t)&c,), the relaxation
function, will be denoted by G(t) By inv. erting (2),
we have

G(t) = 2 g ((o) cosruhku.
0

Since F and H~ do not corrimute, a time dependence
is impressed on II&, which may be expressed by the
relation

~ ()) s-'sc~ sc& c

Because the concern here is only with observations on
the spin system, the lattice is evident only through its

~ L J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).
~ H. A. Resing, J. Chem. Phys. 37, 2575 (1962).
~ A. Abragam, The Priecip/es of Nuclear Mageegisw, (Oxford

University Press, London, 1961),Chap. X.
8 By convention h= i.

eGect on the spin system. It is then appropriate to
treat H&(t) as a random operator.

The final expression for G(t) is

where

G(t) =E exp c cd(t)dt
0

co(t)=(m(a (t) (m) (—n)a, (t) (n).

(5)

(6)

In (6), the states )m) and )n) have Zeernan fre-
quencies which diGer by the resonance frequency.
Further, in (5), the notation E[X) is used to denote
the expectation of the random variable X over an
appropriate probability distribution.

The integral which occurs in (5) has a simple physical
interpretation. It is the resultant phase deviation of
the spin system as would be observed from the rotating
frame over a time interval t. The phase deviation is
denoted by C (t).

The probability distribution of cd(t) is not given by
the above theory. A distribution must be chosen
from a priori considerations and then tested against
experiment.

B. Stochastic Model

In those cases of interest, Hj may be written as a
suDl:

H&= P P U;& &(z) V;& &(s),
i 1 a

where U;c &(x) refers to an individual spin i, and is a
function of the @rid a of the spatial coordinates of the
spins, and V;c &(s) is a spin operator. It is now assumed
that the transformation (4) has the eifect of simply
introducing a random time dependence into the lattice
variables x.~ The lattice is now to be treated as a
classical system.

In arriving at a description of the stochastic process
0&(t), the ideas developed by Pines and Slichter9 are
followed very closely. Suppose we could count the
number of changes in ra(t) during the time interval
(O,t). This number will be denoted by n(t). We define
n(0) =0. We would expect that the counts correspond-
ing to two nonoverlapping time intervals will be
statistically independent. That is, if t3&t»t&, the
random variables n(t2) —n(t&) and n(t») —n(t2) are
independent. The )ustification of this assumption is
found in the fact that changes in co(f) have negligible
reciprocal action on the lattice variables. Secondly, we
assume that for t2&t& and any ~)0, the random
variables n($2) —n(t&) and n(t2+r) —n(t&+r) are identi-
cally distributed. The last assumption is a natural way
of statistically describing the absence of trends in co(t).
The next assumption must be considered as an ideali-
zation. It is assumed that only a finite number of

9 D. Pines and C. P. Slichter, Phys. Rev. 100, 1014 (1955).
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In the rigid lattice case, 1/TP is equal to ~z2+o+2,
which is the rigid lattice second moment. In the case of
very rapid motion, 1/T22 approaches ~&', which is the
apparent second moment of the narrowed line.

To compute G(t), the probability distribution of
C (t) must be known. If C(t) were normally distributed,
we could immediately write

G(&)= em( —
2 v'). (2o)

It might be hoped that, by assuming A to be normally
distributed, co(t) would be a normal process. Although
it can be shown that this is not true, Eq. (20) will be a
good approximation for times such that y2&1. In what
follows, the function (20) will be denoted by G&(t).

Another justification for Eq. (20) is found in a
general theorem on second-order stochastic processes, "
which ensures us of the existence of a normal process
having the same covariance as co(t). Thus, in a model
involving only means and covariances, there is no loss
in assuming co(t) to be a normal process. This theorem
actually provides a rigorous basis for the discussion
given in the last paragraph.

Another useful relaxation function is obtained by
assuming that C (/) at any time is uniformly distributed
with mean square given by (17). It may be that such
an assumption is not consistent with the stochastic
model for u&(t). If this rather difficult mathematical
question is ignored, the assumption of a uniformly
distributed phase deviation leads to a second functional
form for G(t),

Gg(t) = sin(3+ )& /(3 p ) (21)

The stochastic model developed above is perhaps
the simplest which realistically describes motional
narrowing. The model suffers from having only one
adjustable parameter. Equation (10) may be modified
to include several narrowing processes corresponding
to the excitation of diferent degrees of freedom. An
example of multiple narrowing processes is found with
1,1,1-trichloroethane. "A further generalization would be
the inclusion of several kinds of interactions which are
destroyed by motion. For example, H& might include
dipole-dipole and nuclear quadrupole interactions.
While these modi6cations might be necessary in
special cases, the model remains essentially a one-
parameter model.

Several recent contributions to the problems of
line-shape analysis and motional narrowing have
appeared. Fixman" and Saunders and Johnson'~ apply
Monte Carlo techniques to the numerical calculation of
the relaxation function for systems governed by the

~ J. L. Doob, Stochastic Processes {John %'iley L Sons, Inc. ,New York, 1953), Chap. II, p. 74.
'3 H. S. Gutowsky and G. E. Pake, J. Chem. Phys. 18, 162

(1950).
"Marshall Fixman, J. Chem. Phys. 48, 223 (1968).
"Martin Sauders and Charles L. Johnson, Jr., J. Chem. Phys.

48, 534 (1968),

classical rotational dift'usion model containing one
diQ'usion coeKcient. Sillescu and Kivelson" develop
an elaborate theory of magnetic-resonance line shapes
which includes both secular and nonsecular spin-
lattice interactions. The latter work is also restricted
to a single diffusion coefficient.

Additional parameters for a single process can be
introduced in several ways. One way is suggested by the
formula relating the rigid lattice fourth moment to the
fourth moment of the narrowed line, 4 ~

M, =31,'+K„"(t,t) . (22)

K "(t,t) is the second derivative of K„(t,t') evaluated
at t= 1'. If K "(t,t) exists, it is positive and is the co-
variance of a stochastic process ~'(t) which has the
significance of the rate of change of co(t) In the. case of
the model discussed above, K„"(1,t) does not exist,
so ~'(t) does not exist. This suggests that a stochastic
process be constructed to describe cu'(t).

III. EXPERIMENTAL APPARATUS
AND PROCEDURE

A. Apparatus

The apparatus used was a Varian VF-16 wide-line
spectrometer operable over a frequency range of 2 to
16 MHz. The magnet system was a V-3603 12-in.
electromagnet regulated by a FieM Dial. The recording
system consisted of a C1024 time-averaging computer
(TAC) and a Houston model 6550 omnigraphic recorder.
All frequencies and periods were measured with a
Hewlett-Packard model 5245-L electronic counter. The
sample temperature was regulated with a V-4557
variable-temperature accessory adapted for use in the
wide-line probes.

B. Spectra

The spectra were recorded using scanning speeds
ranging from 0.004 to 0.035 G/sec. The phase-detected
signal for each scan was stored in the TAC. The TAC
was triggered externally at the beginning of each scan.
The channels of the TAC were advanced by a square
wave externally derived from a Hewlett-Packard
3300-A function generator. The channel advance rate
was chosen such that the sweep time of the TAC was
very slightly less than the sweep time of the Field
Dial. Small but measurable long-term drifts in magnetic
ield were cancelled, when necessary, by moving the
position of a narrow resonance line to the center of the
sweep range.

At the completion of the desired number of scans the
time-averaged spectrum was read out on the Houston
recorder. The recorder controlled the data-source scan
rate. The curves were symmetrized by the method of
Bruce. ' The spectral data were then converted to

'6 Hans Sillescu and Daniel Kivelson, J. Chem. Phys. 48, 3493(1968).
'~ C. R. Bruce, Phys. Rev. 107, 43 (1957).
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digital form with a graphic-data digitizer for the purpose
of computer processing.

D. Calculations

Second moments, fourth moments, and Fourier
transforms of the spectral lines were obtained by
numerical integration. The effect of magnetic field
modulation was accounted for in the calculations. The
relations between the uncorrected and corrected quanti-
ties are as follows:

cV2' 3l2+ b'/4, ——

M4' = iV4+3b'M2/2+ 6'/8,

F(t) = $2J, (bt)/b&jG(~),

(23a)

(23b)

(23c)

where M2', 3f4', and F(t) are the uncorrected quantities.
J,(bt) is the first-order Bessel coelficient and

(24)

C. Calibrations

In order to correct experimental results for the effects
of field modulation, the amplitude of the modulation
field must be known. The peak-to-peak amplitude of
the modulation field was measured by adjusting the
resonant frequency of doped water to coincide with the
extremes of the modulated field.

The scanning rates, i.e., pao, were calibrated by
scanning through a narrow resonance line at two
different radio frequencies. The two scans were stored
successively in the TAC and then jointly displayed on
the recorder. The scanning rate is proportional to the
scale on the chart paper divided by the channel advance
period.

All samples were sealed in glass tubes along with a
small amount of argon. The Pyrex sample tubes were
8.5 mm in i.d. A capillary, which served as a thermo-
couple well, entered the top of the tube through a ring
seal. The closed bottom of the capillary was 2 cm from
the bottom of the sample tube. This arrangement
allowed the temperature to be measured at a point
within the sample near the center of the receiver coil.

The temperature of a sample was measured by means
of a copper-constantan thermocouple having a Teflon
insulation. The temperature was measured before and
after each scan. If a discrepancy of over 1' occurred,
the spectrum was discarded. The possibility of short-
term Quctuations in temperature was investigated at
several temperatures by monitoring the thermocouple
emf with a recording potentiometer. The results showed
a rather remarkable stability of 0.1' over periods as
long as 2h. It was observed that spurious signals
appeared in the TAC if temperature measurements
were attempted during a scan of the spectrum. There-
fore, temperature was not monitored during a scan
period.

where 8„is the peak-to-peak magnitude of the modu-
lation field in gauss and p is the gyromagnetic ratio.
A derivation of (23c) is given in the Appendix.

The Fourier transform of the shape function was
obtained from the first derivative of the observed line
shape f(co) by numerical evaluation of the integral

since

where 0 is a number such that f'(co) is effectively zero
for co)Q. In several instances, it was found that F(t)
was oscillatory in behavior and possessed zeros not all
of which were identical with the zeros of Ji(bt). There
are two possible explanations for these additional zeros.
First, G(t) may have an oscillatory behavior. Second,
the appearance of additional zeros due to truncation is
always to be expected by analogy to the Gibbs phe-
nomenon of a Fourier series of a discontinuous function.
Computations which will not be reproduced have
indicated that the additional zeros in E(t) due to
truncation at 0 occur at times much larger than the
zeros observed for rigid lattice spectra. The additional
zeros must then arise from G(t). However, all additional
zeros which are observed for motionally narrowed
spectra might possibly be due to truncation.

IV. RESULTS AND DISCUSSION

A. Ammonium Chloride

NMR has shown conclusively that the ammonium
ions of an ammonium halide undergo random re-
orientations. " These reorientations occur well below
the X point. The ammonium halides offer textbook
examples of the utility of magnetic resonance in reveal-
ing thermal motions which occur too infrequently to be
detected by ordinary thermodynamic methods.

The experimental second moments for the low- and
high-temperature plateaus were found in this work to
be (4.02&0.04)X10" and (0.22&0.01)X10"sec ' re-
spectively. These values differ by about 10% from the
values 3.54)&10" and 0.24X10' sec ' reported by
Gutowsky et a/. The fourth moment decreases from a
rigid lattice value of 32.00X10 sec~ to a low of
0.12&(10' sec~. The rigid lattice line shape shows
evidence of fine structure. If this fine structure is
neglected, the rigid lattice line shape may be described
as being somewhat Ratter on top than a Gaussian curve,
as indicated by the ratio 354/M2s= 1.98. The shape of
the narrowed line shows no fine structure.

For a given temperature, the time T2 was taken from
the experimental relaxation function as the time for
which

'8 H. S. Gutowsky, G. E. Pake, and R. Bersohn, J. Chem. Phys.
22, SD (&954).
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1.0

G(t)

qualitative behavior of T2 increasing with temperature
is as predicted from simple considerations of conjugate
Fourier transforms. ' The oscillations or beats exhibited

by G(t) at or near rigid lattice conditions are due in part
to the fine structure'9 and, in part, to an effect first
observed by Lowe and Norberg. ' They observed beats
in the free-induction decay of solids which exhibit no
fine structure. At temperatures below —160'C, the
beats exhibited by NH4Cl have an angular frequency
of 3.5)(10' rad sec '.

Figure 2 shows a comparison of the experimental

G(t) with G&(t). The relative difference

0.0

0.0 l.0 2.0 3.0 4,0

is also shown in Fig. 2.
A graph of 1og~oa versus 10'/T shown in Fig. 3

indicates that the temperature dependence of 0. is
described by the Arrhenius equation

The corresponding frequency 0. was then obtained by
solving Eq. (18). The results are given in Table I.

Previous observations' have indicated differences in
line shape in the transition region depending on
whether the sample was warmed or cooled to arrive at
the final temperature. The experimental data reported
here indicates the same behavior at —141'C, which is
near the midpoint of the transition region. At that
temperature, T& is signi6cantly larger when equilibrium
is approached from below than when approached from
above. This behavior was not noticeable at the other
temperatures. Because of the rapidity with which the
line shape changes near —141'C, it is &+cult to
determine if the discontinuity in T2 is real or only
apparent due to a lag in attaining temperature equi-
librium throughout the sample. '

Figure 1 shows the experimental relaxation function
for seven temperatures in the transition region. The

TABLE I. Values of Tz, e, and Ms for NH4C1 throughout the
transition region. Tg is the time for which the experimental G
is e '/'. a is then calculated from Kq. (18).All values are corrected
for modulation effects.

T ('C) Tg (10 sec) a (10 sec-1) M& (1010 seem)

»&—163—153—148—141+
141b

—135—130—126
+ 26

0.50
0.54
0.59
0.97
0.79
1.28
1.58
1.85
2.07

~ ~ ~

0.96
1.96
8.07
5.44

14.40
26.00
56.50

4.02
3.43
3.04
1.08
1.76
0.66
0.42
0.30
0.22

a Temperature attained by warming.
b Temperature attained by cooling.

t(10 sec)

FIG. 1. Experimental relaxation functions G(t) for NH4Cl. The
sequence of curves from left to right corresponds to the tempera-
ture sequence T'C= —163, —153, —148, —141, —135, —130,
and —126.

a =n„exp( —E/ET),

where E is an activation energy related to the re-
orientation of the ammonium ion.

Also shown in Fig. 3 is a plot of log~o(1/r, ) versus
10'/T, where r, is the correlation time calculated from
linewidth data and the equation~

(1/T2')'= b~'+Cog' tan '(r, /CT2'). (26)

In Eq. (26), C is 0.883 and 2/T2' is the width of the
absorption curve between inRection points. The mini-
mum linewidth is denoted by 28&. Again an Arrhenius
activation energy was calculated. The results of the two
theories are compared in Table II. Also shown are the
values computed from T~ data. "

B. T~tam, um HyMde

The self-diffusion of hydrogen in titanium hydride
of various compositions has been examined by Stalinsky
et ale Their results show: (1) The hydrogen atoms are
located at random tetrahedral positions with respect
to the titanium atoms, and (2) the diffusion takes place
by way of a vacancy mechanism.

A sample of commercially obtained titanium hydride
was used in this work. Chemical analysis gave a
composition corresponding to TiH~. g4 with less than
0.23% impurity by weight. The rigid lattice second
moment was found to be (1.83&0.03)X 10"sec ', which
is in good agreement with the values reported in Ref. 22.
The corresponding fourth moment was (8.70&0.4)
X 10 sec .The rigid lattice line shape is only approxi-
mately Gaussian, as indicated by the ratio M4/M22.

"T. P. Das and S. K. Ghosh Roy, Indian J. Phys. 29, 272
(1955).

~ Equation (26) is the equation of Kubo and Tomita LRef. 2,
Eq. (6.27a)g extended to include the possibility of incomplete
motional averaging.

"G. E. Pake, in Solid State Physks, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2.

'I B. Stalinsky, C. K. Coogan, and H. S. Gutowsky, J. Chem.
Phys. 34, 1191 (1961).
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1.0
-1530C

NH~CL
I

-141"C (t)

G(t)

0, 0

-0. 1 -0. 1

I'IG. 2. Comparison of the
theoretical relaxation func-
tion G~(t) with the experi-
mental data for XH4Cl. The
full curve is experimental.

I.O

0.0 1.0 2.0 3.0
t(10 5~c)

4.0

1.0—

0.0 1.0 2.0 3,0

t(10 sec)

4.0

-135 C -I 264C

0.0

-0. 1

0.0

1-0. 1

0.0 1.0 2.0 3.0
t(10 sec)

4.0 0.0 1.0 2.0 3.0
t(10 sec)

g, 0 5.0

A de6nite high-temperature plateau is not evident
below the maximum temperature of 275'C attainable
with our apparatus. At that temperature the apparent
second moment is about 1/40 of the rigid lattice second
moment, and it is apparent that the line is completely

narrowed at elevated temperatures. It is appropriate
to set cr~~=0.

The relaxation functions for several temperatures are
shown in Fig. 4. Beats are exhibited by G(t) at rigid
lattice temperatures. These beats occur with a quasi-
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7.0 TABLE II. Arrhenius parameters for reorientation in NH4Cl.

~, ~ )OQ) 0 I
& 4e»0/~, )

Source Ea (kcalimole) log) pn„ log lp (1/r. )„
Equation (18)
Equation (26)
Reference 21

5.2&0.2
5.iw0. 2

4.74

14.4&0.4
14.2+0.3

14.3

6.0

5.0

5.0 6 ' 0 7.0 8.0
10 /T

9.0

angular frequency of 1.9X i0' sec ', which is comparable
to the root-mean-square linewidth. Since the spectra
have no fine structure the oscillations in G(t) must be of
the type observed by Lowe and Norberg. ' As the
temperature is increased into the transition region, the
beat amplitude is attenuated but the beat frequency
appears to remain approximately constant or to change

FIG. 3. Arrhenius plot of frequency factors for NH4Cl. The
dashed line is a least-squares 6t of the n data. The data resulting
from Eq. {26) are designated by x.

more slowly than the amplitude. These observations

may be of importance in the development of future
theories of motional narrowing.

The times T2 and the frequencies 0, as calculated from
Eqs. (20) and (18) are given in Table III. Figure 5

compares the experimental relaxation function with
the theoretical model at four temperatures within the
transition region. The function ei(t) previously defined
is also plotted as a quantitative comparison.

Again, for the purpose of comparison with the
more usual way of analysis, the graph of log&~ versus
10'/T is shown in Fig. 6 along with the logio(1/T )
data. The dashed line in Fig. 6 is a least-squares fit of
the log~pe data. The results are summarized in Table IV
and compared with the results reported in Ref. 22.
The values taken from Ref. 22 refer to composition
TiH~. 933, while the present results are for composition
TiH&. 94. The diAerence in hydrogen content could
account for the diGerence in the activation energy as
perhaps could the impurity content of the sample
used here.

C. Discussion

The relaxation function Gi(t) was derived in Sec. II
from a model which treated the number of Quctuations

1.0

ibad

1A'i

0,

L
Fzo. 4. Experimental relaxation

functions G(t) for TiH1.94. The se-
quence of curves from left to right
corresponds to the temperature se-
quence T'C =26, 191.6, 225.7,
241.2, 261.2, and 273.2.

0.0

1.0 2.0 3.0 4.0
t(10 sec)

5.0 6.0 7.0 8.0
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FIG. 5. Comparison of the theoretical relaxation function 6& {t) with the experimental data for TiH&. 94. The full curve is experimental.

in ~(t) as being Poisson-distributed. The relaxation
function is given by the characteristic function of the
integral process C(t) which in this case has an un-
determined probability distribution. The function G&(t)
was derived as an approximation which was expected
to be valid only up to times approximately equal to T2.
Alternatively, G&(t) may be derived as the exact

relaxation function for a Gaussian process with a
covariance given by Eq. (14), and in which the signifi-
cance of the parameter 0. is undetermined. 4

The qualitative validity of the model is revealed by
Eq. (18).The quantity 2/2'2 is descriptive of the width
of g(co) near half-intensity. As n is increased, (1/T, )2

decreases from its maximum value f7~'+0~' to the
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7.0 TAsLE IV. Arrhenius parameters for diffusion in TiH1.94.

Source Ea (kcal/mole) log 1pn„ log1p(1/r. )„
~ )og)0~

g Iog)0 (1/r )

Equation (18)
Equation (26)
Reference 22

17.5w1.0
16.5&1.5
10.2

13.2a0.5 ~ ~ ~

13.0 &.07
10.75

~ These values are for TiHx.eu.

6.0

5.0

1.0 2.0

10

T

3.0

Fro. 6. Arrhenius plot of frequency factors for TiH&. &&. The
dashed line is a least-squares fit of the a data. The data resulting
from Eq. (26) are designated by x.

minimum value o~'. One approach to the correlation
of the spectral data with the atomic motion is to
assume equality between (1/T2)' and the observed
second moment of the spectrum throughout the transi-
tion region. The validity of this assumption will be
established shortly. This approach has the advantage
that no assumptions regarding the line shape are made.

Also avoided is an arbitrary assignment of a cutoB
value to the static component of the local field as was
necessary in the derivation of Kq. (19). With this ap-
proach no information regarding the line shape is
obtained. This approach was applied to the systems
NH4CI and TiH1.94. The results of that analysis are
practically the same as those reported for the method
to be discussed next and will not be stated separately.

Another procedure is to obtain Tm by forcing G&(t)
to coincide with G(t) at t=T2. This convention is
guided by the expectation that for periods of time such
that P(1, the higher-order moments of C have not
grown large enough to contribute excessively to the
characteristic function of C. As was mentioned in the
experimental part, the frequencies a were calculated
using this convention. As can be seen from Figs. 2 and
5, the agreement between Gq(/) and G(t) is within

10%%u~ for times up to about 1.4T2 for NH4Cl, and 1.3T2
for TiH1.94. In the range 0&/& T2, the maximum devia-
tion —~1 is 0.06 for NH4C1 and 0.086 for TiH.

The next point of interest concerns the values of T2
throughout the transition region. For NH4Cl the rigid
lattice value of T2, 0.5/10 ' sec, is in agreement with
the value predicted from Eq. (18) by letting a approach
zero. As can be seen from the data of Table I, 1/T22
closely parallels the observed second moment over
the entire transition region. At either extreme the
function G~(t) predicts a Gaussian shape function in
contradiction with experimental results. The agreement
of 1/TP with the observed second moment indicates
that T2 is rather insensitive to the detailed shape of the
spectrum. Analogous remarks may be made for the
TiH1.94 system.

Tmzx V. Deviations of G1(/) and Gg(/) relative
to G(t) for NH4Cl at —135'C.

r ('c) Tg (10 ' sec) 0. (10' sec) 3f~ (10'o sec~)

(100
148.5
191.6
208.2
225.7
241.2
261.2
273.2

0.72
0.75
0.82
0.96
1.22
1.58
2.30
4.77

~ ~ ~

0.121
0.805
1.90
3.40
5.08
7.91

17.40

1.83
1.70
1.53
1.14
0.72
0.43
0.23
0.05

TABLE III. Values of Tm, a, and Mg for TiH1.p4 throughout the
transition region. Tg is the time for which the experimental G
is e '&. a is then calculated from Eq. (18).All values are corrected
for modulation effects.

0.21
0.41
0.61
0.81
1.01
1.21
1.41
1.61
1.81
2.01
2.21
2.41

—0.027—0.051—0.060—0.056—0.037—0.010
+0.028
+0.078
+0.124
+0.189

e b

—0.024—0.044—0.050—0.045—0.030—0.015
+0.028
+0.017
+0.017—0.009—0.065—0.17

a T~=1.28X10 4, a =14.40X10I.
b To=1.36X10 4, a ~16.65X104.
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TmLE VI. Deviations of GI{t) and G~(t) relative
to G(t) for TiHI. 94 at 225.7'C.

0.21
0.41
0.61
0.81
1.01
1.21
1.41
1.61
1.81
2.01
2.41
2.81

—0.015—0.041—0.057—0.056—0.033—0.002
+0.051
+0.116
+0.187

—0.014—0.037—0.052—0.053—0.040—0.003
+0.023
+0.06
+0.092
+0.104
+0.04—0.17

a T4~1.22)(10 4, a =3.40 X104.
b T4 = 1.30 X10 4, a =3.82 X104.

Beyond t= T2, G&(t) consistently overestimates G(t)
This behavior for large t indicates that the line-shape
intensity changes less rapidly in the vicinity of ~=0
than would be predicted by the expression G&(t). This,
in turn, suggests that the probability distribution of 4
is more nearly uniform than Gaussian near 4 =0. The
extreme assumption of uniformly distributed phase
deviation leads to the theoretical relaxation function
G2(t). Calculations, based on G, (t), analogous to those
based on G&(t), were performed for both systems. It
would be pointless to reproduce the results in their
entirety. Rather, selected samples of the results will be
discussed brieQy.

In the limit a=O, G2(t) exhibits beats of frequency
f 3 (o g'+os') J".For NH4Cl, G2(t) has a beat frequency
of 3.47&&10' which compares almost exactly with the
observed value 3.5)&10. Titanium hydride exhibits a
beat frequency of 1.9)&10' sec ' to which should be
compared the predicted value 2.340(10' sec '. %bile
the beat frequency is reasonably well predicted by
G, (t), the beat amplitudes are predicted to be much
larger than those observed.

For narrowed spectra, G2(/) can be put into much
better agreement with G(t) over a larger time interval
than can Gq(t). Tables V and VI compare the two
functions G&(t) and G2(t) by way of listing o&(t) and
o2(t). The o; are de6ned by

o'(~) = LG*(l)—G(t) j/G(~) .

Table V lists data for NH4C1 at —135'C, and Table VI
lists data for TiH1.94 at 225.7'C. These results are
typical for the two systems. It is remarkable that the
function G2(t), which in the limit a=0 is the Fourier
transform of a rectangular spectrum, describes narrowed
spectra so well.

Ke conclude by answering a question raised by
Abragam. ' Is the increased labor involved in the use of
the relaxation function too high a price to pay for the
internal consistency afforded by the methods If all that
is desired is an activation energy and jump fre-
quencies describing the motion, the ~newer is yes. This

answer should be qualified by the remark that, in
instance of poor signal, large modulation amplitudes
might be desirable, thereby causing unknown errors in
linewidth measurements. If adequate computing facili-
ties are available, the added labor in calculating Fourier
transforms is not at all prohibitive. The method of
relaxation functions offers a natural and powerful tool
for studying the processes responsible for motional
narrowing. In particular, subtleties in the NMR line
shape may be detected and correlated with the distri-
bution of phase deviation.

(2S)!b" M2 —2a
M2„'=Q~ 2"k!(k+1)!(2e—2k)!

(A1)

where b is the modulation amplitude multiplied by the
gyromagnetic ratio. The moments are given in units
of angular frequency. Equations (23a) and (23b) are
special cases of (A1). Halbach" has extended Andrew' s
result to include the effect of modulation frequency.
Here the modulation frequency is assumed to be
negligibly small.

The Fourier transform F(t) of the artificially broad-
ened line may be expanded in terms of the experimental
second moments:

OCI M2'
F(~) g ( )a ~2a

(2~)!
(A2)

The substitution of (A1) in (A2) results in Eq. (A3):

F(~)=Z Z(—)" t2n —2k (A3)
2'"k!(k+1)! (2n —2k)!

The terms in Eq. (A3) may be arranged conveniently
i&i a table in which the rows are labeled by n and the
columns by k. As it is written, the series in Eq. (A3)
is a sum by rows. The equivalent sum by columns gives

(bt)'~ ~ 3fg

F(&)= Z(—)' Z (—)" &'". (A4)
2'"k!(k+ 1)!~ (2n)!

The infinite series indexed by n is the Taylor ex-
pansion of G(t) The infin. ite series indexed by k is
2)(J~(bt)/(bt), where J,(bt) is the nrst-order Bessel
coefiicient. Equation (23c) follows immediately.

It is of some interest to obtain a relation between the
shape of the broadened line and the actual line shape.

~ E. R. Andrew, Phys. Rev. 91, 425 (1953).~ K. Halbach, Phys. Rev. 119, 1230 (1960).

APPENDIX

The practice of magnetic field modulation for the
purpose of signal detection results in an artificially
broadened line. Andrew2' has derived Eq. (A1), relating
the experimental 2nth moment M2„' and the actual
value M2„,
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FIG. 7. Recorded signal, solid line, of a narrow water
resonance compared with f'(cu), dashed line, of Eq. (A10).
A peak-to-peak modulation amplitude of 2.6 0 was used.

The hrst-order Bessel coe%cient may be expressed in becomes
integral form as"

2Ji(bt) 2
cos (btz) L1—z'ji "dz. (AS)

or

cosa)t F (t)dt = g (id bx)j (x)d—x

The function j(s) is defined by
1

f(id) = g(id —bx) $1 —x']"dx— (A9)

j(z)= 2I:1—"j'",
=0, lzl) O.

(A6)

Let 2Ji(bt)/bt be denoted by J(bt) Equation (A. S) may
be rewritten as

00

J(bt) =— cos(bts) j(z)ds. (A7)

J(bt)G(t) cosset dt

Thus, J(bt) and j(z) are Fourier transform pairs. The
relation between the observed line shape f(ru) and
F(t) is Eq. (3) with G(t) replaced by F(t), and g(~)
by f(~).

The desired result is obtained by taking the Fourier
cosine transform of Eq. (23c) and applying the convolu-
tion theorem for Fourier transforms. Thus,

Equations (23c) and (A9) are equivalent. Their
validity rests on the validity of Andrew's expansion
of the shape function as a Taylor series. "Halbach's
work'4 shows that such an expansion is valid if the
linewidth, frequency of modulation, and amplitude of
modulation are small compared to the resonance fre-
quency, and if saturation is absent.

The corrective factor which must be applied to F(t)
becomes infinite at the zeros of Ji(bt). The first zero
occurs for b]p= 3.832. For t&fp the eBect of modulation
becomes intolerable. If T2 is to be retrievable from the
experimental data, tp should be greater than T2. This
is accomplished by using a modulation amplitude such
that bT2(3.8.

For the purpose of deterring a reasonable lower
limit for b, consider the quantity

R(t) = LG(t) —F(t)j/G(t) =1—J(bt).

b p

.(~—r ./~+re
g(r) jl — +jl l

dr. (A8)Eb)
For small values of bt, 2 is approximately equal to
z (bt)'. Next, let Tz' be defined such that F(Tz') =G(Tz).
If T2—T2' is small, simple analysis shows that

Since g(r) and j(z) are even functions, the right-hand
side of (A8) simplifies. The transform of Eq. (23c)

"E.T. Whittaker and G. N. %atson, A Course of Moderrl,
Analysis (Cambridge University Press, New York, 1958), 4th
ed., Chap. XVQ, p. 366.

(T,—T,')/T, =R(T,)
in the case of a line shape which is actually Gaussian,
and that

(Tz—Tz )/Tz=2R(Tz)
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in the case of a line shape which is actually Lorentzian.
Most line shapes which occur may be approximated,
though often crudely so, by Gaussian or I orentzian
shapes. Thus R(T2) may be used as an estimate of the
relative error in T2 due to modulation. Conversely, a
small predetermined relative error in T2 may be used
to arrive at a suitable modulation amplitude.

By way of example, consider a line shape which is
actually Gaussian. A predetermined minimum relative
error of 0.02 in T2 leads to

2/(ST, )&b &3.8/T2,

as an experimentally acceptable range for the modu-
lation amplitude.

The "folding function" of Spry ' is contained ex-

plicitly in Eq. (A9). Consider the response of the lock-in

26 W. J. Spry, J. Appl. Phys. 28, 660 (1957).

amplifier to a 8 function. The recorded signal is

(A10)

Within the limitations of the theory, Eq. (A10) is the
"folding function. " The transition from (A9) back to
(23c) represents, in e8ect, Spry's unfolding procedure.

Figure 7 shows a comparison of (A10) with the
recorded signal from a lightly doped sample of water.
The width of the water resonance is narrow and for
suKciently large modulation amplitudes will approxi-
mate a 5 function. The observed response is very well

described by Eq. (A10) over the range I&el &0 75b .The.
deviation of the response from Eq (A.10) near Ical =b
may be ascribed to the fact that the water resonance has
a finite width. The results may be considered as partial
experimental verification of Eq. (A9) and also Eq. (23c).
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Energy Loss and Straggling in Silicon by High-Energy Electrons,
Positive Pions, and Protons~

D. W. AITKEN, W. L. LAKIN, AND H. R. ZU'LLIGER

Department of Physics and High Energy Physics Laboratory, Stanford University, Stanford, California 9430/

(Received 28 February 1968; revised manuscript received 25 November 1968)

The most probable energy loss and energy-loss straggling are investigated in lithium-drifted silicon for
electrons, positive pions, and protons with energies 31.5—767.2 MeV. Very good agreement with theory is
obtained with protons and pions. The electron spectra demonstrate effects which can be attributed to the
absorption by the detector of a portion of the electron bremsstrahlung radiation. No apparent evidence for
a predicted decrease in electron ionization through radiative corrections is observed.

INTRODUCTION

HE high resolution which can be obtained with
semiconductor radiation detectors suggests that

these devices should be very attractive for use in
precise investigations of the ionization process. The
deep depletion regions which can be produced by the
lithium-drifting process permit the realization of an
excellent signal-to-noise ratio, even for charged par-
ticles near the minimum ionizing region. If such an
investigation is undertaken at relatively high energies,
where the density of the ionization column produced
by the charged particle remains essentially constant
over the dimensions of the active detector region, the
same data may be used to reveal details of the trapping,
recombination, and other "bulk" properties of the
semiconductor material. '
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FIG. 1. Experimental and theoretical collision-loss spectra for
70.5-MeV protons in silicon. The parameters a and P are de6ned
by the kinematics and by the properties of the silicon and the
incident particle. The theoretical curve shown is uniquely deaned
by the experimental parameters, indicating a very good absolute
agreement between experiment and theory.


