
AL BE RT NA RATH

sufFicient, however, to assign the observed hyperfine
effects to specific lattice sites.

Because of the large number of presently unknown

parameters, a detailed interpretation of the Knight
shifts and spin-lattice relaxation rates in lanthanum,
as well as the other two Group-IIIB transition metals,
scandium and yttrium, is not possible at this time.
Nevertheless, the data suggest strongly that the domi-

nant magnetic-hyperfine mechanism in these metals is

the direct s-contact interaction. It is also possible to
conclude that the electron-phonon enhancement of the
electronic specific heat is large, as indicated by the
available band-structure calculations, and that the
effective d-spin core-polarization hyperfine fields, at
least in yttrium and lanthanum, are significantly
smaller than in the corresponding Group-VIII metals,
palladium and platinum.

As in the case of scandium, the lanthanum quadru-

pole coupling constant is approximately 2.5 times

larger than can be accounted for by the point-ion
model. Thus, the relative importance of conduction-

electron contributions to the EFG is approximately

the same in both metals.
Note added in proof. F. V. Fradin, Phys. Letters 2SA,

441 (1968),has recently determined the field-orientation

dependence of the spin-lattice relaxation rate in a single-

crystal specimen of scandium. An analysis of the ob-

served anisotropy based on the extreme tight-binding
modeP' led to the conclusion that the orbital hyperfine

interaction is the dominant relaxation mechanism in

scandium metal. Because of the many approximations
inherent in the model the accuracy of this conclusion is

difFicult to assess.
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In this paper we determine the photoelectron counting statistics produced by the fully quantum-mechani-
cal laser considered in the first paper of this series. The problem of obtaining the photocount distribution
from the now known photon statistics is solved in a completely quantum-mechanical fashion. The time
evolution of the combined photodetector-laser system is derived. The techniques developed for the solution
of this problem are of general interest in the area of nonequilibrium quantum statistical dynamics.

I. INTRODUCTION

'N the first paper' of this series the steady-state
~ . photon distribution in a laser cavity (above, at, or
below threshold) was found to be

(A2/BC) n+Al B

p
—g—1

(n+ A/B)!

*A preliminary account of this work was presented at the
Second Rochester Conference on Coherence and Quantum Optics.

The photon statistical distribution is inferred in prac-
tice by photoelectron counting techniques. The photo-
electron counting statistics produced by laser radiation

f Work supported by the Advanced Research Projects Agency
under Contract No. SD-90.

f Work supported in part by the National Aeronautics and
Space Administration and in part by the U. S. Air Force Ofhce
of Scienti6c Research.' M. Scully and W. K. Lamb, Jr., Phys. Rev. 159, 208 (1967).
Symbols used in Eq. (1) are summarized in Sec.Dt' of the present
paper.
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has been the subject of recent experimental' ' and
theoretical'~" investigations. An object of the present
paper is to obtain the distribution of photoelectrons
produced by a fully quantum-mechanical laser.

The usual procedure for obtaining the photocount
distribution breaks the time T of observation into many
small time intervals. In each of these sma11 time
intervals a quantum-mechanical calculation is carried
out in low-order perturbation theory to obtain the
probability of obtaining a count. The calculation is
then completed by classical probabilistic arguments for
the number of counts observed in the larger time
interval T. In this type of analysis one is "looking" at
the system at the end of each of the small time intervals.
That is, since the usual experiments are so complicated
and microscopically disruptive, " it seems reasonable
to assume that each count is equivalent to "looking"
at the system. As is well known, upon looking at a
system we destroy its wave function, e.g. , when we
trace over the laser coordinates, we produce a statistical
mixture. Hence, one might well ask, "Does the pro-
cedure of looking after every count give the same
counting distribution as would be observed if the
system were not interrupted until a large number of
potential counts had accumulated?" The latter problem
will here be solved in a fully quantum-mechanical

' A summary of experimental results is given in Proceedings of
the International Conference on the Physics of Quantum Electronics,
Puerto Rico, 1965, edited by P. Kelley, B.Lax, and P. Tannenwald
(McGraw-Hill Book Co., New York, 1965). See especially J. A.
Armstrong and A. W. Smith, p. 701; F. Johnson, T. McI.ean, and
E. Pike, p. 706; C. Freed and H. A. Haus, p. 715.

~ F.T.Arecchi, Phys. Rev. Letters 15, 912 (1965);F.T. Arecchi,
G. S. Rodari, and A. Sona, Phys. Letters 25A, 59 (1967); F. T.
Arecchi, V. Degiorgio, and B. Querzola, Phys. Rev. Letters 19,
1168 {1967).

4 C. Freed and H. A. Haus, Phys. Rev. I-etters 15, 943 (1965);
IEEE J. Quantum Electron. 2, 190 (1966).

'A. W. Smith and J. A. Armstrong, Phys. Letters 19, 650
(1966);Phys. Rev. Letters 16, 1169 (1966).

6 F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike, Phys.
Rev. Letters 16, 589 (1966); see, also, S. Fray, F. A. Johnson,
R. Jones, T. P. McLean, and E. R. Pike, Phys. Rev. 153, 357
(1967); Opt. Acta 14, 35 (1967).

~ W. Martienssen and E. Spiller, Phys. Rev. Letters 16, 531
(1966).

8 P. J. Magill and R. P. Soni, Phys. Rev. Letters 16, 911 (1966).
9 F. Davidson and L. Mandel (to be published).
"For a timely survey of the field see the lectures of F. T.

Arecchi, H. A. Haus, and E. R. Pike, in Proceedings of the Inter-
national School of Physics "Enrico Fermi, " Course XLI, edited by
R. J. Glauber (Academic Press Inc. , New York, to be published)."L.Mandel, Progress in Optics, edited by E. Wolf (North-Hol-
land Publishing Co., Amsterdam, 1963), Vol. II."L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys.
Soc. {London) 84, 435 {1964)."P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).

'4 R. J. Glauber, in Quantum Optics and Electronics; Lectures
Delivered at Les Houches during the 1964 Session of the.Summer
School of Theoretical Physics, University of Grenoble, edited by C.
DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach, Science Publishers, Inc. , New York, 1965). See, also, the
lectures of R. J. Glauber on photodetection (Ref. 9).

'~ G. Bedard, thesis, University of Rochester (unpublished);
J. Opt. Soc. Am. 57, 1201 (1967).

'~ B. R. Mollow, Phys. Rev. 168, 1896 (1968).
~' When the electrons are liberated they are accelerated by an

external electric 6eld and "banged" into a photosensitive surface.

Il. MODEL OF A PHOTODETECTOR

We take the photodetector to consist of iV-independ-
ent, equivalent but distinguishable atoms" each of
which has a ground state

~ g) and a continuum of excited

I k(2) [ k(N))

) g(&)) Ig(2)& Ig(N) )
FIG. 1. Pictorial representation of photodetector consisting of X-

independent atoms. Each atom in detector has a ground state
) g) and continuum of excited states

~
k). Atoms are labeled by

indexing atomic state with particle number, e.g. , ~
k(m)).

"The damping atoms are nonresonant atoms injected into the
laser cavity in their lower state in order to provide our cavity with
a 6nite Q.

"The photodetecting medium will be taken to be optically
thin so that each atom sees the same radiation 6eld as any other
atom.

fashion, whereas the former requires the use of classical
probability theory. In order to accomplish this we con-
sider the following detection scheme:

(i) Having established the steady-state photon dis-
tribution (I), remove all of the "lasing" and "damp-
ing"' atoms from the cavity. The radiation density
matrix is now time-independent.

(ii) Insert into the cavity a group of photosensitive
atoms (for example, a block of film containing silver
nitrate in some host matrix).

(iii) After a time T remove the film and count the
number of excited atoms.

(iv) Repeat the procedure a large number of times
(each time starting from the same photon distribution
p„„and fresh film) in order to determine the probability
of finding m excited atoms.

This theoretical model where the combined laser-
detector system is left undisturbed until time T does
not correspond to the familiar experimental situation.
However, it may be solved quantum-mechanically and
it is of interest to see how closely the results cor-
respond to those obtained in the usual analysis. Further-
more, the problem has an intrinsic interest in its own
right in the field of nonequilibrium quantum statistical
mechanics. That is, we must solve the problem of a
quantized laser field interacting with many atoms.
Clearly simple perturbation theory is not appropriate
for this situation. We develop a differential equation
describing the laser-detector system which is then
solved to obtain the time dependence of the laser-
detector system. This approach is equivalent to sum-
ming an infinite set of diagrams.

In Sec. II we present our model and outline the
method of calculation. In Sec. III the analysis of this
model is developed. The photoelectron distribution
implied by our quantum theory of a laser is found in
Sec. IV. A concluding discussion is given in Sec. V.
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states
~ k), see Fig. 1.The atoms are placed in the cavity

at time k=0 in their ground state, while the radiation
6eld is initially described by the diagonal density
matrix p„„(0).The combined laser-detector system will
be described at later times by the density matrix

P, 1) .,1).(t),
where D and D' denote the states of the detector. For
example, initially, the only nonvanishing elements of
the density matrix are those given by

D= g'(1),g(2), ",gP),
while at some later time elements of the density matrix
might exist for

D= k(1),k(2),g(3), ,k(X) . (2b)

After a time T, the E atoms are removed from the
cavity and the number of ionized atoms is determined
(equal, of course, to the number of photoelectrons).
This process is repeated several times in order to obtain
the relative probability P (T) for observing m photo-
electrons irrespective of the state of the laser 6eld.
This is

(3)

where P„(T) is the probability of finding the field
in the state

~
n) with m photoelectrons ejected

We now proceed with the calculation of P „(T).
Since in our model, the probability of exciting any
given con6guration of m atoms is equal to the prob-
ability of exciting any other group of m atoms, it is
clear that we need consider only the probability of
exciting a specified group of m atoms (such as the first
m). It is convenient to denote such a specific excited
state by D(m, {k})where m indicates that the first m
atoms are excited and {k} is a state of the photo-
detector, for example,

{k}= k(1) k(m), g(m+1) g(N), (4)

where each of the one-electron states k(i), i= 1 ~ ~ m, is
allowed to range over the continuous spectrum of the
ith atom. In order to obtain the total probability of
these atoms being ionized we must sum over the
probabilities of 6nding each atom in any of its con-
tinuum states, that is,

6 n, m(2 )=Pn, K (1)"K (m), p (m+1)"~ g (N) (2 )

=p p nD(m, f k f );nD(m, , f k f ) (T), ~

the corresponding probability of any ns atoms being
excited is obtained by multiplying by the combinatorial

A
factor representing the number of ways nz atoms

may be chosen from N, i.e.,

We now proceed to obtain a differential equation for
P, (T). The interaction Hamiltonian AV(t) for the
combined laser-detector system is (in the interaction
picture)

(7a)

where e is the electronic charge and E(t) is the quantized
electric-field operator"

g(t) —e+iv tatty(O+Ot)e —1 at &va (7b)

while x;(t) is the position operator for the atomic elec-
tron of the ith atom,

x;(t)=exp{iH„, t}x;exp{—iH,t. t}. (7c)

We will take the only nonvanishing matrix elements of
(7a) to be those connecting the ground state with an
arbitrary excited state, and restrict ourselves to energy-
conserving transitions (work in the rotating-wave ap-
proximation). It will be useful to denote positive and
negative frequency parts of V(t) by V(t) & and V(t) (+&,

respectively, so that

(7d)

The relevant matrix elements of (7d) are

(k(i),n
~
V;(t) &+&

~ g(i),n+1)
=g(n+1)'" exp{i(ipk&, &

—v)t} (8a)
and

(g,n ~
V;(t) & &

~
k,n 1)—

= gran exp{—i(&pk(;) —v)t}, (8b)

where the atomic frequency coI, (;) is

&Pk&'&= (gk&'& gp)lit v-
and the coupling constant g is given by

g= —exk, hj)tt.

where the subscript E(m) on P means that the mth
atom is in any of its excited states. Explicitly this sum is

Pn, k(1)- k(m)" p(N);n, k(1)" k(m) "g(N)(2 ) ~

k (&) k (sos)

Once the probability (p„, (T) of having the first m
atoms ionized (while the field is in state ~n)) is known,

III. ANALYSIS

In order to obtain a diGerential equation for P„, as
used in Eq. (3), we consider the equation of motion
for the density matrix p (t) of the detector-laser system

"In the notation of Ref. 16, v is the frequency of the optical
radiation, a and a are the creation and annihilation operators,
and 8 is a constant having the units of an electric 6eld.
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(in the interaction picture)

t (t) = —pLp (t),) (t)1.
The solution of Eq. (10) is formally

(10)

p(t) —
t (0)= —p «'Li'(t'), p(t') j.

For reasons which will become apparent it is more
convenient to substitute Eq. (11) into Eq. (10) to
obtain the alternative form" for the time rate of change
of t(t)

t

t (t)=(—p)' 1'(t) dt'I:V«') p(t')j . (12)
0

Pn, m

m 0 1 2 3 4 5
n

no

0 P5,0 P„

2 p
ep'

~&2

3 Pq p/ r
Pl

Pno- m, m

Pt'

r
rrrr

Pan

Taking diagonal matrix elements of Eq. (12) for states
ln, D(m, {k}))and summing over all excited states, we
obtain an equation for (P„, (t)

d(J'. , (t)/dt= P(n, D—(m, {k))l

tkJ

X V(t), dt'LV(t'), t (t')j ln, D(m, {k))). (13)
0

After a rather involved calculation, assuming only
that the number of excited states is large, Eq. (13)
reduces to

d(P. , (t)/dt= 2r(N m)n—a.,„(t—)
+2rm(n+ 1)F„+L~)(t), (14)

where r is the transition rate given by Eq. (A13'). A
detailed account of the transition from Eq. (13) to (14)
is given in the Appendix.

Equation (14) refers to the probability of exciting
the first m atoms. We proceed to find an equation for

Ã
any m atoms by multiplying (14) by as required

by Eq. (6):

P„=—2r(N m, )nP, +2r —lm(n+1)6'~g, ~x (15)
m

Fro. 2. Grouping of Eq. (17) according to value of n0. First example
is for F0=5. Dashed line is for arbitrary n0.

It is clear from the form of Eq. (17) that this system of
equations breaks up into an infinite set of equations, as
depicted in Fig. 2, one set for each value of np, where

tl p f1+tlS (19)

np)
P (n„t) = le ~("~")&(1 e »)"t (0) —(-23)

This is in accord with the obvious physical fact that the
appearance of a photoelectron is associated with the
disappearance of a photon. We denote the solution of
one of these sets by

P „(np,t)=P„, (np, t)=P(np, t).— (20)

For any one of these sets, characterized by np, Eq. (17)
becomes

P„(n„t)= q(np m—)P (n—„t)
+yLnp —(m —1)]P )(np, t) . (21)

Subject to the condition that initially

P»&(np&0) = p»p, »pt&())" p()p), p())" p()&&) p»p, »p & (22)

the solution to Eq. (21) is

and, since
(Ny

ml l=[N —(m —1)j(mi m —I
'

as may be verified by direct diGerentiation. Equation
(23) may be written as

Eq. (15) becomes

P„,„=—2r(N —m)nP. „(t)
+2r(N —m+1)(n+1)P +), )(t) . (16) where the "quantum eKciency" &) is

(24)

Since normally N&&m, we write (16) as

P„,„=—ynP„, (t)+y(n+1)P.+), )(t),
where

y= 2'.

&)
= (1—e-&')

(17) The solution of Eq. (17) is obtained from (24) by sum-
ming over np= 1, 2, 3, ~, recognizing the constraint

(1g) that n+m=np,

~ A contribution involving pC'0) is omitted in (f2) as it does not
give any matrix elements of interest to us.

P., (t)=P P„(n„t)tt (26)
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Finally we sum over all possible quantum states of the but we, of course, do not know which m photons of the
field (trace over the field) to obtain P (t) as given in (3): original number n were absorbed so we must include a

combinational factor
no

(t)=E E ot (1 ot)" p o, o(0)b +, o
n np fg

p (n) ~ns 1 ~
n—tn (32)

Ro
n "(I-n)"' "p-, , -o(o),

np m
(27)

which is the probability of detecting m photoelectrons
if the quantum eKciency is q and the incident photon
distribution is given by p„, „,.

This is Bernoulli's distribution for ns successful events
(counts) and n m—failures, each event having a prob-
ability p. Now if we have a distribution of n values,
we must multiply (32) by p„„and sum on n,

p —pp ()p

/n (A' /BC) "+A'o
P =Zi -(1- ).-- Z-' (2g)

km (n+ A/B)!

Summing the series, we 6nd the basic relation

(A/BC) m+A I a
P g—i~m

(m+A /B)!
A'

XiFi en+1,m+ —+1, 1—q, 29
8 BC

where iFi is the conQuent hypergeometric function. We
summarize the notation as follows: A=linear gain,
B=nonlinear parameter, C=) /Q, )) =detector parame-
ter, and Z—'=normalization factor which is given by

(A 2/BC) ++A I o

(n+ A/B)!

(A'/OC) ' A A')
/FAN 1 j 1+

. (A/B)! B BC

V. DISCUSSION

Equation (27) may be understood as follows: Con-
sider a state of the field having just one photon i1).
I,et the probability of having a photoelectron ejected
from a detector interacting with this 6eld for a certain
time be given by p. Now if the state of the radiation
field is in), the probability of observing m photo-
electrons should be proportional to

P (n) 0- ~m (30)

which is to be multiplied by the probability that
n —m quanta were not absorbed, i.e. , (1—n)"

P (a) oo ~m(1 —~)a m (31)

IV. PHOTOSTATISTICS IMPLIED BY A
FULLY QUANTIZED LASER

We may now calculate the photocount distribution
for a fully quantized laser by inserting p„„as given by
Eq. (1) int. o (27). The probability for finding m photo-
electrons is

n
n (1—n)" p-, -,

n m
(33)

p„„= d'a P(a)[(a*a)"/n!] exp( a*a},— (34)

so that (33) becomes

n
P(a)i (a*a)-/n!]

n m m

Xexp( a"a} t"(1—oot)" ", n—=1+m
d'a exp{—a*a}L(a*aot)"jm!]P(a)

XE L(
' )'/1!](1—n)'

d'aP(a)
i

(a*aot)"jm!] exp( a*ao)} . — (35)

Expression (35) Lor, equivalently, (27)] agrees with
that obtained in the usual treatment. Equation (27) is a
more convenient formulation of the photocounting dis-
tribution for our purpose as we most easily find the
photon statistical distribution in the n representation.
We obtain P(I) only after an auxiliary calculation of
some complexity. We remark that the expression for the
parameter ot obtained in the present analysis (see also

which is the result of (27).
As a direct consequence of our model, (27) contains

not only the small o) limit ())«1), but is valid for aH

)t(0&n&1). Clearly, if we wish to obtain the photon
statistics by counting photoelectrons we must require
)) = 1, for then, as we see from Eq. (27),

P =p,
In all other cases ())&1) we are measuring the photo
electro' statistics which in general will be very difer-
ent, e.g. , Eq. (29) for the laser is

P~= p~ ~f)) &F,i m+1,m+(A/B)+1, (1—)t)(A /BC)]}.
To cast (33) into another form we write p in the P(a)

representation":
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Ref. 15),
»=(1—e &')

Writing Eq. (A3) in matrix element form, we find

has the correct limiting value g~ 1 for yt~00. This
is not the case in calculations giving g =yI.

It should perhaps be pointed out that if the number
of photoatorns is not much larger than the number of
ejected photoelectrons then we should use Eq. (16)
instead of (17). For example, if we only have 10 atoms
we could never observe more than 10 photoelectrons.
Further, we have neglected the fact that atoms deeper
inside the photodetector would see a weaker held. It
might also be noted that the presence of the photo-
detector would slightly load the laser in a way which
could be described by giving the cavity a smaller Q
value. These points could be included in the theory but
are of secondary interest.
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APPENDIX

This Appendix justifies Eq. (14) beginning from (13):

d&P, (t)/dt= —P (n, D(m, (k})I v(t),

XLV(t'),p(t')5 ln, D(m, {k})). (13)

Inserting V(t) as given by (9), we have

d&t. (t)/dt= , dt' g—p g (n,k(i),t(j) I

&(') &(j)

xl:(v'(t)'+'+ v'(t)' '),I:(v (t') "+'+ v (t')' '),

«' 2 2 2 {&n,k(i) g(j)IV" 'ln —ig(i) g(j))
ski &(s) &(j)

Xexp —i(cd&&;&
—v)t(n —1,g(i),g(j) I V, &+& ln, g(i),l(j))

Xexpi(cv«, &

—v) t'(n, g(i)l(j) I
R(t') In,k(i),g(j))}. (A4)

We proceed by considering the density of excited states
to be so large that we may replace the sum over ex-
cited states by integrations over atomic frequencies
with the appropriate density of states cr(co). Expression
(A4) then becomes

dt' P dv&;cr((o;) des, a (co,)(n,k(i) I
V,'—' In —1,g(i))

Xexp —i(co&&;&
—v)t&n i,g(j—) I V,'+&ln, l(j))

Xexpi(cv«, &

—v)t'(ng(i)l(j)IR(t')Ink(i), g(j)). (A5)

Now, in general, all the factors except the exponential
appearing in (A5) will be slowly varying functions of
atomic frequency, so we take them outside the integral
sign and perform the integration over co; and co;. When
these integrations are carried out, we obtain a 8 function
in time from each integration:

d(u; expl i(&0, —v) t5 ~—lt(t),

d&0, expi((o,—v) t' ~ c&(t') .

Hence, when we integrate over t' we find that Eq. (13)
is proportional to the elements of the density matrix
which are o6-diagonal in the atomic states, and vanish
at time 3=0 as the system is prepared with all the
"photoatoms" in their ground states:

2' &&I p(t') I»55ln, k(i),t(j)) (Ai) &n, g(i), t(j) IR(o) ln, k(i),g(j))
=(n g(i) l(j) I p(0) In k(i) g(j))=0 (A6)

where the primed sum means no sum over k(i) and t(j)
and

I
I)) denotes the set of detector states for /&'/ 2—

atoms omitting the ith and jth atoms. It is convenient
to introduce the notation

Similarly, terms with j= i will vanish, unless k(i) = t(i),
i.e. , in Eq. (Ai) we need keep only the terms with i= j
and k=l. Equation (Ai) now reads

(A2) d(P„,„(t)/dt= (—i)' P P dt'&n, D(m, (k})I

It will be shown that only those terms in (A1) with
i = j and k = L contribute signi6cantly. Consider a
typical term in (A1) with ivc'- j:
P P P &n, k(i),t(j) I

V, &
—

& exp i(~&, &;& v)t- —
s&i tI'(s) &(j)

X V,'+' expi(cue&, &

—v) t'R(t')
I k(i),l(j),n) (A3).

i k(i) p

x ((v.(t) '"'+ t''(t) ' ')(t'*(t') '+'+ v*(t') ' ')p(t')

+p(t')(t', (t') + + V,(t') &-&)(V,(t) &+&+ t, (t) &-&)

—(v, (t) &+&+ v, (t) &-&)p(t')(v, (t') &+&+ v,(t') &-&)

(V; (t') +&+ V;(t') '—&)p(t') ( V—;(t) &+&+ V, (t) &
—')}

X In, D(m, (k})). (A7)
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In view of the relations (Sa) and (Sb) the only nonvanishing terms in Eq. (A1) are

d&P„(t)/dt= g ~ p ( —i)' dt'(n, D(&n, (k))~{ p p (V,(t)&-&V,(t')&+&p(t'))
k(1) k(m) 0 i l k(i)

+ r. Z (V'(t)'+'V'(t')' 'P(t'))+Z 2 (P(t') V'(t)' 'V'(t')'+')+ Z 2 (P(t') V'(t')'+'V'(t)' ')
i~m+l k(i) i~1 k(i) i~m+I k(i)

—Q P (v, (t) &-&p(t') 1',(t') &+&)—g P (v, (t) &+&p(t') v, (t') &-&)—g P (v, (t') &-&p(t') v, (t) &+&)

i 1 k(i) i~m+1 k(i) i~l k(i)

p (V,(t') &+&p(t') V;(t) &-&) } ln, D(~, (k})). (AS)
i~m+1 k(i)

As we are from now on only interested in diagonal ele-
ments of p, let us introduce the notation

(n,D i pin, D)—=p(t, D,n) . (A9)

Certain terms in Kq. (AS) may be neglected. These
terms are those involving integrals over the excited-
state frequencies such as

where, as in (A11), the symbol E(rn), for example, de-
notes the fact that the mth atom is in any of its excited
states. If we replace the sum on k(i) as it appears in

(A12) by an integral over &o;

g -+ d&o;o (&o~),
k(i)

d&o; exp(i(&o; —v) (t—t') }p(t, k(i),n), (A 10)

where the density matrix corresponds to the excited
state k(i). In this case we note that since there are a
large numbero f states X to which the electron may be
excited, p(t, k(i),n) is to a good approximation

p(t', k(i),n) p(t', E(i),n)
p[f', k (i),nj=Q —= , (A11)

k (i) x
which vanishes as X becomes very large. The argument
E(i) in (A11) means that we have summed over the
excited states of the ith atom. Finally, the dominant
terms in (Ai) are

d6 „„(t)/dt,

dt' P g (n,g(i)( V,(t)&+&V;(t')&-&~n,g(i))
0 s-m+1 k(i)

Xp(n, E(1) . E(tn) g(X),t') —c.c.
g m

+ dt' Q Q (n, k(i)
~
V,(t)' &V;(t')&+&~n, k(i))

0 i~l k(i)

Xp((n+ 1),E(1)" g(i)
~ . E(n&) . g(X),t')+c c , (A12). .

d6', (t)/dt= —P 2rnp(n, E(1) E(m) . g(1V),t)

m

+P 2r (n+ 1)p((n+ 1),E(1) ~ g(i) ~ ~ ~ E(n.&)
~ g(N), t),.

i~l

(A13)

r = n.gg, ,mo(v) . (A 13')

Recalling that the probability of exciting any given
atom is the same as any other, we write

p(n, E(1) g(i) E(rn), g(rn+ 1) g(E))= &P.+&,

(A 14)

and noting that the

first

su in (A13) (m+1 to E)
leads to a factor X—n&, while the second sum (1 to n&)

is replaced by nt, (A13) becomes

d&P, (t)/dt= —2r(1V—n&)n&P, (t)

+2m&(n+ 1)&P.+g,~&(t) .

and note that p(t', D(rn, (k}),n) does not depend on k(i)
(i.e., the ith atom is in its ground state since i)n&),
the integral over &o; leads to a 8 function 8(t—t'). The
integration over t' may then be done and yields


