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Comparison of Several Exchange Potentials for Electrons in the Cu ion
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(Received 1 November 1968)

Self-consistent calculations of the Cu+ ion have been carried out using five different meth-
ods of approximating the Hartree-Fock exchange. These calculations have been compared
with Hartree's Cu+ calculation to test the accuracy of the various approximations and to
interpret their interrelations. The best results were obtained from two quite different
methods. The first, suggested by Liberman with modifications which we have introduced,
uses a different local exchange potential for each orbital and gives a very good approxima-
tion to the Hartree-Fock method, but with considerable computational difficulty. The sec-
ond amounts to multiplying the local potential proportional to the 3 power of the electronic
charge density, suggested by the senior author in 1951, by a constant factor 0. chosen to
minimize the total energy. This second method is much simpler to apply than the first and
gives very nearly as good orbitals, as well as a very good total energy, but gives poor
one-electron energies for the x-ray levels. The reasons for the different results are dis-
cussed. The latter method, which has been empirically arrived at by a number of the
workers in the energy-band field, is probably the most useful one for practical calculation.

I. INTRODUCTION V =E —V + (V. u. )/u. .

The Hartree-Fock method, which is a version
of the self-consistent-field method, is too compli-
cated to use for calculating energy bands in crys-
tals. Consequently, various simplified versions,
based on the statistical theory of the atom, have
been suggested. They lead to approximately equiv-
alent results, but recent energy-band calculations
are sufficiently precise that the small differences
between them become of great importance. Vfe
shall examine a number of these versions in the
present paper, testing them by their application

+ .to the Cu ion, and shall come to definite con-
clusions as to which ones may be best adapted to
the energy-band problem.

To formulate these methods in a unified way, we
write the Schrodinger equation for a one-electron
orbital u~ in an atom in the form

%Ye shall use Rydbergs as units of energy, Bohr
units as units of distance, so that -V' is the
kinetic energy operator. VC is the Coulomb po-
tential energy; that is, the potential energy of an
electron in the field of the nucleus and of all elec-
trons, including itself, as computed from the total
charge density by Poisson's equation. VX is the
correction of VC arising from the fact that the
electron does not act on itself. It is usually re-
ferred to as the exchange potential, and the distinc-
tion between the various approximations which
we shall describe comes from the assumption made
about V&

First note that if we use the Hartree-Fock equa-
tions, so that &; andS; are the Hartree-Fock
eigenfunctions and eigenvalues, we can compute VX
from the functions by the equation
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Hartree' computed these exchange potentials for the
+

various orbitals of Cu, from Hartree-Fock cal-
culations that had been made for that ion by Har-
tree and Hartree. For that reason we chose this
ion for the comparisions made in the present
paper. Since we shall make considerable use of
Hartree's results, we have reproduced in Figs. 1
and 2 the figures from Ref. 1, showing Hartree's
calculated V~HF for the various orbitals inCu .
One conspicuous feature of the curves arises from
the form of Eq. (2). It is found that V'u; does not have
its zeros at exactly the nodes of&~. Hence, at each
node of u;, the exchange potential V~HF has a
simple pole, becoming asymptotically infinite.
The curves are closely related in the way in
which each starts to rise at large r, a result of
the fact that u, goes to zero faster than does
V'uz, in the tail of the wave function.

These phenomena of course do not lead to a di-
vergent expectation value of VXHF, since in finding
such an expectation value we integrate u& *a~ VXHF
over the volume, and the divergence disappears.
These divergences are not of fundamental signific-
ance. By their nature they come at points where
&i ~i VXHF is small, and, as we shall show, one
can set up approximate VX that do not show the
singularities found in Figs. 1 and 2, and yet which
lead to very nearly the same eigenfunctions and
eigenvalue s.

The approximations that are made to VX are
based on the theory of the free-electron gas obey-
ing the Fermi statistics. In such a gas, of density
p, measured in units of electrons per cubic Bohr
unit, it is known' that the exchange potential is
proportional to p"' and to a function of g, the ratio
of the momentum of the electron to the momentum
at the Fermi energy. Specifically.
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Hartree-Fock and Hartree values. Their con-
clusions were that the wave functions u~ given by
the KSG exchange agreed more closely with the
Hartree-Fock values than did those given by VXS,
but the one-electron eigenvalues were not as good
as those found with use of VXS. These results
have led various people making energy-band
calculations to try the effect of using different
values of the constant@, chosen to give

k'+ VC+ V =E, k=(E —VC- V ) (10)

and substitute the free-electron gas exchange from
Eq. (3) for V&. Let us then use Eq. (6) for rf and
Eq. (5) for k&. Thus we are led to the equation

q=k/k =(Z- Vp
'SF(&)[(3/«)p] ) (»'p) '". (»)

It has been found in some cases' that values of n
intermediate between unity, the value for V~S,
and 3, the KSG value, give even better results
than either of these extremes. Suggestions have
also been made by Lindgren, by Berrondo and
Goscinski, ' and by Payne' which are similar to
varying o. to get the best results.

Very recently Liberman" made a more elabor-
ate suggestion, which Sham and Kohn" have in-
dependently proposed. Liberman's thought was
the following. The exchange of Eq. (3), depending
on g, should properly depend on 4 the momentum
of the electron. Suppose we determine this quan-
tity jp as if we were dealing with a free-electron
gas and were considering an electron whose kinetic
energy is k2. That is, let us replace Eq. (1) by
the free-electron equivalent

We shall call the resulting exchange XL. To com-
pute it, we have

V&L
= -SF(ri)[ (3/Sw) p]

k&'=&& —V +4[(3/Sv)p]"' = (3vg) . (13)
C

This is a quadratic equation for p"', whose
solution is

[v2(EF —VC) + 1]
' ' + 1

sm P =
2r (14)

This equation would be satisfied if p were deter-
mined from E+-V& by the Thomas-Fermi-Dirac
method, "but it is not exactly satisfied by the
actual charge density in an atom. Instead of using
the right-hand side of Eq. (13) for kF' in Eq. (11),

where q is to be determined in terms of p and E-
V& from the transcendental Eq. (11). This equa, —

tion can be solved by an iterative method with the
digital computer. Liberman, in Ref. 11, applied
his method to argon and mercury, showing that
the charge density determined by his method was
as good as that obtained from the KSG exchange,
and the eigenvalues were in much better agreement
with the Hartree-Fock values than were those
found either with VXS or V&KSG.

There is one difficulty associated with Liberman's
method. If we consider an electron whose energy
is just equal to the Fermi energy (a situation
which we encounter at the top of the occupied
levels in a band calculation), it does not automa-
tically have ri = 1, from Eq. (11). If we take g = 1.
so that E(q) = ~, it is clear that we could rewrite
Eq. (11) in the form
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&& [E&—
VC +4[(3(8v)p]' 'j (15)

which automatically gives q = 1 when E=E+. We

shall denote by V~I SW the exchange found from
Eq. (12) if r) is determined by Eq. (15). We have

programmed this method, as well as the XI,
method, and shall present results determined by
its use.

We have now described the various schemes
that we shall compare in the further sections of
this paper. Specifically, we have considered the
Cu+ ion by using V~I, VXI SW, V&KS&, V&S. and

Vx~ with a value of a equal to 0.77. This value
was determined by solving for a number of values
of a, and choosing the one that minimized the
total energy, which we find for Cu+ to be e = 0.77.
In the W~LSWcalculations, we have arbitrarily
set Eg=0. The value of E~ may be considered in

an isolated atom to be a disposable constant, and
the outer orbitals are rather sensitive to the value
chosen. We have not yet made an exhaustive study

we propose using the left-hand side. That is, we

propose as an alternative to Eq. (11) that we let

r) = JLE —V + BF(g)[ (3/Br) p]

of the best value to use in the present case. We

compare the results obtained by the five methods
enumerated above with the Hartree- Fock results
determined originally by Hartree and Hartree. "
Those writers did not tabulate the integrals we

require for our purpose, but these have been
computed by Or. J. B. Mann. " We are much in-
debted to Dr. Mann for supplying these unpublish-
ed results.

II. RESULTS OF THE CALCULATION

In this section we present some results of the
calculations outlined in Sec. 1. It would take too
much space to present all details. However, we

can give a fair idea of the situation by means of
several tables modeled after those in the paper of
Cowan et ai . (Ref. 7). In Table I, we give values
of 1-electron integrals and 1-electron energies
found for each of the cases. In Table II we give
values of 2-electron integrals. In Table III we

give the total radial charge density as a function
of r. For each entry in the tables, we indicate
by an asterisk the approximate calculation which
is closest to the Hartree-Fock value. A very
crude estimate of the accuracy of the various
methods is found by adding the number of asterisks

TABLE I. The I integrals, the "binding energies" &, the eigenvalues E, and total energies, for the ground state
of Cu+. The exchanges used, VXHF, VXL, VXL~, VXKSG, VX~, and VXg, are described in the text. The values
close to Hartree-Fock are starred. Energies in rydbergs. In the calculations for the exchange XIV, E~ was set
equal to zero. In all but the AHF calculations, a modification of the Herman-Skillman program was used. t F. Herman
and S. Skillman, Atomic Structure Calculations, (Prentice-Hall, Englewood-Cliffs, New Jersey 1963)l . In these
calculations the Latter potential was imposed, as described by Herman and Skillman. The integrals were computed
using a modified form of the program described by Zare (R. N. Zare, Heport No. 80, Joint Institute for Laboratory
Astrophysics, University of Colorado, Boulder, 1966, (unpublished) l . This integral program of Zare was designed
to be used in conjunction with the Herman-Skillman program.

XHF XL XKSG XS

1s

2s

2P

3p

tot

I —840.700
—658,215

8 —658.215
I —206.456

82.256
Z — 82.256
I —205.137
e — 71.857
E — 71.857
I — 80.066

10.650
E — 10.650
I — 75.795

7.284
8 — 7.284
I — 62.159

1.620
8 — 1.620

-3277.46

840.655
659.080
656.17*
206.252
82.739
81.81*

204.918
72.376
71.79
80.072
10.789
10.37
75.560
7.411
7.078

61.677
1.713
1.410

32 77%33

840.670
658.823
656.13
206.178
82.700
S1.65

204.975
72.322
71.88*
80.106*
10.952
10.41*
75.888*
7.572
7.123*

61.289
1.843
1.334

-3277.36*

840.642
658.781*
642.27
206.101
82.775
77.01

205.035
72.398
67.69
80.183
11.110
8.840

76.159
7.729
5.942

60.777
1.959
1.131

3277023

840.682*
656.842
644.76
206.250
82.088*
77.57

205.216*
71.680*
68.31
80.325
10.754*
8.892

76.355
7.386"
6.076

61.792~
1.700*
1.217

-3277. 30

840.760
655.763
650.41
206.573*

80 ~ 575
78 ~ 88

205.603
70.093
69.74
80.662
9.991
9.357

76.821
6.647
6.431

63.932
1.097
1.461*

-3276.96

aI =(u -V' -2Z/r u ).
-V~ 2Zlr uz) +Zf ((u~uZ f2lri2lu-i u'~) —(u(u~ I 2~ri2lufui) ) .

E is the eigenvalue of the Schrodinger one-electron equation.
stot pz @( f

V —2Z/rfu;)+gp, ((u(u& f2lri2f ; &)u—u(ufu& f
/r Sf'&2u; ). )
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for each of the five approximations.
In Table IV we give information bearing on the

accuracy of the various approximations, including
not merely the total number of asterisks but also
the root-mean-square (rms) deviation of the
entries in the charge-density table from the
Hartree- Fock values and the deviation in the total
energy from the Hartree-Fock value. We see
that on all counts the exchange V~S gives the
best results. It leads to the largest number of
asterisks (that is, largest number of entries in

Tables I, II, and III in which it is closer to the
Hartree-Fock result than is any other), its charge
density shows the smallest rms deviation from
the Hartree-Fock values, and its total energy is
closer to the Hartree-Fock value than that found
by any of the other methods (.We have, however,
found certain other atoms in which the total energy
found by the Xo.method is slightly lower than that
found by the XLSW methods. ) The XL method is not
far behind. But it is significant that the Xa method
makes a very good showing and, as we shall point

TABLE II. The F and G integrals for the ground state of Cu+. The values closest to the Hartree-Fock values
are starred. All values are in rydbergs.

XHF KSG XS

F'(lsls)
F'(1s2s)
F'(ls2p)
F (1s3s)
Eo(ls3P)
Eo(ls3d)
Eo(2s2s)
Fo(2s2p)
Fo(2s3s)
Fo(2s3p)
Fo(2s3d)

F (2p2p)
E (2p2p)
Fo(2P3s)
Fo(2P3P)
F2(2p3p)
F'(2p3d)
F2 (2p3
Fo(3s3s)
Fo{3s3P)
Fo(3s3d)

F'(3p3p)
F2(3p3p)
F'(3p3d)
F {3p3d)
Fo(3d3d)
F2(3d3d)
F4(3d3d}

Go{ls2s)
G~ {ls2p)
Go(ls3s)
C~ (ls3p)
G2(ls3d}
G ~ (2s2p)
G o(2s3s)
G'(2s3p)
G2(2s3d)

G~{2p3s)
G'(2p2p)
G'{2p3p)
G'(2p3d)
G3 (2p3d)
G i (3s3p)
G2(3s3d)
G'(3p3d)
G'(3p3d)

35.531
10.693
12.038
3.647
3.584
2.797
7.615
8.077
3.269
3.187
2.745

8.797
4.162
3.320
3.251
0.638
2.759
0.508
2.492
2.43S
2.168

2.389
1.194
2.128
0.987
1.926
0.867
0.535

0.990
2.068
0.128
0.237
0.005
4.634
0.213
0.187
0.349

0.264
0.243
0.255
0.373
0.212
1.616
0.920
1.223
0.736

3 5.467
10.646
11.990
3.645*
3.555
2.764
7.587
8.046
3.266
3.168
2.715

8.761
4.146
3.317
3.231
0.628
2.728
0.496
2.497
2.438*
2.158*

2.384
1.200
2.115
0.987*
1.907*
0.861*
0.532*

0.978
2.048
0.127*
0.231
0,004
4.625
0.211*
0.182
0.336

0.262*
0.234
0.248
0.360
0.205
1.622
0.921~
1.222*
0.738~

35.483
10.635
12.006
3.657
3.596*
2.758
7.576
8.042
3.269*
3.190*
2.705

8.769
4.146
3.322+
3.256*
0.642*
2.720
0,506*
2.494
2.441
2.135

2.392*
1.195
2.097
0,961
1.872
0.829
0.509

0.979
2.057
0.131
0.242*
0.005*
4.613
0.216
0. 188*
0.352*

0.268
0.246*
0.258*
0.376*
0.214*
1.616*
0.888
1.185
0.713

35.460
10.624
12.022*
3.670
3.625
2.738
7.563
8.037
3.275
3.208
2.684

8.777
4.147
3.330
3.277
0.652
2.698
0.503
2.493*
2.445
2.115

2.401
1.194*
2.080
0.947
1.838
0.806
0 494

0.975
2.074*
0.132
0.249
0.005*
4.603
0.217
0.194
0.355

0.271
0.251
0.264
0.376*
0.214*
1.614
0.875
1.168
0.701

35.507*
10.653
12.060
3.680
3.638
2.793*
7.585
S.062*
3.285
3.221
2.738"

8.808*
4.163*
3.340
3.290
0.655
2.753*
0.518
2.501
2.455
2.151

2.412
1.201
2.117*
0.970
1.S91
0.837
0.514

0.979
2.086
0.133
0.250
0.005*
4.614
0.217
0.195
0.367

0.271
0.251
0.265
0.389
0.221
1.621
0.897
1.196
0.720

35.610
10.717*
12.144
3.704
3.671
2.915
7.632*
8.117
3.308
3.251
2.855

8.875
4.198
3.363
3.322
0.661
2.872
0,552
2.521
2.478
2.229

2.439
1.216
2.196
1.018
2.005
0.902
0.557

0.989*
2.113
0.134
0.253
0.005*
4.639*
0.218
0.196
0.393

0.272
0.253
0.267
0.416
0.236
1.637
0 944
1.257
0.759

+p'k(rd g'l ') = 2 fo fo ~2(r)ll, i' 2(r )(r k/r k+ 1) r2r'2dnPr gk()/gal') = 2 f, fo + (r)lt Il i (r)~ (r') ll il i (r')
{r&~/r&&+1)r2r 2 dry', where the R~ are normalized radial wave functions and r &=min (r, r'), r&=max (r, r').
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TABLE GI. Total electronic radial charge density for Cu+ as determined by several schemes. The values closet
to Hartree-Fock are starred. All values in a.u.

0.0072
0.0144
0.0216
0.0288
0.0432
0.0576
0.0720
0.0864
0.1153
0.1441

0.1729
0.2017
0.2594
0.3170
0.3746
0.4322
0.5475
0.6628
0.7780
0.8933

1.1238
1.1354
1.5849
1.8154
2.2765
2.7376
3.1987
3.6597
4,5819
5.5040
6.4261

7.142
18.854
28.093
33.275
33.421
30.798
28.109
28.029
33.151
38.511

39.917
37.404
27.547
19.995
17.578
18.539
22.148
22.387
19.603
15.778

9.156
5.158
2.984
1.790
0.6951
0.2814
0.1142
0.0459
0.0071
0.0010
0.0001

7.085
18.737
27.964
33.161
34.350
30.722
27.968
27.793
32.798
38.195

39.717
3 7.317
27.542*
19.861*
17.224
18.071
21.933
22.563*
19.962
16.123

9.270*
5.109
2.898
1.729
0.7012*
0.3075
0.1367
0.0603
0.0112
0.0020
0.0003

XLPV

7.112
18.780
28.000
33.186
34.386
30.805*
28.111*
27.984*
32.992
38.310

39.769
3 7.361
27.693
20.167
17.630*
18.425
21.799
21.993
19.270
15.530*

9.037
5.134*
3.041
1.896
0.8153
0.3734
0.1730
0.0794
0.0160
0.0030
0.0005

XKSG

7.117
18.788
28.000
33.180
34.385
30.845
28.209
28.135
33.173*
3S.429*

39.789
37.298
27.597
20.173
17.762
18.623*
21.907
21.875
18.971
15.162

8.755
4.990
2.988*
1.913
0.9094
0.4680
0.2437
0.1256
0.0318
0.0075
0.0017

7.138*
1S.840*
28.072*
33.256*
34.450*
30.911
28.301
28.266
33+372
38.635

39.951*
37.403*
27.654
20.300
18.001
18.951
22.280*
22.174
19.168
15.268

8.746
4.927
2.900
1.813*
0.8174
0.3986
0.1969
0.0964
0.0221
0.0048
0.0010

XS

7.186
18.959
28.234
33.427
34.598
31.061
28.509
28.565
33.821
39.099

40.315
3 7.636
27.786
20.593
18.551
19.702
23.119
22.832
19.577*
15.460

8.667
4.734
2.668
1.575
0.6205
0.2641¹
0.1142*
0.0491*
0.0087*
0.0015*
0.0002¹

out in the next section, it has the great advantage
of resulting from a single potential rather than
from a different exchange for each orbital, as in
LL and XLSW. This makes it much easier to
compute and results in automatic orthogonality
of the orbitals. The XKSG and XS methods, which
alone were considered by Cowan et al . in Ref. 7,
are the poorest of the five.

To show that our results are not in contradiction
to those of Cowan e«l. , we include in Table IV a
listing of the number of asterisks that would have
been found if we had considered only the XKSG and

XS entries. When we examine those numbers, and
the rms deviation and &E total for these two cases,
we see that we should have concluded, in agree-
ment with Cowan eI al . , that the XIDG method is
much better than the XS. We should, however,
note as Cowan eI al. did, that in the matter of
the one-electron eigenvalues, the quantities E of
Table I, the XS method gives in every case values
in closer agreement with the Hartree-Fock method
than does the XKSG method. On the other hand,
both the XL and XLSW methods (they are very
similar as concerns the one-electron energies)

TABLE IV. Accuracy of various approximation. "Number of asterisks" is the sum from Tables I, II, III. "Number
of asterisks considering XKSG, XS only" is the corresponding number which would have been found if only the XKSG
and XS calculations had been made. rms deviation is the root-mean-square deviation of charge densities in Table III
from the Hartree-Fock value, averaged over the various entries. AE total is deviation of total energy from Table I
from Hartree-Fock value.

No. of asterisks
No. of asterisks

considering XKSG and XS only
rms deviation
AE total (Ry)

20

0.190
0.13

28

0.149
0.10

XKSG

12

69
0.225
0.23

26

0.213
0.16

XS

15

28
0.445
0.50
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are better than the other three methods as far as
one-electron energies are concerned in five out

of the six cases, as we see from Table I.

70

60
INDICATES RADIUS OF
MAXIMUM RADIAL DENSITY

III. INTERPRETATION OF THE RESULTS

We have now tabulated a good deal of informa-
tion concerning the respective merits of the five
calculations, but it is interesting to go more
deeply into the significance of these results, and

try to understand them better. Why, for instance,
can a single potential as in the Xn method do
nearly as well as the separate potentials for each
orbital used in the Hartree-Fock, XL, and XLSW
methods? It is obviously of great advantage, in
energy-band calculations, to have such a single
potential, which makes us think very seriously of
using the X+potential rather than the much more
difficult XLSW method. But why are the one-
electron energies found by the ~e method in
poorer agreement with the Hartree-Fock method?
This last point is particularly important, since
it is the one-electron energies found as the
eigenvalues of the differential equation that are
used in finding energy bands.

As a first step in our discussion, we consider
the XLSW method, which we have seen gives the
closest agreement with the Hartree-Fock method.
In Figs. 3 and 4 we show the exchaage potentials
for the various orbitals, as functions of r, re-
sulting from this method. If we compare these
curves with the Hartree-Pock curves from Figs.
1 and 2, we see that there is much resemblance
between them. We must disregard the singular
behavior of the Hartree-Fock curves around the
nodes of u~, which we mentioned in Sec. 1. The
curves of Figs. 3 and 4 resemble smoothed
versions of the Hartree-Fock exchange curves,
eliminating the singular behavior. This can be
seen particularly easily from the 1s, 2P, and 3d
orbitals, which have no nodes, and therefore no
singularities in the exchange. To show the de-
gree of agreement between the Hartree-Fock and
M SW exchanges in these nodeless cases, we
show just these exchanges in Fig. 5, on a different
scale from that used in Figs. 3 and 4. It is clear
that the XLSW curves form very satisfactory
approximations to the Hartree- Fock exchange.
The deviations at the largest values of r shown
(particularly in the ls curves) come out in the
tail of the wave function, where errors in the
potential have merely a slight effect on the rate
of exponential decrease of the wave function.

It is clear from these curves that the reason
why the XLSW method works so well is that it
really furnishes a very good approximation to the
Hartree-Fock exchange. We notice from Figs. 3
and 4 that each of the exchange curves for XLSW
lies below the XS exchange for small r, above it
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FIG. 3. Absolute value of exchange potential V~g~
for Cu+ for the various orbitals, compared with V~S.
Radius of maximum radial charge density is indicated
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for large r. The reason for this is interesting
and throws considerable light on the general form

FIG. 5. Hartree-Fock exchange potential V~HF com-
pared with exchange potential V~L~, for 1s, 2P, 3d
orbitals of Cu+.
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g2 g4 ge
lx3 3x5 5x7 (17)

which has a circle of convergence of unity in the
complex plane. This expansion shows that for
pure imaginary ), we shall have F ( I) real and
greater than unity. Outside the circle of con-
vergence of the expansion of Eq. (17), we may
mention the following useful expansion for real
g (I &1):

of the Hartree-Fock exchange of Figs. 1 and 2. In
explanation we give in Fig. 6 a set of curves of g
as a function of r, as found in the course of the
calculations of the XLSW method. In each case g
goes to unity as r goes to zero and falls to zero
at a value of r where, as we shall see in a mo-
rnent, the classical kinetic energy would become
zero. The reason for this behavior is easily
explained. As r approaches zero, the Coulomb
potential energy VC goes to -~. Hence both
numerator and denominator in Eq. {15), namely

{E —
VC + 8F(q}[(3/8v) p] '")'"

and (EF —V +4[(3/8v)pJ'")'" (16)

become infinite and equal, so that their ratio,
which is g, approaches unit y. On the other hand,
the classical kinetic energy is the square of the
first expression of Eq. (16), so that I becomes
zero when it is zero. Now we recall that F(1)= ~,
F(0) =1. Since the exchange XS is computed for
the average value of F(q), namely &, we see that
as r goes to zero the XLSW exchange must ap-
proach (-,') (~4) = 3 times the XS value, while at the
point where q goes to zero it must become & times
the ~S value. It is this behavior which we see in
the figures.

Beyond the point where q becomes zero, the
numerator of Eq. (15) will become pure imaginary,
so that this case cannot be shown in Fig. 6. It is
easy to extend the value of F(I) to this case, by
using the expansion

I.o

0.5

08
F(0.8) - 5/4

00
I

0.5 I.O l.5
r {ATQMIC UNITS}

2.0

FIG. 6. Parameter g as function of r, XLPV method,
for Cu+. Radius of maximum radial charge density is
indicated for each curve.

HF HF XS' (21)

Similarly in the M SW method we have

(")X1.SW 4 XLSW/ XS (22)

It is now clear from Fig. 7 that the Hartree-Pock
curvesstartat r=Oapproximately at F(g) =~,
which as we have noted corresponds to g=1. On
the other hand, for large r, they rise far above
F(i}=1, the value F(l}=1 coming approximately

I I I I I I I I I I I I

as a function of r, for the various orbitals, both
for the Hartree-Fock method and the M SW
method. In the Hartree-Fock case, we define
F(l) as that value, for each orbital and each value
of &, which would make the free-electron-gas ex-
change of Eq. (3) equal to the Hartree-Fock ex-
change. That is, by using Eqs. (3) and (7), we
have

1 1 1
1 x 3++3x 5q4

+ 5x7g~+ (18)
l.6

l.4

We also have the following useful formula for
imaginary I ()=iy):

F(n) ~ '- tan-' '= —).1 1+ ' 2
2 4y 1y'

Note that Eqs. (17}and {18)furnish a simpleproof
of the fact that, for real g,

I.2

h.
l.0

0.8

0.6

0.4 I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 l.2 l.4 1,6 I .8 2.0
r {ATOM I C UNI TS}F(q)+F{1/'i) = 1. (20)

To show the effect of F(i}becoming greater
than unity, we give in Fig. 7 calculations of F( f)

FIG. 7. E{g) as function of r, for the various orbitals
of Cu+, found by Hartree-Fock and V~~ methods.
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at the point where the classical kinetic energy
equals zero. Thus the Hartree-Fock case shows
the sort of behavior discussed in the preceding
paragraph for the XLSW method.

It should be pointed out that the program that
has been used for the present calculations arbi-
trarily sets F (tI) =1 for all values of t greater
than that for which g becomes zero, so that the
calculations of F(tI}xf.sW follow the curves in
Fig. 7 up to F(q}=1, and for larger r they give the
constant value E(t})=1. Clearly this behavior is
not mathematically justified, and is not in agree-
ment with the Hartree-Fock case. This situation
was not realized when the program was set up.
As a temporary expedient, we have extended the
curves of E(tI)ALSW into the region of negative
kinetic energy by solving Eq. (15) in this range
by numerical methods, using Eq. (19) for E(tI).
This modification has been made in the graphs
shown in Figs. 3 —5, and 7 —9, but not in the data
given in the Tables. The resulting errors in wave
functions come out only in the tails of the wave
functions, and we anticipate that, if we later modi-
fy the programs to take proper account of the
case where F(tI) is greater than unity, it will re-
sult in only very minor modifications in the re-
sults in the Tables. The curves for E(rI) &1,
shown in Fig. 7, are in much closer agreement
with the Hartree-Fock curves than are those
which limit E(rI) to a maximum value of unity,
particularly in the case of the 3s and 3P orbitals.

For the 3d orbital, there is a considerable dis-
crepancy between the Hartree-Fock and XLSW
methods, which perhaps could be improved by
using a different EE. (We recall that the calcu-
lations reported used EE = 0. ) This plot of E(vi)
versus y seems to be a particularly useful one
for illustrating the way in which each individual
potential curve corresponds to a function E(vI) that
varies quite rapidly with r, both in the Hartree-
Fock method and in the XLSW method, which
fairly well reproduces the Hartree- Fock behavior.

We now understand why the ~LSW exchange
potentials, and consequently the Hartree-Fock

14

l2—

V)

~ IO-
LLI

CQ~ e-
K

6—
C9
K
QJ 4
X
LLI

0 0.5 I.O
r (ATOM I C UNITS)

I

I.S 2.0

FIG. 9. Same as Fig. 8, different scale.

exchange, do not follow the XS exchange. Each
exchange potential is numerically less than the
XS for small r and is greater for large r. As
one sees in Figs. 3 and 4, the dividing line be-
tween the two cases comes roughly at the radius
of maximum radial density of each orbital, so
that the XS exchange is approximately correct
through the part of the orbital where it has its
maxirnurn value. This is why the XS method
works reasonably well on the average and gives
fairly good eigenvalues. But the individual ex-
changes vary less rapidly with r than does the
XS exchange, which is why the XS method does
not yield very good orbitals. Let us next inquire
why a single exchange potential, namely the Xo,
does so well in approximating to the wave func-
tions, though not to the eigenvalues.

We cannot expect agreement between the wave
functions determined by Xa and XLSW unless we
really solve almost the same Schrodinger equa-
tions in the two cases. We must remember that
it is only the variation of potential energy with r
that is significant in determining the wave func-
tions; an additive constant in the potential energy
will merely produce an equal additive constant in
the eigenvalue. Now if we multiply the exchange
XS by the constant g which we have seen is 0.77
in our case, the variation of VX~ will be only
0.77 as much as for VX&. It seems plausible from
Figs. 3 and 4 that the resulting variation of VX&
with r might be similar to that shown for V~SW.
In other words, the increase of F(ri) with r, from
& at r = 0 to 1 at the point where the classical
kinetic energy goes to zero, and to larger values
for larger r, might modify the natural decrease
of VXS with& enough so that it would simulate the
behavior of VX~ and consequently the latter
potential might lead to about the same eigenfunc-
tions.

This suggests, in other words, that it might be
possible to approximate the magnitude of the XLSW
exchange, which is
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8F (rf)[ (3/8w) p j
'",

by the magnitude of the Xe potential, which is

6a[(3/8w)pt' ',
plus a constant. That is, we might have approxi-
mately

8F(rf)[(3/8w)pl = 6 a[ (3/8w)p]
' +A, (23)

where A would be a different constant for each
orbital. Then we should replace the Schrodinger
equation of the XLSW method, namely

by

1/3-

C
—V + V —8F(g) —p8w

1/3
—& +V —6a —p

2 3
C Sn

'L/ = EXL~ 8,

(24)

= (E +A)u=E u.XG (25)

If this were possible, we should get identical or-
bitals by the two methods, but the eigenvalue EX~
would be equal to EXLSW + &. Since EXLSW is
known to agree well with the Hartree-Fock energy,
this would explain the poorer eigenvalue found by
the Xo' method.

If the assumption of Eq. (23) were satisfied, it
would imply that the exchanges VXLSW for the
various orbitals would all equal a common curve,

6a[ (3/8w)p]'",

plus constants A which would be different for the
various orbitals and equal to Ep ~ -EXLSW. This
can be easily tested. We have the curves of
VXLSW in Figs. 3 and 4 and the values of EX+
and EXLSW in Table I. By using this information
we show in Figs. 8 and 9 the quantities V~LSW-E~SW +&&~ for each orbital, together with the
potential VX&. We see in fact that the curves are
brought much more nearly into coincidence than
are the original exchange potentials VXLSW, and
the common curve is quite mell approximated by

The discrepancies in Fig. 9, by which the
1s, 2s, and 2t) curves at large r lie above the
VX~ curve, come out in the tails of the orbitals
where they have only a very small effect on the
wave functions. This, then, is the explanation of
the fact that a single potential VX~ ~ VXS can
furnish a good approximation to the different po-
tentials V~LSW for the different orbitals, but that
it gives incorrect eigenvalues. Since the resulting
Schrodinger equations are very similar, and since
the single potential VX~ will necessarily lead to
orthogonal orbitals, we may expect a fairly close

We have examined five different approximations
to the Hartree-Fock exchange in atoms, and have
found that one of them, the &LSW method is de-
finitely superior to the others but that it is com-
plicated to program and carry through, since it
involves different exchange potentials for each
orbital ~ Nearly as good results are obtained from
the Xn method, which amounts to multiplying the
standard exchange XS by a constant e. In the
case of Cu+, we found that the lowest energy of
the atom is obtained by setting ~=0.77, and the
orbitals determined from this simple potential
are very nearly as good as those found from the
more complicated XLSW exchange. Both of these
methods can be programmed for application to
energy bands, and E. C. Snom" has computed the
energy bands for the copper crystal by the XLSW
method. The results, homever, are disappointing.
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FIG. 10. Absolute va1ue of exchange potentia1s V~L~
and V&& for 3s orbital, Gu+.

approach to orthogonality for the XLSW method.
We find in fact that the overlaps with the XLSW
method are 0.0014 for (1s/2s), 0.0003 for (1s/3s),
0.0040 for (2s/3s), and 0.0017 for (2p/3p).

Before we leave our calculations, we shall in-
quire what sort of results we have for the XL
method, which we have seen is very nearly as
good as XLSW. We illustrate the sort of difference
found between XL and XLSW in Fig. 10, in which
we show VX versus r for the 3s orbital, as found

by both methods. The XLSW curve of Fig. 10 is
identical with that of Fig. 3. The shell structure
of the atom introduces oscillations in the value of
V~ computed for the A'L method by Eq. (11),
which are not found in the XLSW method. These
lead to oscillations of exchange that do not seem
to improve the agreement with the Hartree-Fock
exchange. The only exception to this situation
seems to be in the 3d orbital, for which, as we
see from Table II, the XL method seems to lead
to values of the integrals somewhat closer to the
Hartree-Fock values than does the &LSW. It is
hard to know whether this is significant or merely
the result of an accident, such as a poor choice
of EI, in the XLSW method.

IV. DISCUSSION
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The energy bands seem to be further from ex-
periment than those found by Snow" using the Xe
method, in which he got very good results for n=
-,
' =0.833. It is too early to give an evaluation of
this situation, but it suggests that the Xo. method
may prove to be more useful for energy-band
calculations than is the XLSW method. However,
we must remember that if we use the &o method,
the one-electron energies of inner shells must be
modified by amounts E~SW k~&, Pushing the
energies of the inner shells down with respect to
the Fermi energy.

There is one respect in which our calculation is
very specialized; it is carried out for a closed-
shell ion Cu+. Many of the important problems
in energy-band work arise from atoms having
partially filled shells, such as Fe, Co, and Ni in
magnetic crystals. In such cases, an entirely
different point comes in: there are often two
partially-filled shells that have almost the same
orbital energies, like the 3d and 4s shells in the
atoms just named. We can then be in some un-
certainty as to which orbitals will be occupied in
the ground state of the atom. If we wish to carry
out a variational argument, minimizing the energy
as is done in Refs. 4, 5, and 6, by varying the
charge distribution, we can vary the charge dis-
tribution in two quite different ways: by modify-

ing the individual orbitals or by shifting charge
from one orbital to the other. The latter possi-
bility leads to very interesting conclusions that
have not been sufficiently considered in the liter-
ature. Consequently, in a later paper" we shall
look in detail into this question of variable occu-
pation numbers. We shall find that it leads to
very interesting results and throws new light on
the validity of the one-electron approximation to
the many-electron problem, In particular, it
also puts the question of the difference between
eigenvalues obtained by the Hartree-Fock method
and by the Xo. method in a new context, and sug-
gests that it has a more fundamental significance
than has appeared from our discussion in the
present paper.
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