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Self-consistent calculations of theCu* ion have been carried out using five different meth-

ods of approximating the Hartree-Fock exchange.

These calculations have been compared

with Hartree’s Cu'’ calculation to test the accuracy of the various approximations and to
interpret their interrelations. The best results were obtained from two quite different
methods. The first, suggested by Liberman with modifications which we have introduced,
uses a different local exchange potential for each orbital and gives a very good approxima-
tion to the Hartree-Fock method, but with considerable computational difficulty. The sec-
ond amounts to multiplying the local potential proportional to the 3 power of the electronic
charge density, suggested by the senior author in 1951, by a constant factor « chosen to
minimize the total energy. This second method is much simpler to apply than the first and
gives very nearly as good orbitals, as well as a very good total energy, but gives poor

one-electron energies for the x-ray levels.

The reasons for the different results are dis-

cussed. The latter method, which has been empirically arrived at by a number of the
workers in the energy-band field, is probably the most useful one for practical calculation.

I. INTRODUCTION

The Hartree-Fock method, which is a version
of the self-consistent-field method, is too compli-
cated to use for calculating energy bands in crys-
tals. Consequently, various simplified versions,
based on the statistical theory of the atom, have
been suggested. They lead to approximately equiv-
alent results, but recent energy-band calculations
are sufficiently precise that the small differences
between them become of great importance. We
shall examine a number of these versions in the
present paper, testing them by their application
to the Cu ion, and shall come to definite con-
clusions as to which ones may be best adapted to
the energy-band problem.

To formulate these methods in a unified way, we
write the Schriodinger equation for a one-electron
orbital #; in an atom in the form

- 2 -
(- V2+ VC + VX)ui—Eiui' (1)

We shall use Rydbergs as units of energy, Bohr
units as units of distance, so that —V2 is the
kinetic energy operator. Vg is the Coulomb po-
tential energy; that is, the potential energy of an
electron in the field of the nucleus and of all elec-
trons, including itself, as computed from the total
charge density by Poisson's equation. Vy is the
correction of V¢ arising from the fact that the
electron does not act on itself. It is usually re-
ferredto as the exchange potential, and the distinc-
tion between the various approximations which

we shall describe comes from the assumption made
about V.

First note that if we use the Hartree-Fock equa-
tions, so that #; and E; are the Hartree-Fock
eigenfunctions and eigenvalues, we can compute Vx
from the functions by the equation
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YHF =Ei -V + (Vzui)/ui. 2)
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Hartree' computed theie exchange potentials for the
various orbitals of Cu , from Hartree-Fock cal-
culations that had been made for that ion by Har-
tree and Hartree. For that reason we chose this
ion for the comparisions made in the present
paper. Since we shall make considerable use of
Hartree's results, we have reproduced in Figs. 1
and 2 the figures from Ref. 1, showing Hartreg's
calculated Vyyg for the various orbitals inCu .
One conspicuous feature of the curves arises from
the form of Eq. (2). Itis found that V?; does not have
its zeros at exactly the nodes ofu; . Hence, at each
node of #;, the exchange potential Vyyy has a
simple pole, becoming asymptotically infinite.
The curves are closely related in the way in
which each starts to rise at large 7, a result of
the fact that u; goes to zero faster than does
V2u;, in the tail of the wave function.

These phenomena of course do not lead to a di-
vergent expectation value of Vyyy, since in finding
such an expectation value we integrate u; *u; Vyyg
over the volume, and the divergence disappears.
These divergences are not of fundamental signific-
ance. By their nature they come at points where
uj *u; Vyyy is small, and, as we shall show, one
can set up approximate Vy that do not show the
singularities found in Figs. 1 and 2, and yet which
lead to very nearly the same eigenfunctions and
eigenvalues.

The approximations that are made to Vy are
based on the theory of the free-electron gas obey-
ing the Fermi statistics. In such a gas, of density
p, measured in units of electrons per cubic Bohr
unit, it is known? that the exchange potential is
proportional to p/3 and to a function of 7, the ratio
of the momentum of the electron to the momentum
at the Fermi energy. Specifically.
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1/3
== 3
Vxgas 8Fm) (3/8mp] ", ®)
_1 . 1-7? 1+7
where F(n)—-§+ - In =7 (4)

In the units we are using, a free electron with
wave function expikx has a momentum % and a
kinetic energy #°. The Fermi energy is

EF=kF2=(31r2p)"’/3. (5)

In terms of these quantities, the variable 7 in Eqgs.
(3) and (4) is

n=k/k g (6)

The function F(n) equals unity whenn=0, 3 when =1,
zero when ==, The average value of F(n), aver-
aged over all electrons in a Fermi gas at the absolute
zero of temperature, is i

The simplest approximation to Vy for an atom,
basedonthis free-electron theory, was suggested
by the senior author in 1951.% It was based on the
use of Eq. (3), and p was treated as the local
charge density at any point inside the atom. Fur-
ther, for F (n) the average value § was used. Thus
we have the exchange, which we may call Vxg,
equal to

Vys =~ 6[(3/8m)p " (7

The exchange Vyg as a function of 7 is shown by
Hartree for Cu® in Figs. 1 and 2. Hartree also
shows a weighted mean of the Hartree-Fock ex-
changes VxHF, which was proposed in Ref. 3. We
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see from Figs.1 and 2 that the statistical exchange
Vxg agrees quite well with the weighted mean.
However, the individual Hartree-Fock exchanges
Vxyr for the various orbitals show a good deal
of variation,with a spread of at least a factor of 2
at each value of . It is only natural that the use
of an average in place of an exchange that varies
from one orbital to another as much as the figures
indicate will lead to considerable error in the
final results. The exchange Vxg has been used in
a great many energy-band calculations, and small
disagreements between the calculated and experi-
mental energy bands are now being ascribed to
uncertainty in the precise value of exchange used.
We can well understand these uncertainties, from
Figs. 1 and 2, and it is the purpose of the present
paper to examine how to reduce or remove them.
An alternative approximation to Vy was suggest-
ed by Kohn and Sham,* following an earlier treat-
ment by Gaspar.5 This method is based on use of
the variation method: the total energy of the sys-
tem is computed and is minimized as the charge
density is varied. A similar calculation ap-
plied to the Thomas-Fermi-Dirac method had
been used many years earlier by Lenz and Jensen.®
This procedure leads to an exchange different
from VXS in that it uses the value of F(n) found at
the Fermi level, namely 3, rather than the aver-
age value § used in Vxg. Thus if we call this ex-
change VXKSG we have

Vs~ H68/BMp1 2= 8V, ®

This suggestion of Kohn, Sham, and Gaspar was
tested by Cowan ef al.” in 1966. They carried out
self-consistent calculations for argon, using the
two potentials Vyg and Vxggg as well as the

70

60

50

a0

30

ENERGY (RYDBERGS)

20

FIG. 1. Absolute value of exchange potential
Vypr for Cu' computed by Hartree (Ref. 1) for
the various orbitals. Ringed points show
weighted mean of Vy yp. Dot-dash curve shows
Vxs- Energies in rydbergs.
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FIG. 2. Same as Fig. 1, different scale.
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Hartree-Fock and Hartree values. Their con-
clusions were that the wave functions u; given by
the KSG exchange agreed more closely with the
Hartree-Fock values than did those given by Vxg,
but the one-electron eigenvalues were not as good
as those found with use of Vxg. These results
have led various people making energy-band
calculations to try the effect of using different
values of the constanta, chosen to give

Via= ¥ xs 9
It has been found in some cases® that values of o
intermediate between unity, the value for Vyg,
and 3, the KSG value, give even better results
than either of these extremes. Suggestions have
also been made by Lindgren, by Berrondo and
Goscinski,® and by Payne!® which are similar to
varying a to get the best results.

Very recently Liberman'' made a more elabor-
ate suggestion, which Sham and Kohn!? have in-
dependently proposed. Liberman's thought was
the following. The exchange of Eq. (3), depending
on 7, should properly depend on %k the momentum
of the electron. Suppose we determine this quan-
tity 2 as if we were dealing with a free-electron
gas and were considering an electron whose kinetic
energy is k. That is, let us replace Eq. (1) by
the free-electron equivalent

1/2

B+V +Vy=E. k=(E-V —VX) (10)

C C

and substitute the free-electron gas exchange from
Eq. (3) for V. Let us then use Eq. (6) for 7 and
Eq. (5) for kp. Thus we are led to the equation

n:/e//eF:{E— VC

+8F@)[ (3/8mp]" "} 3n2p)7V° . 1)

We shall call the resulting exchange X;,- To com-
pute it, we have

Vi, = ~8Fm) (3/87)p] v, (12)

where 7 is to be determined in terms of p and E-
V from the transcendental Eq. (11). This equa-
tion can be solved by an iterative method with the
digital computer. Liberman, in Ref. 11, applied
his method to argon and mercury, showing that
the charge density determined by his method was
as good as that obtained from the KSG exchange,
and the eigenvalues were in much better agreement
with the Hartree-Fock values than were those
found either with Vxg or Vxgsg-

There is onedifficulty associated with Liberman's
method. If we consider an electron whose energy
is just equal to the Fermi energy (a situation
which we encounter at the top of the occupied
levels in a band calculation), it does not automa-
tically have n=1, from Eq. (11). If we take =1,
so that F(n) =3, it is clear that we could rewrite
Eq. (11) in the form

kpi=E - = 4[(3/8mp]"* = 31p)*%.  (13)

This is a quadratic equation for p*’® whose
solution is

(_3 )1/3_ [(PER-V)+1]"* +1

87 212 : (14)

This equation would be satisfied if p were deter-
mined from E .- V. by the Thomas- Fermi-Dirac
method, !* but it is not exactly satisfied by the
actual charge density in an atom. Instead of using
the right-hand side of Eq. (13) for kg® in Eq. (11),
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we propose using the left-hand side. That is, we
propose as an alternative to Eq. (11) that we let

n={E -V, +8Fm) (3/8m)p] "}

><{EF—VC+4[(3/81r)p]”3}_“2 (15)

of the best value to use in the present case. We
compare the results obtained by the five methods
enumerated above with the Hartree- Fock results
determined originally by Hartree and Hartree.
Those writers did not tabulate the integrals we
require for our purpose, but these have been
computed by Dr. J. B. Mann.* We are much in-

debted to Dr. Mann for supplying these unpublish-
which automatically gives n=1 when E=EF. We ed results.
shall denote by Vxy gw the exchange found from
Eq. (12) if 77 is determined by Eq. (15). We have II. RESULTS OF THE CALCULATION
programmed this method, as well as the Xy,
method, and shall present results determined by
its use.

We have now described the various schemes
that we shall compare in the further sections of
this paper. Specifically, we have considered the
Cu™ ion by using Vxy, Vyrsw» Yxksg: Vxs 2nd
Vxq With a value of a equal to 0.77. This value
was determined by solving for a number of values
of @, and choosing the one that minimized the values of 2-electron integrals. In Table III we
total energy, which we find for Cu* to be @ =0.77. give the total radial charge density as a function
In the Wy gw calculations, we have arbitrarily of ». For each entry in the tables, we indicate
set Ep=0. The value of Er may be considered in by an asterisk the approximate calculation which
an isolated atom to be a disposable constant, and is closest to the Hartree-Fock value. A very
the outer orbitals are rather sensitive to the value crude estimate of the accuracy of the various
chosen. We have not yet made an exhaustive study methods is found by adding the number of asterisks

In this section we present some results of the
calculations outlined in Sec. 1. It would take too
much space to present all details. However, we
can give a fair idea of the situation by means of
several tables modeled after those in the paper of
Cowan ¢t al . (Ref. 7). In Table I, we give values
of 1-electron integrals and 1-electron energies
found for each of the cases. In Table II we give

TABLE 1. The I integrals, 2 the “binding energies” €, b the eigenvalues E, ¢ and total energies, d for the ground state
of Cut. The exchanges used, Vxyup, VxL» VXLSW: VXKSG» Vx and Vxs, are described in the text. The values
close to Hartree-Fock are starred. Energies in rydbergs. In the calculations for the exchange XLSW, Ep was set
equal to zero. In all but the XHF calculations, a modification of the Herman-Skillman program was used. [F. Herman
and S. Skillman, Atomic Structure Calculations, (Prentice-Hall, Englewood-Cliffs, New Jersey 1963)]. In these
calculations the Latter potential was imposed, as described by Herman and Skillman. The integrals were computed
using a modified form of the program described by Zare [R. N. Zare, Report No. 80, Joint Institute for Laboratory
Astrophysics, University of Colorado, Boulder, 1966, (unpublished)]. This integral program of Zare was designed
to be used in conjunction with the Herman-Skillman program.

|4 v \4 14 \4 v

XHF XL XLSW XKSG Xo XS
1s I — 840.700 - 840.655 — 840.670 — 840.642 — 840.682* — 840.760
€ — 658.215 - 659.080 - 658.823 — 658.781* — 656.842 — 655.763
E - 658.215 - 656.17* - 656.13 - 642.27 — 644.76 - 650.41
2s I - 206.456 - 206.252 - 206.178 - 206.101 - 206.250 - 206.573*
€ — 82.256 - 82.739 - 82.700 - 82.775 - 82.088%* - 80.575
E - 82.256 - 81.81* - 81.65 - 77.01 - 77.57 — 78.88
2p I - 205.137 — 204.918 ~ 204.975 - 205.035 - 205.216%* — 205.603
€ — 71.857 - 72.376 - 72.322 - 72.398 - 71.680%* - 70.093
E - 171.857 - 7.79 - 71.88* - 67.69 - 68.31 - 69.74
3s I - 80.066 - 80.072 - 80.106* - 80.183 - 80.325 - 80.662
€ - 10.650 - 10.789 - 10.952 - 11.110 - 10.754* - 9.991
E - 10.650 - 10.37 - 10.41* - 8.840 - 8.892 - 9.357
3p I - 75795 - 175.560 - 75.888* - 76.159 - 76.355 - 76.821
€ — 7.284 - 7.411 - 7.572 - 7.729 - 7.386* - 6.647
E - 7.284 - 7.078 - 7.123* - 5.942 - 6.076 - 6.431
3d I - 62.159 - 61.677 - 61.289 - 60.777 - 61.792%* - 63.932
€ - 1.620 - 1.713 — 1.843 - 1.959 - 1.700* - 1.097
E - 1.620 - 1.410 - 1.334 - 1.131 - 1217 - 1.461*
Etot -3277.46 —-3277.33 -3277.36* -3277.23 -3277.30 -3276.96

ar = @u,;|-v2-22/7|u;).
i 7
2€=_(“i -v2-22/7|uy) +Zj [ Gejuj |2/”12l“i“j) = (i |2/7’12'“]’ui)] .
E is the eigenvalue of the Schrﬁldinger one-électron’equation.
B ot =23, @; [-Vi=22/7|u;) + Erij Louguj |2/712|uiu]-) — wiuj|2/ryglujul.
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for each of the five approximations.

In Table IV we give information bearing on the
accuracy of the various approximations, including
not merely the total number of asterisks but also
the root-mean-square (rms) deviation of the
entries in the charge-density table from the
Hartree- Fock values and the deviation in the total
energy from the Hartree- Fock value.
that on all counts the exchange VXLSW
best results. It leads to the largest number of
asterisks (that is, largest number of entries in

We see
gives the
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Tables I, II, and III in which it is closer to the
Hartree-Fock result than is any other), its charge
density shows the smallest rms deviation from

the Hartree-Fock values, and its total energy is
closer to the Hartree- Fock value than that found
by any of the other methods. (We have, however,
found certain other atoms in which the total energy
found by the X amethod is slightly lower than that
found by the XLSW methods.) The XL method is not
far behind. But it is significant that the X method
makes a very good showing and, as we shall point

TABLE II. The F and G integralsa for the ground state of Cu*. The values closest to the Hartree-Fock values

are starred. All values are in rydbergs.

VxHF VxL VxLsw Yksa Vxa Vxs
F(1s1s) 35.531 35.467 35.483 35.460 35.507* 35.610
FO(1s2s) 10.693 10.646 10.635 10.624 10.653 10.717*
F(1s2p) 12.038 11.990 12.006 12.022* 12.060 12.144
F(1s3s) 3.647 3.645* 3.657 3.670 3.680 3.704
FO(1s3p) 3.584 3.555 3.596* 3.625 3.638 3.671
F%1s3d) 2.797 2.764 2.758 2.738 2.793* 2.915
F(2s2s) 7.615 7.587 7.576 7.563 7.585 7.632%
F%(2s2p) 8.077 8.046 8.042 8.037 8.062* 8.117
F%(2s3s) 3.269 3.266 3.269* 3.275 3.285 3.308
FY%(2s3p) 3.187 3.168 3.190* 3.208 3.221 3.251
F%(253d) 2.745 2.715 2.705 2.684 2.738% 2.855
FO(2p2p) 8.797 8.761 8.769 8.777 8.808* 8.875
F2(2p2p) 4.162 4.146 4.146 4.147 4.163* 4.198
FY(2p3s) 3.320 3.317 3.322% 3.330 3.340 3.363
FO2p3p) 3.251 3.231 3.256* 3.277 3.290 3.322
F2(2p3p) 0.638 0.628 0.642% 0.652 0.655 0.661
FY(2p3d) 2.759 2.728 2.720 2.698 2.753* 2.872
F2(2p3d) 0.508 0.496 0.506* 0.503 0.518 0.552
F%(3s3s) 2.492 2.497 2.494 2.493* 2.501 2.521
F9(3s3p) 2.438 2.438* 2.441 2.445 2.455 2.478
F(3s3d) 2.168 2.158* 2.135 2.115 2.151 2.229
F%(3p3p) 2.389 2.384 2.392* 2.401 2.412 2.439
F%(3p3p) 1.194 1.200 1.195 1.194* 1.201 1.216
F(3p3d) 2.128 2.115 2.097 2.080 2.117* 2.196
F%(3p3d) 0.987 0.987* 0.961 0.947 0.970 1.018
F%(3d3d) 1.926 1.907* 1.872 1.838 1.891 2.005
F2(3d3d) 0.867 0.861* 0.829 0.806 0.837 0.902
F43d3d) 0.535 0.532* 0.509 0.494 0.514 0.557
GO(1s2s) 0.990 0.978 0.979 0.975 0.979 0.989*
Gl(1s2p) 2.068 2.048 2.057 2.074* 2.086 2.113
G(1s3s) 0.128 0.127* 0.131 0.132 0.133 0.134
Gl(1s3p) 0.237 0.231 0.242% 0.249 0.250 0.253
G%(1s3d) 0.005 0.004 0.005* 0.005* 0.005* 0.005*
G1(2s2p) 4.634 4.625 4.613 4.603 4.614 4.639*
G'(2s3s) 0.213 0.211* 0.216 0.217 0.217 0.218
G1(2s3p) 0.187 0.182 0.188* 0.194 0.195 0.196
G2%(2s3d) 0.349 0.336 0.352* 0.355 0.367 0.393
G!(2p3s) 0.264 0.262* 0.268 0.271 0.271 0.272
G(2p2p) 0.243 0.234 0.246* 0.251 0.251 0.253
G%(2p3p) 0.255 0.248 0.258* 0.264 0.265 0.267
G1(2p3d) 0.373 0.360 0.376* 0.376* 0.389 0.416
G3(2p3d) 0.212 0.205 0.214* 0.214* 0.221 0.236
G!(3s3p) 1.616 1.622 1.616* 1.614 1.621 1.637
G%(3s3d) 0.920 0.921* 0.888 0.875 0.897 0.944
G1(3p3d) 1.223 1.222% 1.185 1.168 1.196 1.257
G3(3p3d) 0.736 0.738* 0.713 0.701 0.720 0.759

O 7 7
aFk (nl n'1 ')=z'f0 v Ry®0) Ry 200 (r B/ B+ 1720 2ara%y, GR i’ 1) =2 [ [y Ry (WRyyrys (1) Ry (¥ ) Rpypr (')
(r<k/'r>k + 1729’2 godr’ , where the R,; are normalized radial wave functions and ¥<=min (7, »’), ry=max (r,r’).
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TABLE III. Total electronic radial charge density for Cu* as determined by several schemes. The values closet
to Hartree-Fock are starred. All values in a.u.

4 VXHF VxL VxLsw VxKsG Vxa Vxs
0.0072 7.142 7.085 7.112 7.117 7.138* 7.186
0.0144 18.854 18.737 18.780 18.788 18.840* 18.959
0.0216 28.093 27.964 28.000 28.000 28.072* 28.234
0.0288 33.275 33.161 33.186 33.180 33.256* 33.427
0.0432 33.421 34.350 34.386 34.385 34.450* 34.598
0.0576 30.798 30.722 30.805* 30.845 30.911 31.061
0.0720 28.109 27.968 28.111* 28.209 28.301 28.509
0.0864 28.029 27.793 27.984* 28.135 28.266 28.565
0.1153 33.151 32.798 32.992 33.173* 33.372 33.821
0.1441 38.511 38.195 38.310 38.429* 38.635 39.099
0.1729 39.917 39.717 39.769 39.789 39.951* 40.315
0.2017 37.404 37.317 37.361 37.298 37.403* 37.636
0.2594 27.547 27.542%* 27.693 27.597 27.654 27,786
0.3170 19.995 19.861* 20.167 20.173 20.300 20.593
0.3746 17.578 17.224 17.630* 17.762 18.001 18.551
0.4322 18.539 18.071 18.425 18.623* 18.951 19.702
0.5475 22.148 21.933 21.799 21.907 22.280* 23.119
0.6628 22.387 22.563* 21.993 21.875 22.174 22.832
0.7780 19.603 19.962 19.270 18.971 19.168 19.577*
0.8933 15.778 16.123 15.530* 15.162 15.268 15.460
1.1238 9.156 9.270* 9.037 8.755 8.746 8.667
1.1354 5.158 5.109 5.134* 4.990 4.927 4.734
1.5849 2.984 2.898 3.041 2.988* 2.900 2.668
1.8154 1.790 1.729 1.896 1.913 1.813* 1.575
2.2765 0.6951 0.7012%* 0.8153 0.9094 0.8174 0.6205
2.7376 0.2814 0.3075 0.3734 0.4680 0.3986 0.2641*
3.1987 0.1142 0.1367 0.1730 0.2437 0.1969 0.1142*
3.6597 0.0459 0.0603 0.0794 0.1256 0.0964 0.0491*
4.5819 0.0071 0.0112 0.0160 0.0318 00221 0.0087*
5.5040 0.0010 0.0020 0.0030 0.0075 0.0048 0.0015*
6.4261 0.0001 0.0003 0.0005 0.0017 0.0010 0.0002*
out in the next section, it has the great advantage XS entries. When we examine those numbers, and
of resulting from a single potential rather than the rms deviation and AE total for these two cases,
from a different exchange for each orbital, as in we see that we should have concluded, in agree-
XL and XLSW. This makes it much easier to ment with Cowan ef al., that the XKSG method is
compute and results in automatic orthogonality much better than the XS. We should, however,
of the orbitals. The XKSG and XS methods, which note as Cowan e! al. did, that in the matter of
alone were considered by Cowan ef al. in Ref. 17, the one-electron eigenvalues, the quantities E of
are the poorest of the five. Table I, the XS method gives in every case values
To show that our results are not in contradiction in closer agreement with the Hartree- Fock method
to those of Cowan ef al., we include in Table IV a than does the XKSG method. On the other hand,
listing of the number of asterisks that would have both the XL, and XLLSW methods (they are very
been found if we had considered only the XKSG and similar as concerns the one-electron energies)

TABLE IV. Accuracy of various approximation. “Number of asterisks” is the sum from Tables I, II, M. “Number
of asterisks cor_isidering XKSG, XS only” is the corresponding number which would have been found if only the XKSG
and XS calculations had been made. rms deviation is the root-mean-square deviation of charge densities in Table III

from the Hartree-Fock value, averaged over the various entries. AE total is deviation of total energy from Table I
from Hartree-Fock value.

XL XLSW XKSG Xa XS
No. of asterisks 20 28 12 26 15
No. of asterisks
considering XKSG and XS only 69 28
rms deviation 0.190 0.149 0.225 0.213 0.445

AE total (Ry) 0.13 0.10 0.23 0.16 0.50
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are better than the other three methods as far as
one-electron energies are concerned in five out
of the six cases, as we see from Table I.

III. INTERPRETATION OF THE RESULTS

We have now tabulated a good deal of informa-
tion concerning the respective merits of the five
calculations, but it is interesting to go more
deeply into the significance of these results, and
try to understand them better. Why, for instance,
can a single potential as in the Xo method do
nearly as well as the separate potentials for each
orbital used in the Hartree-Fock, XL, and XLSW
methods ? It is obviously of great advantage, in
energy-band calculations, to have such a single
potential, which makes us think very seriously of
using the X apotential rather than the much more
difficult XLSW method. But why are the one-
electron energies found by the X @ method in
poorer agreement with the Hartree-Fock method ?
This last point is particularly important, since
it is the one-electron energies found as the
eigenvalues of the differential equation that are
used in finding energy bands.

As a first step in our discussion, we consider
the XLLSW method, which we have seen gives the
closest agreement with the Hartree- Fock method.
In Figs. 3 and 4 we show the exchange potentials
for the various orbitals, as functions of 7, re-
sulting from this method. If we compare these
curves with the Hartree-Fock curves from Figs.
1 and 2, we see that there is much resemblance
between them. We must disregard the singular
behavior of the Hartree-Fock curves around the
nodes of #;, which we mentioned in Sec. 1. The
curves of Figs. 3 and 4 resemble smoothed
versions of the Hartree- Fock exchange curves,
eliminating the singular behavior. This can be
seen particularly easily from the 1s, 2p, and 3d
orbitals, which have no nodes, and therefore no
singularities in the exchange. To show the de-
gree of agreement between the Hartree- Fock and
XLSW exchanges in these nodeless cases, we
show just these exchanges in Fig. 5, on a different
scale from that used in Figs. 3 and 4. It is clear
that the XLSW curves form very satisfactory
approximations to the Hartree- Fock exchange.
The deviations at the largest values of # shown
(particularly in the 1s curves) come out in the
tail of the wave function, where errors in the
potential have merely a slight effect on the rate
of exponential decrease of the wave function.

It is clear from these curves that the reason
why the XLLSW method works so well is that it
really furnishes a very good approximation to the
Hartree-Fock exchange. We notice from Figs. 3
and 4 that each of the exchange curves for XLSW
lies below the XS exchange for small 7, above it
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FIG. 3. Absolute value of exchange potential Vxsw
for Cu* for the various orbitals, compared with Vxs.
Radius of maximum radial charge density is indicated
for each Vy1 oy curve.
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FIG. 5. Hartree-Fock exchange potential Vxyr com-

pared with exchange potential Vxisw> for 1s, 2p, 3d
orbitals of Cu*. W

for large . The reason for this is interesting
and throws considerable light on the general form
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of the Hartree- Fock exchange of Figs. 1 and 2. In
explanation we give in Fig. 6 a set of curves of 1
as a function of , as found in the course of the
calculations of the XLSW method. In each case 7
goes to unity as 7 goes to zero and falls to zero
at a value of » where, as we shall see in a mo-
ment, the classical kinetic energy would become
zero. The reason for this behavior is easily
explained. As 7 approaches zero, the Coulomb
potential energy Vo goes to —~. Hence both
numerator and denominator in Eq. (15), namely

{E- Ve +8F()[ (3/87)p] sz

and {EF - Vo +4( (3/8m)p]/2}1r2 (16)

become infinite and equal, so that their ratio,
which is 7, approaches unit y. On the other hand,
the classical kinetic energy is the square of the
first expression of Eq. (16), so that n becomes
zero when it is zero. Now we recall that F(1) =3,
F(0)=1. Since the exchange XS is computed for
the average value of F(n), namely 3, we see that
as 7 goes to zero the XLSW exchange must ap-
proach (3) (3) =% times the XS value, while at the
point where n goes to zero it must become 4 times
the XS value. It is this behavior which we see in
the figures.

Beyond the point where 7 becomes zero, the
numerator of Eq. (15) will become pure imaginary,
so that this case cannot be shown in Fig. 6. It is
easy to extend the value of F(n) to this case, by
using the expansion

P N LI L
Fo=1- 5~ "5x7 75 a9

which has a circle of convergence of unity in the
complex plane. This expansion shows that for
pure imaginary 7, we shall have F (1) real and
greater than unity. Outside the circle of con-
vergence of the expansion of Eq. (17), we may
mention the following useful expansion for real
n n>1):

1 1 1
F)=1X3m * 3%y *oxme * (18)

We also have the following useful formula for
imaginary n (n=17y):

F(n)=5 *%ﬁ tan-* <1—%§> (19)

Note that Eqs. (17) and (18) furnish a simple proof
of the fact that, for real 7,

Fm)+F(1/n)=1. (20)

To show the effect of F(n) becoming greater
than unity, we give in Fig. 7 calculations of F(n)
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Parameter 1 as function of , X LSW method,
Radius of maximum radial charge density is

FIG. 6.
for Cut.
indicated for each curve.

as a function of 7, for the various orbitals, both
for the Hartree- Fock method and the XLSW
method. In the Hartree-Fock case, we define
F(n) as that value, for each orbital and each value
of », which would make the free-electron-gas ex-
change of Eq. (3) equal to the Hartree-Fock ex-
change. That is, by using Eqgs. (3) and (7), we
have

- 3
Fyp =4 Vep/Vys- 21)

Similarly in the XLSW method we have

3
FMy1sw =% VxLsw/Vxs: @2)

It is now clear from Fig. 7 that the Hartree-Fock
curves startat v = 0 approximately at F(n) =3,
which as we have noted corresponds to 7=1. On
the other hand, for large 7, they rise far above
F(n) =1, the value F(n) =1 coming approximately
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FIG. 7. F(n) as function of 7, for the various orbitals
of Cu*, found by Hartree-Fock and Vy1gw methods.
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at the point where the classical kinetic energy
equals zero. Thus the Hartree- Fock case shows
the sort of behavior discussed in the preceding
paragraph for the XLSW method.

It should be pointed out that the program that
has been used for the present calculations arbi-
trarily sets F(n) =1 for all values of » greater
than that for which n becomes zero, so that the
calculations of F(n)xy,gw follow the curves in
Fig. Tup to F(n) =1, and for larger 7 they give the
constant value F(n)=1. Clearly this behavior is
not mathematically justified, and is not in agree-
ment with the Hartree-Fock case. This situation
was not realized when the program was set up.

As a temporary expedient, we have extended the
curves of F(n)x1,sw into the region of negative
kinetic energy by solving Eq. (15) in this range

by numerical methods, using Eq. (19) for F(n).
This modification has been made in the graphs
shown in Figs. 3-5, and 7 -9, but not in the data
given in the Tables. The resulting errors in wave
functions come out only in the tails of the wave
functions, and we anticipate that, if we later modi-
fy the programs to take proper account of the
case where F(n) is greater than unity, it will re-
sult in only very minor modifications in the re-
sults in the Tables. The curves for F(n) >1,
shown in Fig. 7, are in much closer agreement
with the Hartree-Fock curves than are those
which limit F(n) to a maximum value of unity,
particularly in the case of the 3s and 3p orbitals.

For the 3d orbital, there is a considerable dis-
crepancy between the Hartree-Fock and XLSW
methods, which perhaps could be improved by
using a different Ef. (We recall that the calcu-
lations reported used Ep =0.) This plot of F(n)
versus » seems to be a particularly useful one
for illustrating the way in which each individual
potential curve corresponds to a function F(n) that
varies quite rapidly with 7, both in the Hartree-
Fock method and in the XLSW method, which
fairly well reproduces the Hartree- Fock behavior.

We now understand why the XLSW exchange
potentials, and consequently the Hartree- Fock
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for the various orbitals of Cu¥, compared with Vy 4.
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FIG. 9. Same as Fig. 8, different scale.

exchange, do not follow the XS exchange. Each
exchange potential is numerically less than the
XS for small 7 and is greater for large 7. As
one sees in Figs. 3 and 4, the dividing line be-
tween the two cases comes roughly at the radius
of maximum radial density of each orbital, so
that the XS exchange is approximately correct
through the part of the orbital where it has its
maximum value. This is why the XS method
works reasonably well on the average and gives
fairly good eigenvalues. But the individual ex-
changes vary less rapidly with » than does the
XS exchange, which is why the XS method does
not yield very good orbitals. Let us next inquire
why a single exchange potential, namely the Xa,
does so well in approximating to the wave func-
tions, though not to the eigenvalues.

We cannot expect agreement between the wave
functions determined by Xa and XLSW unless we
really solve almost the same Schrédinger equa-
tions in the two cases. We must remember that
it is only the variation of potential energy with »
that is significant in determining the wave func-
tions; an additive constant in the potential energy
will merely produce an equal additive constant in
the eigenvalue. Now if we multiply the exchange
XS by the constant @, which we have seen is 0.77
in our case, the variation of Vx g will be only
0.77 as much as for VX It seems plausible from
Figs. 3 and 4 that the resulting variation of Vy,
with » might be similar to that shown for Vyy qw-
In other words, the increase of F(n) with7, from
3 at7=0to 1 at the point where the classical
kinetic energy goes to zero, and to larger values
for larger », might modify the natural decrease
of Vxs with 7 enough so that it would simulate the
behavior of Vx,, and consequently the latter
potential might lead to about the same eigenfunc-
tions.

This suggests, in other words, that it might be
possible to approximate the magnitude of the XLSW
exchange, which is
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] 1/3

8F ()| (3/8m)p

’

by the magnitude of the X « potential, which is

6of 3/8mp]""",

plus a constant.
mately

That is, we might have approxi-

8FM[ (3/8m)p]*"* =6a[ 3/8m)p]'"* +4,  (23)

where A would be a different constant for each
orbital. Then we should replace the Schrodinger
equation of the XLLSW method, namely

3 1/3 _
[— 2+ VC 8F(n)< 87 ) :I u _EXLSW u,
3 1/3 (24)
- 2 - _—
by [ A% +VC 6&(81‘_ p) ]u

=(E +A)u=E o % (25)

XLSW X
If this were possible, we should get identical or-
bitals by the two methods, but the eigenvalue E y ,
would be equal to E yy.gw +4. Since E x1,sw is
known to agree well with the Hartree- Fock energy,
this would explain the poorer eigenvalue found by
the X method.

If the assumption of Eq. (23) were satisfied, it
would imply that the exchanges Vxy gw for the
various orbitals would all equal a common curve,

6of (3/8m)p]""",

plus constants A which would be different for the
various orbitals and equal to Ex ¢ —~Ex1,sw. This
can be easily tested. We have the curves of
Vx1rsw in Figs. 3 and 4 and the values of Ex o
and E x1,gw in Table I. By using this information
we show in Figs. 8 and 9 the quantities Vyygw

- Ex1,SW+EXa for each orbital, together with the
potential Vy,. We see in fact that the curves are
brought much more nearly into coincidence than
are the original exchange potentials Vyy qw, and
the common curve is quite well approximated by
VXxa. The discrepancies in Fig. 9, by which the
1s, 2s, and 2p curves at large 7 lie above the

VXa curve, come out in the tails of the orbitals
where they have only a very small effect on the
wave functions. This, then, is the explanation of
the fact that a single potential Vxq = @ Vyg can
furnish a good approximation to the different po-
tentials Vx1 gw for the different orbitals, butthat
it gives incorrect eigenvalues. Since the resulting
Schrodinger equations are very similar, and since
the single potential Vy, will necessarily lead to
orthogonal orbitals, we may expect a fairly close

approach to orthogonality for the XLSW method.
We find in fact that the overlaps with the XLSW
method are 0.0014 for (1s/2s), 0.0003 for (1s/3s),
0.0040 for (2s/3s), and 0.0017 for (2p/3p).

Before we leave our calculations, we shall in-
quire what sort of results we have for the XL
method, which we have seen is very nearly as
good as XLSW. We illustrate the sort of difference
found between XL and XLSW in Fig. 10, in which
we show Vy versus 7 for the 3s orbital, as found
by both methods. The XLSW curve of Fig. 10 is
identical with that of Fig. 3. The shell structure
of the atom introduces oscillations in the value of
Vx1, computed for the XL method by Eq. (11),
which are not found in the XLSW method. These
lead to oscillations of exchange that do not seem
to improve the agreement with the Hartree- Fock
exchange. The only exception to this situation
seems to be in the 3d orbital, for which, as we
see from Table II, the XL method seems to lead
to values of the integrals somewhat closer to the
Hartree-Fock values than does the XLSW. 1t is
hard to know whether this is significant or merely
the result of an accident, such as a poor choice
of Eg in the XLSW method.

IV. DISCUSSION

We have examined five different approximations
to the Hartree-Fock exchange in atoms, and have
found that one of them, the XLSW method is de-
finitely superior to the others but that it is com-
plicated to program and carry through, since it
involves different exchange potentials for each
orbital. Nearly as good results are obtained from
the Xa method, which amounts to multiplying the
standard exchange XS by a constant a. In the
case of Cu*, we found that the lowest energy of
the atom is obtained by setting a=0.77, and the
orbitals determined from this simple potential
are very nearly as good as those found from the
more complicated XLSW exchange. Both of these
methods can be programmed for application to
energy bands, and E. C. Snow!® has computed the
energy bands for the copper crystal by the XLSW
method. The results, however, are disappointing.
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The energy bands seem to be further from ex-
periment than those found by Snow'” using the Xa
method, in which he got very good results for a=
2=0.833. It is too early to give an evaluation of
this situation, but it suggests that the Xa method
may prove to be more useful for energy-band
calculations than is the XLSW method. However,
we must remember that if we use the Xa method,
the one-electron energies of inner shells must be
modified by amounts E x1,sW — E Xq» Pushing the
energies of the inner shells down with respect to
the Fermi energy.

There is one respect in which our calculation is
very specialized; it is carried out for a closed-
shell ion Cu+. Many of the important problems
in energy-band work arise from atoms having
partially filled shells, such as Fe, Co, and Ni in
magnetic crystals. In such cases, an entirely
different point comes in: there are often two
partially-filled shells that have almost the same
orbital energies, like the 3d and 4s shells in the
atoms just named. We can then be in some un-
certainty as to which orbitals will be occupied in
the ground state of the atom. If we wish to carry
out a variational argument, minimizing the energy
as is done in Refs. 4, 5, and 6, by varying the
charge distribution, we can vary the charge dis-
tribution in two quite different ways: by modify-

ing the individual orbitals or by shifting charge
from one orbital to the other. The latter possi-
bility leads to very interesting conclusions that
have not been sufficiently considered in the liter-
ature. Consequently, in a later paper!® we shall
look in detail into this question of variable occu-
pation numbers. We shall find that it leads to
very interesting results and throws new light on
the validity of the one-electron approximation to
the many-electron problem. In particular, it
also puts the question of the difference between
eigenvalues obtained by the Hartree-Fock method
and by the Xa method in a new context, and sug-
gests that it has a more fundamental significance
than has appeared from our discussion in the
present paper.
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