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The energy-loss spectra produced in beams of energetic He and I ions transmitted through planar channels
in thin Au monocrystals have been explained by a simple model in which the ions execute transverse an-
harmonic oscillations in the channel between a pair of adjacent planes of target atoms and in which the
stopping power of the medium is a function of the distance of the ion from the crystal planes. A quantitative
comparison of this model with recent experiments is made using a plane-averaged potential based on
Moliere s approximation to the Thomas-Fermi screening function to describe the oscillatory motion. The
stopping power is found to obey the same functional dependence on the coordinates, but with a doubled
screening length. The parameters of the model may be deduced directly from the experimental data. For
He in Au, these parameters agree well with those expected from Firsov's treatment of the interaction
potential between neutral atoms. For I in Au, the high charge of the ion leads to parameters which differ
signi6cantly from Firsov's theory. The data also suggest that the energy dependence of the stopping power
for channeled ions may be somewhat different from that for randomly directed ones.

I. INTRODUCTION

HE energy-loss spectra produced in beams of
energetic He and I ions transmitted through thin

gold monocrystals in directions lying very nearly in low
index crystallographic planes have been reported re-
cently. ' ' These spectra consist of several well-resolved

groups of particles, the number, spacing, and popula-
tions of which depend upon the particle energy, the
crystal thickness, and the geometrical relationships
among the incident beam, the crystallographic plane,
and the narrow aperture detector. A qualitative account
of many aspects of these spectra can be given by a
simple model" 4 in which the ions execute transverse
anharmonic oscillations in the channel between a pair
of adjacent planes of target atoms and in which the
stopping power of the medium is a function of the dis-
placement of the ion from the crystal planes. The
objective of the present investigation is to make a
quantitative comparison of this model with experiments
reported by Datz et al. ,' in an accompanying paper.
It is necessary to select an interatomic potential and a
stopping power function to solve the dynamical problem
in a suitable approximation, to deduce model param-
eters appropriate to the experimental data, and to com-
pare the predictions of the model with the observations.
Throughout the investigation, classical mechanics was
employed: the justifications for this procedure have
been discussed recently by Datz et ul. ,

4 by Cowley, ' and
by Chadderton. '

The dynamical problem involves the slowing down
of the incident ions through inelastic encounters with
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the atoms of the medium. This problem is first approxi-
mated by dividing the interaction of the ions with the
medium into an elastic (conservative) part described
by a static potential and an inelastic part described by
a stopping power. No explicit correlation between the
two functions will be considered beyond that implied
by the form adopted for the spatial dependence of each.
The experiments deal with incident ions of high energy,

3 MeV for He and 60 MeV for I, constrained to
travel within 0.5' of low index crystallographic planes.
Because of their high speed, the ions move past indi-
vidual target atoms in very nearly straight lines and
their deQection is accomplished by interaction with a
large number of lattice atoms. Thus, as long as incidence
parallel to principal crystallographic axes is avoided, the
atomic nature and detailed structure of the atomic
planes may be ignored and the ions regarded as inter-
acting with the planar potential

Vt(x) =4rrpl rU(r)dr,

where U(r) is the interaction potential between an ion
and an atom separated by a distance r, p is the density
of atoms in the medium, x is the length of the normal
from the ion to the plane of lattice atoms, and l is one-
half the spacing between the crystallographic planes.
The dynamical problem is to consider, with suitable
allowance made for the stopping power of the medium,
the motion of the incident ion in the channel between
two adjacent planes of lattice atoms, that is, in the
potential

V(x) = Vt(l x)+Vt(l+—x), l(x~l (2)—
where the origin is taken half-way between the two
planes of atoms, a distance l from each. The planar
potentials (1) and (2) should give a satisfactory de-
scription of the transverse motion of the ions as they
pass through the crystal channel as long as their trans-
verse kinetic energies are small enough, that is, as
327
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FIG. 1.The coordinates used in
the dynamical problem.

long as

Particles of greater transverse energy than this are
likely to approach the lattice atoms very closely and are
correspondingly likely to be scattered out of the channel.

The equations of motion to be solved are

rrrx+dV(x)/dx+S(x, E) sing=0, (4)

rrsz+S(x, E) cosP= 0, (5)

where S(x,E) is the stopping power of the medium, f(t)
is the angle between the direction of motion of the ion
and the channel plane, and E(1)=am(i'+zs) is the
kinetic energy of the ion. The initial conditions are

x(t=0) =xs, x(t=0) = (2Eo/rrs)'" sinife, (6)

z(1=0)=0, z(t=0) = (2Es/rrs)'" costs, (7)

where m is the mass of the ion, xo is the impact param-
eter, Eo is the incident kinetic energy of the ion, and

lJ e is the angle of incidence of the beam. The coordinates
used in discussing this problem are sketched in Fig. 1.
Equations (4) and (5) may be rewritten

dpmx'+ V(x)j/dx= —S(x,E) sing, (8)

dPmz'j/ds= —S(x,E) cosiP. (9)

Because the direction of motion of the ion always
remains within 0.5 of the channel plane, it is per-
missible to set cosf= 1 and to identify the kinetic energy
E with its longitudinal component E cos'i/=-,'rnzs, an
approximation which will be used freely hereafter. At
the same time, because sing is small, it is a reasonable
approximation to neglect the inelastic term in Eq. (8)
and to describe the transverse oscillatory motion of the

ion by the solution of the remaining conservative
differential equation

x= (2/m)'"LV(x )—V(x)j'" (10)

where x is the amplitude of the oscillatory motion
defined by

V(x )=Ee si&Po+V(xo)& V(l). (11)

Note that the critical channeling angle may be deduced
from Eq. (11) by setting x =J, xo=0, and solving
for fe=P.. Ious of incident angle fs)P, will not be
channeled, but will break through the crystal planes
and enter the unaligned beam.

After selecting a suitable interaction potential, Kq.
(10) will be solved and the result used to discuss the
geometrical aspects of the energy-loss spectra. Then a
stopping-power function will be chosen so that Eq. (9)
can be integrated. It will then be possible to make a
quantitative comparison of the model with recent ex-
periments' and to assess the errors introduced by
neglecting the inelastic part of Eq. (8).

II. INTERATOMIC POTENTIAL

Erginsoy, ' I indhard et el. ,' and Wedepohl' have re-
cently discussed the choice of an interatomic potential
function for use in calculations of atomic scattering. At
small separations of two atoms, it is appropriate to use
a screened Coulomb potential with a screening function

C. Erginsoy, in Interaction of Radiatioe mth Solids, edited by
A. Bishay {Plenum Press, Inc. , New York, 1967), p. 341; Phys.
Rev. Letters 15, 360 {1965).' J. Lindhard, V. Nielson, and M. ScharG, Kgl. Danske Viden-
skab. Selskab, Mat. -Fys. Medd. 36, No. 10 {1968).'P. T. Wedepohl, SoM State Commun. 4 479 (1966); Proc.
Phys. Soc. (London) 92, 79 (1967);J. Phys. 1, 307 (1968).
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Fn. 2. Comparison of some in-
teratomic potentials. The screen-
ing functions r U(r) /Z1Z2e' are plot-
ted as functions of the internuclear
separation in units of the Firsov
screening length a~. D indicates
the nearest-neighbor distances in
the crystals.
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derived from Thomas-Fermi theory, in particular, as
applied to atomic interactions by Firsov. "Although this
potential decreases too slowly for large separations,
the difhculty may be remedied in part by using the
approximation to the Thomas-Fermi screening func-
tion" proposed by Moliere. "Kith this screening func-
tion, the interaction potential is

U(r) = (Z~Z~e'/r) I 0.35 exp( br)—
+0.55 exp( 4br)+—0 10 exp(.—20br)7, (12)

where

lattice distance. The applicability of such potentials,
based as they are on theories concerning the interaction
of neutral atoms, to the interaction of highly charged
ions with neutral atoms is, of course, doubtful. Never-
theless, one may hope to obtain some agreement
between calculation and experiment by adjustment of
the model parameters. The values of these parameters
may then be a guide in improving the underlying theory.
Combining Eqs. (12), (1), and (2), the planar poten-
tials are

b= 0.3/a,

Z~e and Z2e are the nuclear charges of the two atoms,
and a is a screening length, given, for example, by the
proposal of Firsov": V(x) = VOLcoshbx+ (11/28) cosh4bx

+ (1/70) cosh20bx7, (16)ar = (9s'/128)'"air(Z&'"+Z2'") 't' (14)
where

Vo= 0 35 (8m pZ~.Z~e'f/b) exp( —bl) .where an =h2/me2 is the radius of the first Bohr orbit
of hydrogen. A potential very similar to Moliere's has
been proposed also by Csavinsky. "As shown in Fig. 2,
the potential (12) falls oif more rapidly than does that
using the exact Thomas-Fermi screening function, and
even gives reasonable agreement with empirical Born-
Mayer potentials proposed to describe Cu-Cu" and
Au-Au" interactions at separations near the normal

Equations (15) and (16) are rather well approximated
by their first terms, except close to the atomic planes,
where the other terms become significant. The single-
term approximation is even better when account is
taken of the thermal motion of the lattice atoms, as
has been described by Erginsoy. ' The displacements of
the atoms normal to the plane are assumed to be
independent of each other and to be distributed accord-
ing to a Gaussian. Then, each term exp( —nbx), n= 1,
4, or 20, in Eq. (15) is replaced by a term

"O. B. Firsov, Zh. Eksperim. i Teor. Fiz. 32, 1464 (1957);
33, 696 (1957); 34, 447 (1958) LEnglish transls. : Soviet Phys. —
JETP 5, 1192 (1957); 6, 534 (1958); 7, 308 (1958)j."P. Gombas, in Haedbuch der I'hyszk, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 36, p. 109."G. Moliere, Z. Naturforsch. 2a, 133 (1947).

'3 P. Csavinsky, Phys. Rev. 166, 53 (1968).
'4 J.B.Gibson, A. X. Goland, M. Milgram, and G. H. Vineyard,

Phys. Rev. 120, 1229 (1960)."M. %. Thompson and R. S. Nelson, in Symposium on
Atomic Collision Cascades in Radiation Damage, United Kingdom
Atomic Energy Authority Report Xo. AERE-R4694, 1964
(unpublished); M. W. Thompson, Phil. Mag. 18, 377 (1968).

-', exp(n'y'+nbx) erfc(ny+bx/2y)
+-', exp(n'y' —nbx) erfc(ny —bx/2y), (18)

where

(19)~2= xb2(gx2)

and (Dx') is the mean-square displacement normal to the

(]3) V, (x) = (47rpZ, Z2e'f/b) j0 35 exp( .bx)—
+0.1375 exp( —4bx)+0.005 exp( —20bx)7 (15)
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plane. In Fig. 3, the functions V~(x,y) are plotted for
y=0, 0.3, and 0.6, the first corresponding to Eq. (15)
and the second being appropriate for Au near room
temperature. As long as the asymptotic form of the
first term of V&(x,y) is less than V~(0,y), it provides a
convenient and satisfactory approximation to the com-
plete function, as is shown by the dashed lines of Fig. 3.
Thus, finally, the planar channel potential adopted is

V(x) = Vo' coshbx, —l'(x&l' (20)
where

Vo' ——0.35(8xpZ&Z2e'f/b) exp(y' —bl) = Voe&', (21)

and b is defined by Eq. (13). The effective" channel
half-width is defined by

l,'= l, 0&y &0.178999
=1+(1/b) lnl erfcy+ (11/28) exp(15'') erfcky

+ (1/70) exp(399'') erfc20y],
0.178999&y& ~ . (22)

The limiting value of p in Eq (22) .is that for which the
extrapolated asymptotic form of the first term of
V~(x,y) passes through V~(0,y). The effect of thermal
vibrations is to narrow the channel somewhat and to
lower the transverse kinetic energy necessary for escape

from the channel, that is, to reduce the critical angle
f.. Neither effect is large, however, and, in view of the
approximate nature of the present analysis, it will be
justified to ignore thermal eBects altogether. In the
equations below, the thermally altered quantities Vo'

and l' will be indicated; the primes are to be omitted
when thermal e8ects are to be ignored.

x= (2 Vo'/m) '"(coshbx~ —coshbx)'". (23)

Introducing the abbreviations

&= [V(x )—V(0)]/LV(x„)+V(0)]
= (coshbx„—1)/(coshbx +1)= tanh'-,'bx, (24)

$= b(VO'/m)'~'t

0= (8/Vo')'" sing,

~-= L2V/(1-~)]'",
u= )(1—y) 'I',

(25)

(26)

(27)

(28)

the required solution of Eq. (23) may be written as

III. OSCILLATORY MOTION

Using Eq. (20) for the interatomic potential, the
differential equation (10) becomes

snl sn-'(eo/a lg)~ulg]

Lyon cn(u
I &) dn(u

I n)a (8~2 @02)'~2(ty 2—ga02)'~2 sn(u
I g)]

l 8 '—&02 sn'(u
l g)]

(29)

(30)

where sn(ulg), cn(ulg), and dn(ulg) are three copolar
Jacobian elliptic functions" of argument u and para-
meter g. The two signs in Eqs. (29) and (30) correspond
to two closely related trajectories with the same ampli-
tude, having x(t=0) =&xo. Equation (30) is obtained
from Eq. (29) by application of the addition formulas
for the elliptic functions. "

The function 8 is periodic in $ with the period

r(n) =4(1—v)'&'E(v) (31)

'6 E. H. Neville, Jacobean Elliptic Functions (Oxford University
Press, Oxford, 1951), 2nd ed. ; P. F. Byrd and M. D. Friedman,
Handbook of Elli ptic Integrals for Engineers and Physicists
(Springer-Verlag, Berlin, 1954}; L. M. Milne-Thompson, in
Handbook of Mathematical Functions, edited by M. Abramowitz
and I. A. Stegun {U. S. Department of Commerce, National
Bureau of Standards, Washington, 1965), Appl. Math. Ser. 55,
p. 567. Note that in some of the above, the modulus k=q"~ is
employed.

where E(rj) is the complete elliptic integral of the first
kind. "As g increases from 0 to 1, the period r(g) de-
creases from 2x to 0, although for any particular
channel there is a limiting value r(rl, ), where g, is
given by Eq. (24) with x =1'. Equation (31) provides
the relationship between the amplitude and the period
of oscillation of the channeled ion which is required in

the model. The dependence of 8 upon g is illustrated in
Fig. 4 for two values of Bo and a particular value of $.
The envelope of its oscillations, shown in Fig. 4 as a
dotted line, is 8, defined by Eq. (27). The function is
defined as long as g;„&g&g,„,where

g;.=+0'/(2+&0'), (32)

k= «(v) (34)

= (u+k)r(n)~2(1 —v)'12 sn '(~o/~ ln) (35)

8= —6o, when

(36)

(37)

6(g;.) =80 cd(ul q;.), (33)

and where the elliptic function cd(u l g) = cn(u l g)/
dn(ulq). " It should be noted that 8(g; ) may have
any value between —00 and 00, depending on the value
of $, and is only accidentally equal to 80. A property
of 0 that is important in discussing the geometrical
aspects of the energy-loss spectra may be summarized
by the nodal formulas

6=60, when
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FIG. 3. Effects of thermal vibra-
tions on the planar Moliere po-
tential. The function plotted is
e (p, y) = (b/4 pZ Z e l) V (S,y).
The solid lines show the full po-
tential, the dashed lines the ap-
proximation discussed in the text.
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h«« is an integer. Note that when t)(,=p, Fqs. (35)
and (37) reduce to Eqs. (36) and (34), respectively.

IV. GEOMETMCAL ASPECTS OF
ENERGY-LOSS SPECTRA

If the channeled ions moved through the crystal at
a constant velocity, the variables $ and t)I, defined in
Eqs. (25) and (26), could be interpreted as the path-
length through the crystal and the angle of emergence
of the channeled ion from the crystal, respectively.
Since the ion velocities decrease by less than 15% in
the experiments, this correlation is accurate enough for
many applications. At the same time, however, since
the energy lost by the ion is assumed to depend upon
the amplitude of its oscillation, the variable g may be

interpreted as a nonlinear analog of this energy loss:
g=0 corresponds to the minimum energy loss of the
most perfectly channeled ion. The dependence of the
energy loss on the oscillation amplitude will be dis-
cussed below. This correlation of variables permits
Fig. 4 to be interpreted as a plot of the angle with
which ions emerge from the crystal (t)I) against the
energy which they lose (t)), for a particular pathlength
($), and for two values of the angle of incidence ((III) of
a beam of ions. In this approximation, it is useful to
speak of the wavelength of a trajectory, that is, the
product of the (constant) longitudinal velocity and the
period of oscillation.

The solid curve of Fig. 4 corresponds to do=0. In
this case, a detector collinear with the incident beam,
that is, placed at 6=0, will detect groups of particles

Fra. 4. The emergent "angle" 8
as a function of the "amplitude"

for &=43 and 80——0, i. The
dotted curve shows the values of

(g), the angle with which a
particle of amplitude q crosses the
channel midplane.
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only at g= 0 and at the points marked n= 7, 7-,', 8, etc.
The first group is that termed Ao in the experimental
data; that is, the group of particles of very small
oscillation amplitude. The other groups correspond to
those particles making 7, 7-,', etc. , oscillations in the
channel as they pass through the crystal, that is, to
the values given by the nodal equations (34) and (36).
If the detector is moved away from 6=0, the groups
split, merge, and move in energy and emergent angle
as the curves of Fig. 4 indicate. A similar interpretation
applies when the beam (or crystal) is moved away from
80=0. Here the important feature to note is that the
integer nodes, Eq. (34), always occur at 8=80, they
will, therefore, always be present when the detector is
collinear with the incident beam, whatever the angle of
incidence. This is clearly shown by Eq. (34), which is
independent of 80. In the same way, the half integer
nodes, Eq. (36), always occur at 8= —80, that is, at
what might be termed the "specular" angle. Equations
(35) and (37) describe the phase-dependent groups, the
locations of which are not' independent of 8"0.

Vhth these remarks in mind, it is possible to assess
the effects of crystal misalignment and of ion beam di-
vergence on the energy-loss spectra recorded with a
detector which is collinear with the incident beam, this
being the most frequently used experimental arrange-
ment. A slightly misaligned region of the crystal, that
is, a mosaic block regarded as running entirely through
the target, results in the incident ions entering the
channel at an angle deviating from the average, but the
beam and detector are nevertheless still collinear. Hence
the integer groups will still occur at the same values of
g (i.e., energies) as in perfectly aligned regions. The
half-integer and phase-dependent groups, however,
will move to different values of g and 8. The solid and
dashed curves of Fig. 4 illustrate this, the first, say,
representing a perfectly aligned region, while the second
represents a misaligned mosaic block. A detector
collinear with the beam will record (at the same time)
the 6= 0 line from the first and the 6= 1 line from the
second. The coherence between the integer groups on
the two lines means that they will appear as well-
marked groups in the observed spectra, whereas the in-
coherent phase-dependent and half-integer groups will
be spread over wide ranges of energy and emergent
angle. Thus it may be asserted that the integer groups
will persist even in crystals with large mosaic spread,
at least as long as the blocks extend entirely through
the sample. The half-integer and phase-dependent
groups, ho~ever, will not persist as clear features in a
collinear spectrum. The effects of beam divergence will
destroy the integer groups as well. A divergent incident
ray corresponds to a noncollinear detector. Hence, again
referring to Fig. 4, the 8=0 line of both solid and
dashed curves would be recorded and no group co-
herence would be found. Thus experiments on energy-
loss spectra must strive to lower beam divergence but
need not be concerned particularly about crystal mosaic

spread. In fact, as will be shown later, artificial exaggera-
tion of mosaic spread by rocking the target crystal is a
very useful technique.

If the crystal pathlength (i.e., t) is changed, the
integer groups will move in a way described by Eq.
(34). For a given value of I, as & increases, r(g) must
increase, or, as noted after Eq. (31), p decreases.
Eventually, r(p) reaches its limiting value 2', and the
group with this value of n is no longer possible. In fact,
the limiting values of n that are possible at a given
thickness are set by the inequalities

&/27r &n( (/r (g, ) . (38)

The half-integer groups move in a precisely similar
manner, as described by Eq. (36).

V. STOPPING POWER

In order to make a quantitative comparison of the
predictions of the model with experiment, it is necessary
to select a suitable stopping-power function S(x,E) so
that Eq. (9) may be integrated. Unfortunately, there
is at present no very satisfactory theoretical or experi-
mental basis on which to establish a form for this
function. Guided by experimental data on the stopping
power of polycrystalline media, it appears reasonable
to separate the energy and coordinate dependence and
to write

$(x,E)=s(x)E", (39)

where the exponent p is to be chosen by reference to ob-
servation. The experimental data of Moak and Brown"
on the stopping power of several polycrystalline targets
for 20- to 120-MeV I ions are consistent with p=~, a
value supported as well by theoretical investigations of
low-energy electronic stopping. ' 2 For the 3-MeV He-
ion experiments, p may be expected to be somewhat
less than zero, since here the energy is slightly above
that corresponding to the maximum stopping power.
The experimental data' suggest p~ —

~ for 2- to 3-MeV
He ions in Au. In both cases, p should decrease slowly
with increasing energy, approaching —1 in the (non-
relativistic) high-energy limit.

The spatial factor s(x) is more dificult to deal with.
The ion slows down in part by resonant interactions
with distant electrons and in part by collisions with
electrons encountered along its path, the two contribu-
tions being of about equal size for randomly directed
particles. '0 The former contribution is (presumably)
independent of the coordinates of the decelerating ion,
but the latter is expected to increase as the ion ap-
proaches the crystal planes, perhaps roughly paralleling

"C. D. Moak and M. D. Brown, Phys. Rev. Letters 11, 284
(1963)."L. C. NorthclifFe, Ann. Rev. Nucl. Sci. 13, 67 (1963)."J.Lindhard and M. Schar8, Kgl. Danske Videnskab. Selskab,
Mat. -pys. Medd. 27, No. 15 (1953).~ J. Lindhard and A. Winther, Kgl. Danske Videnskab,
Selskab, Mat. -I'ys. Medd. 34, No, 4 (1964).
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the incident beam and the detector are collinear, so
that n is integral or half-integral. As long as the number
of quarter periods is integral, and approximately other-
wise, the mean stopping power function in the model is
given by

the corresponding increase in the density of electrons
near the channel walls. In the case of the I ions, how-
ever, some part of the stopping presumably involves
their own excitation and cannot be treated simply in
terms of the electron density of the medium. In this
rather unsatisfactory state of a6airs, it has seemed
appropriate to attempt to fit the available experimental
data using arbitrary functions for s(x) and to leave to
future efforts the justification of the results.

Using Eq. (39) for the stopping power, Eq. (9) is
readily integrated to give

xm dx
sx = sx— (46)

where x is given by Eq. (23).The integral in the denomi-
nator is simply the quarter period ~ r. The integral (46)
may be evaluated easily for the functions coshcx, where
c has such values as 0, ~~b, 2b, etc. The results ob-
tained are

E=l:Eo' "—(~(x))(1—P)s]"" "', P» (4o)

=E0 expL —(s(x))s], P=1 (41)
(cosh-,'bx) =K(-', L1—(1—Tt}'"])/(1—It)'"K(g) (47)

(cosh-,'bx) = Tr/2(1 n) U2K(r—t) = 27r/r (Tt), (48)

(coshbx) = 2E(Tt)/(1 —g)K(It) —1, (49)

(cosh-', bx) = t (1+g)/(1 —It)](cosh-', bx), (50)

(cosh2bx) = $4(1+g)/3(1 g)](cos—hbx) ', —(—5.1)

p= 2 (43)=
l (~~m)'~ /(s(x))) ln(EO/E),

where the initial conditions are derived from Eq. (7)
and where (s(x)) is the value of s(x) averaged over the
transverse oscillatory motion of the channeled ion. If
p is known, experimental observations of E as a function
of the pathlength of the ions in the crystal can be used
with Eqs. (40)—(43) to deduce empirical values of
(s(x)) and of t for comparison with the model. More
convenient empirical variables are the initial stopping
power and the oscillation "frequency, " defined ac-
cording to

In Eq. (49), E(It) is the complete elliptic integral of the
second kind. " As indicated explicitly by the second
form of Eq. (48), (cosh-', bx) is inversely proportional to
the period of the oscillatory motion. That is, for this
stopping-power function, the initial stopping power
LEq. (44)] would be directly proportional to the oscilla-
tion frequency co fEq. (45)]. The five functions, Eqs.
(47)—(51), are plotted in Fig. 5 as functions of the
oscillation frequency 1/r (rt).

In order to select among the functions defined by
Eqs. (47)—(51), use must be made of the experimental
observations. ' For each orientation of the gold target
crystal, (100}and (111},and for each ion, 3-MeV He
and 60-MeV I, data were obtained on the positions of

(—dE/ds) A =x,= (s(x))Eo', (44)

cu = n (2m) '~2/t, (45)

where n is the number of periods of the oscillatory
motion executed by the ion in passing through the
crystal. Most of the observations' refer to the case where

t= L(2m)'&2/(g(x))(1 —2P)](E '" " E'" ")——
P&2 (42)
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tions. The energy exponent was
assumed to be p=q.
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the observed energy-loss groups as functions of the
crystal pathlength, for the case of a detector collinear
with the incident beam. Using Eqs. (4D)—(45), plots
were prepared of the initial stopping power as a func-
tion of the channel oscillation frequency. Initially, it was
assumed that p=-', for the I ions and p=O for the He
ions. The integers e were chosen to give the best ht to
the data. Half-integer groups were assumed to be
absent from the observations. The results are shown
in Fig. 6 for the I ions and in Fig. 7 for the He ions.
Within the experimental uncertainties, each of the four
sets of points is quite accurately represented by a

straight line. Because of this very good fit, the form
adopted for the spatial dependence of the model
stopping power is

(s(x))= sII+si((cosh-,'bx) —1),
where so represents the stopping power of the medium
for ions moving exactly along the channel midplane,
which may be determined from the observations, and
si is a constant also to be determined from the data.
The slight curvature in the data of Figs. 6 and 7 is such
that values of c(-,'b cannot be rigorously excluded.
However, the simplicity of Eq. (52) and the possi-
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bility that the curvature results from other factors are
encouragements to proceed as outlined. Although its
significance, if any, is presently unknown, it may be
pointed out that the single-plane stopping power related
to Eq. (52) is exp( —-,'bS), that is, to the square root
of the single-plane potentis, l Vt(x).

UI. DEDUCTION OF MODEL PARAMETERS
FROM EXPERIMENTAL DATA

The complete model for describing the energy-loss
spectra consists of the description of the oscillatory
motion of the ions by Eqs. (29) or (30) and that of their
slowing down by Eqs. (40)—(43), (48), and (52). The
various model parameters may be deduced directly
from the straight lines of Figs. 6 and 7, together with
experimental observations of the minimum energy loss

in each channel. The parameters of the straight line are
easily related to the model parameters through Kqs.
(25), (34), (44), and (52). The intercept is

and the slope is

a= (ss st)Ess, —

p = 2t "n.stEss/b Vs'".

(53)

From these parameters and the minimum stopping
power soEO", a value of b Vo'" may be derived for each
combination of ion and crystal plane. Inserting the two
values of bVs'Is for each ion into Eq. (17) t or (21)j, a
pair of equations is obtained which may be solved
simultaneously for values of the potential parameter b

and the product ZtZs (or ZtZs expels if thermal effects
are not ignored). The method of least squares was used
to derive the values and standard deviations of a and P;

TAsLE I. Model parameters derived from energy-loss spectra using a priori energy exponents.

Channel half-width l, A
Minimum stopping power, eV/A
Intercept, eV/A
Slope, ev»2

brVp/l, eV/A'

b, A ' (obs)
0.3/or, A ' (theor)
Z1Z2 (obs)
Z1Z~ (theor)

1.0197
30.9&0.3

—8.21+0.84
16.5&0.3
108+6

1.1774
24.2&0.7

—10.2&0.5
17.6~0.2

64+3

3.32&0.44
3.032

129+46
158

3-MeV He ions
(100} f111}

1.0197
1280+20
302+13

94.3+1.0
2080&90

1.1774
1170&12
280+13
101&1

1290&50

3.03a0.37
4.094

2010+590
4187

60-MeV I ions
{100} (111}
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TABLE II. Energy exponents derived from experimental data.

A priori estimates
Minimum stopping power
All data
Low-loss data
Medium-loss data
High-loss data

3-MeV
{100)

0
0.02

—0.14
0.14

He ions

0
—3.18
—0.43
—0.63

—0.22 —0.34

60-MeV I ions

{100) {111)

0.03 —0.14
0.27 0.22
0.21 0.18
0 28 o ~ ~

0.35 0.32

estimated standard deviations of other quantities were
derived from these by conventional methods. The re-
sulting analysis is displayed in Table I. A somewhat
better fit to the data can be achieved by adjusting the
energy exponent p. The "best" values of p are displayed
in Table II for each ion-channel combination and for
different schemes of grouping the data. The parameters
derived from the low-loss data using the best values of

p are displayed in Table III. As may be seen by com-
parison of Tables I and III, the values of the model
parameters are little inQuenced by the choice of the
energy exponent. The curves of stopping power as a
function of crystal pathlength derived from the param-
eters of Table III are compared directly with the experi-
mental observations in Fig. 8, for 60-MeV I ions in the
Au (100) channel.

If each of the integers n assigned to the observed
groups was increased or decreased by 1 and the fitting
procedure was repeated, the best values of p were well
outside the range —1&p&-'„expected on theoretical
grounds. This seems to support the chosen assignment
of values.

The behavior of the energy exponents in Table II
suggests that the stopping power of channeled ions may
depend differently upon energy than it does for ran-
domly directed ions. Unfortunately, of course, the
results also suggest that p is a continuous function of
the transverse coordinate or, what is the same thing,
that the form a.dopted for the stopping power, Eq. (39),
is not altogether appropriate. Since the results reported
here are based on data obtained over only a rather small

energy range, however, too much reliance should not
be placed in them. Particular experiments to examine

the energy dependence of the channeled-ion stopping
power are planned.

The potential parameters derived from the He data
are in reasonable agreement with those expected from
Firsov's treatment of atomic interactions, " in spite of
the inapplicability of the Thomas-Fermi approach to
atoms as light as He. The parameters derived from the
I data, however, are not in agreement with Firsov's
work. The product Z~Z2 is about half that obtained
from the nuclear charges, and the screening parameter b

is significantly smaller than the Firsov value for neutral
atoms. These differences are in the direction to be antici-
pated for interaction of the highly charged I atom with
(nearly) neutral Au, but a consistent "eA'ective" charge
cannot be assigned to the two particles using Eq. (14).
Allowance for thermal effects would leave the values
deduced for b unaltered, but would lower the values
obtained for Z&Z2 by the factor exp&', perhaps about
10%.This cannot be the explanation of the small values
found for Z~Z2. It will be interesting to see how the
potential parameters vary when deduced from experi-
mental data obtained at significantly different incident
ion energies.

The potential parameters of Table III may be used
to establish a scale for the amplitude of oscillation of
the channeled ions. A minimum and maximum dis-
tinguishable amplitude may be obtained for each
combination of ion and channel from the extreme values
observed for the oscillation frequencies. These extreme
amplitudes are listed in Table IV, together with the
fractions of the channel width associated with the
leading group Ao and with the region near the channel
wall. In the case of the I ion, the derived maximum
amplitudes are rather large, implying that the model
potential rises a little too slowly near the channel walls.
If potential parameters derived from the high-loss data
are used, this situation is somewhat improved, however.
It also appears from the fraction of the channel asso-
ciated with the wall region in each case that He ions
may be dechanneled more easily than I ions, a result

TABLE III. Model parameters derived from low energy-loss data using best-6t energy exponents.

3-MeV He ions

{100) {111)
60-MeV I ions

{100) {111)
Minimum stopping power, eV/A
Intercept, eV/A
Slope, eV'/'
bs Vs/i, eV/A'
b(VoEo)"', eV/A

29.5&0.1
—8.5+1.1
16.8+0.4
100&7
17 500

21.1&0.3
—11.4&0.6

17.5&0.2
57&3

14 300

1218&0.3
300~21
90.0+1.7
2010&126

351 000

1090m3
247~14
98.6~1.2
1230&50
295 000

b, A ' (ohs)
0.3/as, A ~ (theor)
Z1Z2 (obs}
Z1Zg (theor}

3.49~0.53
3.032

134+61
158

3.13a0.47
4.094

2100~800
4187
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coshcx, c=0, 4b, ~b, etc., as eras done for the integrals
of Eq. (46). The resulting functions 0 (g,c) include the

following:

0 (s 0) =P/2(l ~)&/2L +(s) E(s)j2/r/lt (r/) (58)

(s 8)= 2'/2(& —s)'"L&(s)—&(s)j
x (I&+(&—~)'"%{K&—(&—~)'"j)
—2(&—~)'"&(kD—(&—~)'"]))/3~&(~) (59)

~(v,kb) = 2'"~L&—&(s)/&(n) j, (60)

~(v b) = 2'"(~—~)'"P&(s)—&(~))
&& t:(&+~)&(v)/(i —n)IC(n) —&3/3n, (6&)

-(.,;b) =-(.,!b)/(l-.), (62)

) = '"LIC(s)— (~)3L( +W+v')E(n)
—('-~) ('+'~)~«) j/»~('-~)'"~(s)

The quantities described by Eqs. (58)-(63) are plotted
in Fig. 9 as functions of the transverse oscillation fre-
quency. For c(2b, a (g,c) (a2 and Eq. (56) roay be re-
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placed accurately enough by

hr/r(( dE/—ds)rr sJbVO'"Eo". (64)

Using the parameters listed in Table III, the maximum
error in the period of oscillation is estimated to be
about 0.5% for 60-MeV I ions and about 0.25% for
3-MeV He ions. The error is slightly larger for (111}
channels than for I 200} channels.

The error introduced into the model by neglect of
the inelastic term in Kq. (8) is thus seen to be entirely
tolerable. Even for particles making a substantial
number of oscillations in passing through the crystal,
the transverse motion is rather satisfactorily described

by Eq. (29).

VIII. POPULATIONS OF SPECTRAL GROUPS

The model described in the foregoing sections gives
an excellent quantitative account of the positions of the
groups observed in the channeled-ion energy-loss spectra
and of the way in which they depend upon the angle
of incidence of the ion beam, the pathlength through
the crystal, and the angular location of the detector.
It is also necessary to consider the predictions of the
model concerning the numbers of particles to be found
in each of the several groups and the way in which
these populations depend upon the experimental param-
eters. A brief discussion of this problem has been given
previously by von Jan."Since the initial impact points
of the incident ions are uniformly distributed across
the channel, Eqs. (11), (24), and (30) could be used
to derive explicit formulas for the populations of various
groups, ignoring beam divergence, crystal mosaic
spread, and the inQuence of energy loss on the emergent
angles. Even with these assumptions, the resulting ex-
pressions are exceedingly cumbersome, and removal of
the restrictions complicates matters further. Therefore,
the unrestricted model was made the basis of a com-
puter program used to simulate some of the experiments
described by Datz et a/. ' Monte Carlo methods were
used as a rnatter of convenience to select the initial
coordinate xo and the mosaic block misalignment angle.
These angles were drawn from a Gaussian distribution
about the mean crystal plane. It was assumed that
each mosaic block ran entirely through the crystal.
Since the divergence of the incident beam was less than
the acceptance angle of the detector, ' no allo~ance was
made for beam divergence and the sects of multiple
scattering were ignored. Having selected the initial
conditions, Eq. (30) was used to find the emergent
angles, and Kq. (40) was used for the 6nal energy, with
Eq. (52) for the stopping power. The resulting pair of
events was scored on an appropriate histogram, and
the calculation was repeated until a sufhcient number
of events had been accumulated. The program, run on
a,n IBM System/360 Model 75 computer, required

"g,. von Jan, Phys. Rev. Letters 18, 303 (1967).
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Fro. 11. Collinear energy-loss spectra computed for 60-MeV I
ions incident upon Au f100) channels, showing the effects of
crystal mosaic spread and of rocking the crystal. The arrows in
panel (c) show the positions of the experimentally observed
groups (Ref. 1). Model parameters are listed in Table III.

about 2 min to evaluate 10' events. The accompanying
6gures illustrate some typical results. In all cases but
the last, the parameters of the calculation were those
listed in Table III, chosen to simulate the experiments
as closely as possible.

Figure 10 compares complete histograms calculated
for perfect crystal targets with the ions incident parallel
to the channel plane and slightly inclined to it. These
histograms are analogous to Fig. 4 and may be inter-
preted analogously. It will be noted in the oblique
incidence histogram that the points of highest intensity
do not occur for a collinear detector, that is, at /=$0,
but for an emergent angle a little greater than the
incident. This occurs because, when i (or 8) returns to
its initial value after some integral number of periods,
z has decreased due to the stopping power of the
medium, thus increasing the emergent angle Lsee Fig. 1
and Eq. (26)j. Nevertheless, the groups are observed
at essentially the same energies in both histograms, as
expected from a consideration of Eq. (30). The slight
deviations from this rule are probably connected with
the "graininess" of the histogram.

The sects of crystal misalignment on the energy-loss
spectra computed for a collinear detector are illustrated
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FIQ. 12. Complete energy-loss spectrum computed for 60-MeV I ions incident upon a rocked Au I 100 I channel. The high intensities at
large angles and low energies are artifacts, resulting from the finite size of the histogram. Model parameters are listed in Table III.

in Fig. 11. The spectrum for the stationary perfect
crystal Lpanel (a)) is taken from the histogram of Fig.
10. Both integer and half-integer groups appear and the
leading group Ao is particularly intense. When a small
Gaussian mosaic spread is introduced Lpanel (b)), all

groups persist, but the half-integer groups are reduced
in height and broadened, making the integer groups
stand out more prominently in the spectrum. The
mosaic spread assumed in the calculation is smaller
than that found in most of the experimental targets.
Finally, when the crystal is rocked through a large
amplitude, the spectrum of panel (c) is found. The
rocking amplitude (0.65') exceeds the critical channel-

ing angle ( 0.5') and completely overshadows the
mosaic spread. The half-integer groups are now reduced
to the level of background and the integer groups rise
from rather broad bases. The A o group is strongly re-
duced in intensity, and the populations of the low-energy
groups are greatly enhanced. As a result, the spectrum
obtained by rocking the crystal is significantly cleaner

and easier to interpret. The comparison between the
model and the experiments is shown by the arrows in
panel (c). Many of the experimental results reported
by Datz et a/. ' were obtained by the rocking method,
so that the usefulness of the technique is firmly estab-
lished. The complete histogram computed for a rocked
crystal is shown in Fig. 12. The close similarity of this
histogram to those in Fig. 10 is evident. However, the
nodes occur only for integer groups, the half-integer
groups corresponding approximately (but not exactly)
to the antinodes. Emergent ion angular distributions
are shown in Fig. 13 for several final energy values. The
clearly diferent angular distributions for integer and
half-integer groups make the former quite easy to
distinguish.

A number of calculations were made of the intensity
of the A 0 group as a function of crystal pathlength, with
the results shown in Fig. 14. This group is observed at
all pathlength values, whenever the beam is incident in
the channel plane, because of the finite acceptance
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angle of the detector. It has, generally, no connection
with the integer nodes discussed previously. The curve
obtained for the perfect crystal features a series of sharp
maxima at roughly constant intervals. Although there
is a slight damping of these peaks as the pathlength is
increased, they persist beyond 1 IIm. As Eq. (38)
indicates, a group of particles corresponding to a
given number of oscillation periods, either integer or
half-integer, can occur only over a limited range of
channel pathlengths. Each peak in the perfect-crystal
curve of Fig. 14 corresponds to the limiting thickness
above which a particular group is no longer possible.
Near this thickness, the population of the group rises
and its position in energy approaches that of the Ao
group. Finally, it becomes indistinguishable from 2 0 and
disappears. As indicated in the 6gure, the peaks may be
labeled with the values of n which disappear at each.
The corresponding thicknesses may be regarded as the
appropriate multiples of the wavelengths of the
oscillating ions, although because of energy loss succes-
sive wavelengths decrease slowly. Introduction of
mosaic spread into the crystal suppresses the strong
fluctuations in the intensity of 3 o, as shown by the lower
curve of Fig. 14. There is some remnant of the n=1
peak, but no other significant Quctuation is observed.
With smaller degrees of mosaic misorientation, the
integer peaks persisted to greater thicknesses, but the
half-integer peaks were totally suppressed. In the ex-

perimental work, ' no evidence was found for such in-

tensity Quctuations, in general agreement with the
calculations.

Finally, it is necessary to comment on the experi-
mental observation" that the structure observed for
80/0 is strikingly sharper than that for 80=0, when
the target crystal is stationary. In the original report, '
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this was attributed to the filling of the valleys between
the integer groups by half-integer groups when 80=0.
The calculations generally support this interpretation.
As Fig. 11 shows, the half-integer groups persist,
though broadened, when small amounts of mosaic rnis-

orientation are introduced into the crystal. However,
as the angle of incidence is changed from Po=0, the
half-integer groups move rapidly away from the col-
linear detector to the opposite side of the crystal plane.
The phase-sensitive groups that replace them have
lower populations, thus leading to more pronounced
structure. That this is indeed the correct explanation is
supported by the observation of much clearer structure
when the target crystal is rocked through a substantial
angle. The rocking amplitude simulates a very large

FIG. 14. The intensity of the A o

group as a function of crystal path-
length, for 60-MeV I ions in Au (111}
channels. The beam was incident in
the channel plane. The model pa-
rameters were Z1Z2 ——4187, b=4.094

P=y, soEO"'=1078 eV/L, and
s1EO'"=835.2 eV/A.
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mosaic misorientation, with only the integer groups re-
maining significant features of the spectrum, as de-
scribed above.

The width of the peaks observed in the energy-loss
spectra depends upon a number of factors: the role of
the target mosaic spread has been emphasized. The
acceptance angle of the detector is also important, as
may be seen from Figs. 4, 10, and 12. Thickness varia-
tions in the target influence the width of the peaks as
well, since variations in f imply variations in the
amplitude of oscillation corresponding to a given value
of n. If ( increases above the mean value, the amplitude
of the particles reaching the detector must decrease
and the stopping power which they experience must de-
crease as well. The decreased value of the stopping
power is at least partially o6set by the increased thick-
ness, however. Datz et a/. ' have observed that hE for
a given group is nearly independent of target pathlength
for both I ions and He ions, suggesting that thickness
variations play only a minor role in their experiments.
The divergence of the incident beam is very important
in determining the content of the observed spectrum, as
may be seen from Figs. 4, 10, and 12. As was pointed
out in Sec. IV, if the beam divergence is at all large, the
structure of the spectra will be entirely eliminated.
Each peak also has a width resulting from the statistical
way ig which the channeled ions encounter the electrons
of the medium. Conventional theories of energy strag-
gling presumably require alterations to allow for the
crystalline structure of the medium before they can be
applied to channeled-ion energy-low spectra. Additional
multiple-scattering sects result from the nuclear inter-
actions, because of the atomic nature of the crystal
planes which is ignored by the model. This leads to
broadening of the transmitted beam parallel to the
crystal planes.

The items contributing to the width of the observed
groups are partially under experimental control. It is
perhaps well to emphasize again the importance of a
small divergence in the incident beam and of a small
acceptance angle in the detector, these being essential
to the observation of well-resolved spectral groups.
On the other hand, the mosaic misorientation of the
crystal and small variations in its thickness are less
important, and the former may, in fact, be of no par-
ticular significance if only experiments with a collinear
detector are performed.

IX. CONCLUSION

The model described above gives a satisfactory
account of the energy-loss spectra produced in beams of
He and I ions transmitted through planar channels in
thin Au monocrystals. The interatomic potential param-
eters derived from the data of Datz et' ul. ' are in reason-
able agreement with a priori expectations. Somewhat

similar experiments" on 3- to 11-MeV protons trans-
mitted through rather thick Si and Ge crystals failed
to show any similar structure in the energy spectra ob-
served from f 111}and {110)channels. If the expected
channeled-ion wavelengths are calculated for these cases
using Eqs. (13), (14), (17), (24), (25), (31), and (34),
they prove to be comparable to those for He and I ions
in Au planar channels, ranging from 0.11 to 0.18 pm at
1 MeV, depending on the particular case. Two possible
reasons for the lack of spectral structure may be sug-
gested. First, the stopping power may depend less
strongly on the coordinates than is the case for He and
I ions in Au. This would make the expected groups more
difficult to resolve. Second, the rather large thickness
of the crystals may be responsible. At 8-pm pathlength
and 5-MeV proton energy, the ions oscillate 20—25
times in Si (110) channels, for example. The resulting
40—50 approaches to the crystal planes should greatly
increase the chances of an ion's being dechanneled, by
thermal vibrations, crystal defects, or escape through
the plane. Since the experiments of Datz et cl.' suggest
that He ions are more easily dechanneled in Au than
are I ions, it is reasonable to expect even easier de-
channeling of protons. It would be desirable to investi-
gate these possibilities using much thinner crystals, but
spectra as rich as those observed in Au cannot be ex-
pected. For example, 5-MeV protons will make only
2.8—4.2 oscillations in a 1 pm Ge (111) channel, so
that only two or three peaks would be anticipated
in the energy-loss spectra.

Although the original objective of the direct determin-
ation of atomic-interaction potentials from energy-loss
spectra has been frustrated by difhculties, principally
the mosaic spread of the crystal, it has nevertheless
been possible to account for several aspects of these
spectra by assuming a reasonable form for the potential
and deriving its plausible parameters from the data.
More usefully, the data allow the determination of the
coordinate dependence of the stopping power, about
which little has been known previously. It remains for
future investigations to examine the applicability of
the function inferred to other energies, ions, and targets,
and to establish a theoretical basis for it.
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