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The strong-coupling model of a cubic Jahn-Teller UT) system where a single e-type vibrational mode

interacts with an E-type electronic ground state is extended to include the e6ects of a trigonal field, quad-

ratic coupling, breakdown of the adiabatic approximation, and small static tetragonal-type perturbations

(random strain fieMs in a crystal). Relaxation is treated by considering how lattice vibrations perturb an
octahedral JT-active complex situated in a trigonal crystal, and it is found that spin-Qip relaxation in the
ground state is related to the non-spin-Qip relaxation (reorientation amongst equivalent distortions) by the
square of the g-tensor anisotropy of the frozen EPR spectrum and by the spin-orbit interaction within the
ground state introduced by a trigonal field. The relaxation time for temperatures above the strain splittings
due to random crystal strains is expected to have the form 1/~= aT+bT'+cT'+de /~~, the ratio of spin-flip

to non-spin-flip rates remaining constant. The magnitudes of the relaxation rates of Paper I are quite well

accounted for by the model, and from those results parameters for the model are derived. There still remains
some difBculty with orientation dependence of the spin-fEp relaxation and with the nature of the "JT"
transition" from an anisotropic to an isotropic spin-resonance spectrum.

INTRODUCTIOÃ
' 'N this paper we shall try to account for the relaxa-
~ ~ tion results of the preceding paper' (henceforth
referred to as I) on relaxation rates in the strongly
coupled Jahn-Teller systems of octahedrslly water-
coordinated Cu~ in LasMgs(NOs) ~s 24HsO (LMN) and
Zn(BrOs)s. 6HsO. It will be remembered that despite
the similarity of the low-temperature spectrum to that
for tetragonally distorted sites, the low-temperature
spin-lattice relaxation rate is some four orders of
magnitude faster than that for a truly static situation.
That it is not a static situation is supported by the
spin-echo measurements which indicate that the centers
are already reorienting their distortion axis on a micro-
second time scale in the region of 5'K.

The model used is again that of an isolated Cu~: 6H~O
octahedron of basically cubic symmetry, as has been
dealt with many times before (see references in I). We
follow broadly O'Brien's~ treatment which is appro-
priate for the expected parameters, supplemented some-
what to include the e6ects of slight breakdown of the
adiabatic approximation, a small trigonal Geld, and
random strain fields. Once we have solved this isolated
complex problem, we consider its coupling to the (much
softer) crystalline surroundings to see how the lattice
vibrations induce transition among eigenstates of the
isolated complex.

The twofold degenerate E-type ground state of the
copper ion (basis

~ e), ~
e)) in an octahedral or trigonal

Geld interacts strongly with the e-type vibrational mode
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of the octahedron [basis (Qs,Q.)]. The resulting
adiabatic potential surfaces take the form of the familiar
sun-warped Mexican hat of Cs synunetry (Fig. 2 of I).
The Jahn-Teller stabilization energy EqT=3000 cm '
=10Xthe e-vibrational quantum Ace. The adiabatic
approximation is quite good and the three lowest-
lying states (no radial excitation and the lowest-lying
angular excitations) are a doublet nearly degenerate
with a singlet lying 31'&—,'tt. cm ' above it, the dosest
excited states are & 150 cm ' higher Lsee Fig. 1(a)].An
E-type strain Geld removes the equivalence of the wells
as shown in an exaggerated fashion on Fig. 1(b) leaving
eigenstates ~G,), jG„), and ~G,) which are predomi-
nantly localized in the well corresponding to a stretching
distortion along the axis denoted by the subscript, with
a small admixture I'/8 of the other two wells, where b
is the extent to which the wells are made nonequivalent.
The width of the lines on Fig. 1(b) represents sche-
matically ~G,(8) ~'. Intrawell phonon matrix elements
(G;~O~G;) dominate, indicated by wavy vertical lines
on Fig. 1(b), making the transition rate between
eigenstates (wells) ~ (F/8)'. For resonant phonon
transitions, however, this well decoupling is just com-
pensated by the increase in the number of available
phonons of energy 8 to make this interwell (reorienta-
tion) transition rate independent of local strain and
proportional to F'. The measurement of the reorienta-
tion rate combined with an estimate of the coupling to
the phonons is sufBcient to give a value for I', a key
parameter in the theory. In reality, of course, each of
the energy levels is a Kramers doublet whose compon-
ents are split by a magnetic Geld to give rise to the
EPR signal.

The orbital contribution to the magnetic moment
makes the g tensor sensitive to the distortion axis, so
that each well has a distinct resonance line in general,
255
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its axial g-tensor ellipsoid being directed along its dis-
tortion axis. eca8 cause of this nonequivalence of g
tensors, the effective spin quantization axes for a
general field direction are not coincident for di8erent
wells (Fig. 2); the effective-spin part of the spin-up
component !G f), say, is not in general orthogonal to
h in part of the spin-down component

ix ele-thereby allowing a phonon (electric-type) matrix e e-
ment (G f!0!G„J,)WO. The rela~atio~ path to !G f) is
completed by the reorientation process. (G,)!0!G„J)
is simply related to (G 't!0!G„f)by the g tensor anisot-
ropy, sugges ing that the reorientation rate and t e

~ ~

spin-lattice ra es s o-l t should be related. This mechanism is
found to give quite good agreement with experiment,
though there are certain difhculties with orientation
dependence.

At higher temperatures, two-phonon processes be-
come more important. These involve essentially the
same electronic matrix elements discussed above, ut
use the whole phonon spectrum in a nonresonant way
that can give riseh

' r'se to a T' temperature dependence as
observed in I.

Finally, we discuss the nature of the "Jahn-Teller
transition at 38'I in LMN and conclude that re-
orientation is not quite fast enough to motionally
narrow the line at so low a temperature and suggest,

, f r LMN one may be observing the reson-
lowance from the second site which was not seen at ow

temperatures.

THEORY

(e,e) subspace of electronic functions is

&=L~o+-'~(I' '+I'.')+-'e '(Q '+Q, ')
+AeQe(3Q e—Qee) jI+V(QeUe+Q, U,)

+l'e&Ue(Q *—Qe')+2U. QeQ.j, (&)
where

and, for later use, —i
A, =! j

Here (Qe,Q,) are amplitudes of e vibrations in Fig. 2
of paper I, (I'e,P,) are momenta conjugate to (Qe,Q.),
p is the eHective mass of the e-vibrational mode, ou is
its frequency, As is the coeKcient describing the first-
order anharmonicity of the mode, V is the reduced
matrix element for linear vibronic coupling, V~ is e
reduced matrix element for quadratic vibronic coupling,
and Eo is energy in absence of distortion from cubic
symmetry. The matrices are indexed in the order
(!e),!e)); tt transforms as 3s'—r', e as x'—ye. The
Schrodinger equation is

BC';=EQ;,
where f; is a two-component wave function

!
P '(Q,Q.)i
Ex,'(Q„Q,)&

f;=xe'!8)+x,'!e).

Isolated Complex, Strong-Coupling Model
representing a solutionThe vibronic Hamiltonian representing the inter-

action of the (Qe,Q,) vibrational modes within the
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If we set
Qe= p cos8,

Q, =p sin8,
(5)

g -DIS

x-DIS

y-DIS

X-0 I STOR TION
Z

-0 I STORT ION

and apply the unitary transformation

sin-,'8 cos-,'8

cos-,'8 —sin-,'8 /
(6)

appropriate to strong coupling, we Gnd'4

~'=SXS '=BCo'I —VpUe+(h'/2pp')Aee(8/88)

+Vepe(cos38 Ue+sin38 U,), (7)
where

3Cp'= (
A'

p—p—4+ +28~'p'
2pp2 Bp Bp gg2

Evidently if (3) is satisfied, then

0's= Eigip

—~3P3 cos38 I.
FIG. 2. g tensors and spin quantization axes for magnetic

field along the $101) direction for the strain stabilized levels of

(g) Fig. (1b).

0'i= s v'i. (9)

where y; is again a two-component wave function of

(p,8) and (3) is satisfied by
which couple the equations for the two components of
e;. We shall treat the terms (12) by perturbation
theory. For t/'(0, solutions of the form

We require P,(p, 8) =f;(p, 8+2~), which, because
0

and

dictates that
S '(8+2m. )= —S '(8),

e'(p, 8) = e'(p, 8+2~)—.

It might be noted that

represents the function

e (sm=k8I8&+cose8I e&)f+(cose818& »n—k8I e&)g

(10)
are appropriate to the lower and upper adiabatic
potential sheets, respectively.

We shall want to add to the basic Hamiltonian the
Zeeman, spin-orbit, strain, and trigonal Geld inter-
actions. Once we write these down in the original
representation, it is trivial to transform them since
they do not involve any derivatives of the normal-mode
coordinates. In the original representation, then, they
are

K =4oAAes, —(2X'/6)Pe(1 —o)I—gaAes, j, (13)The matrix of an operator 0 is given by

&y;loly, &= &e, lsos-
I e;&.

The pair of coupled dilferential equations given by (8)
corresponds to Eq. (10) of O'Briene and to the pair
(A12) of Ham. e The strong-coupling approximation is
the neglect of the nonadiabatic (N'A) terms where we have assumed for simplicity that the trigonal

Geld Ve is caused entirely by a crystalline Geld acting
only on the quadrupolar moment of the electronic dis-
tribution on the Cu~. Here o= (Q-,')&E8I Vel Tee&//6,
6 is the cubic splitting between T2, and E, states,
h=PH, X is the spin-orbit coupling parameter for
M' 'D, he=(+2)(h. —h„), h, = —(Qe)(2h. —h.—h„),
h, = (Qs)(h, +h„+h,), and Se ... are similarly defined.

A' 8
3C~~ = — A2i—+V2P' sin38 U„

2@p' 88
(12)

'This approach is essentially an amalgam of Ham's (Ref. 5)
formalism for the weak-coupling limit with O'Brien's work on the
strong-coupling limit. It has the advantage of providing a con-
venient logical framework in terms of which our ideas may be
more clearly and concisely expressed.

'Hamiltonians in the transformed representation are primed.
~ F. S.Ham, Phys. Rev. 166, 307 (1968). 3C(tetragonal strain) =B(eeUe+e.U,), (15)

(11) K(Zeeman) = 4rXA eh, +2h SI—(2X/g)
X ((2+eel/6+5o) h S+(1+-',X/6 e)—
X I (3h,s,—h S)Ue+ VZ(h+, —hg„) U,]—9oh,s,

+6eL(h S —heSe) Ue+(hes, +h,Se) U,)I, (14)
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C 8
(e.'+'I -~—

I e -'+'& (19)
2EgT 88

Equations (16) and (18) together provide a prescription
for evaluating (13)-(15) within the set of lower-sheet
vibronic states.

We now turn to O'Brien's' work for the y„&+) solu-
tions. She has considered the solutions appro riate to
the region of the parameters estimated by pik and
Pryce, ~ viz. ,

EgY=3000 cm ',
Ace=300 cm ',
p,=0.3 A,
a=A'/2ppo'=8 cm ',

Agppe=600 cm '

V~p'=600 cm '.

(20)

The second-order electron-vibration coupling V~ was
not estimated there, but it is reasonable to suspect that
Vnor A p(eer+eP)"' A p'/V2E, where E is the equilib-
rium ion ligand distance from which we have made

I If one identifies ligand displacements directly with thestrain
parameters, then 8=AVE, where R is the equilibrium ion-ligand
distance; see the discussion preceding Eq. (31). B=(g$)V~ in
Ham's notation (Ref. 5).

r U. Opik and M. H. L. Pryce, Proc. Roy. Soc. (London) A238,
42S.(j.9H).

whereee=(g))(2e„—e„—e») ande, =(g$)(e —e»).'
(This expression is appropriate to an octahedron. ) To
write these in the transformed representation, we need
only note that

SUyS '= —cos8 Uy —sine U„
SUP '= —sin8 Ue+cos8 U. ,
SAgS '= —Ar.

%e note here the eGects of a slight breakdown of the
adiabatic approximation. If the zero-order solutions

D.e., solutions neglecting the terms (12)]are denoted by

(f-(p 8)l

0 ) g.(p, 8))
then

(e-' 'l3'~~l e.'+'&
~p-'= e-'+'+Z e-' ' (17)

E„+—E—

We show in Appendix A that, for f„=S 'ir „',

(y„I U, IP )= (e „i+&I(1+a/4E») cos8+(V~or/4E»)
X (cos28—cos48)

I e „&+i&,

Q. I U. I&-)=4-"'
I (1+a/4E») sm8+(V2po'/4EsT)

x (—sin28 —sin48) I e '1+&), (18)

where a= l'r'/2ppo', EqT is the depth of the minimum of
the trough in the adiabatic potential at p= pc= V/paP,
and a/4EgT (fue/4EgT)'; an——d

the estimate above. Evidently (duo/EzT)' (h)'«2,
which well justi6es here neglect of coupling to the upper
potential sheet.

O' Brien' finds that the solution of (8) for the ground
vibronic states may be written

/f'(p)x (8))
IE )I

IA &=(v's)(—G.+G.+G*),
IE )= (+sr)(2G,+G.—G„),

I
E '& = (v'l)(G. +G,),

(22)

where IA„), IE„),and IE„') are the three ground-state
solutions of (21), then

G.= (v's)I:f(8) —f(8—2~)]
G.=(&l)Lf(8—' )—f(8—8 /3)] (23)

Gy=(Q ', )Pf(8 gm) -f(8 —1(b/3—)], —
where f(8)= (2ro/7r)'I'e "",ror=9p/Sa are the harmonic-
oscillator solutions, which are good zero-order solutions
for P&)n. It is to be noted that G,„,, are concentrated
in the wells corresponding to x, y, and s axis distortions
of the complex, aGording an easy physical interpreta-
tion of the wave functions. To this approximation the
splitting between the E„and A eigenstates is given by

3'r 3 2Q
31'= 3(H„' yH„') =3P—y ———2+— —,(24)

2 4 P
where

H"= (G*I3'-r'I G &,

v=(G. IG.)=exp —31 g—)(-)

where f,(p) is a harmonic-oscillator solution in p of
quantum Aced, while X is a solution of4

ae, 'x„(8)=( a8—2/88' p—cos38)x (8)=E x (8), (21)

where
a=(f'(p) I

A'/2pp'If (p) &

P=(f,(p) IArp'+V. p'If (p))

if we extend O'Brien's de6nition to include the second-
order coupling term. Recalling the boundary condition
on x(8), it is convenient to classify the solutions of
(21) by the irreducible representations of the group
Ce.= Cr.XCr which (21) satisfies if sr 8 is regarded as the
variable (see Appendix B). The required solutions are
those odd under C~, for which we will use the subscript
N. She argues that for P»n it should be possible to get
good answers from linear combinations of harmonic-
oscillator solutions about the minima of 18 cos38. From
the experimental g values it is evident that 18)0, i.e.,

the minima correspond to stretching along the oc-
tahedral axes. In a slightly recast form, O'Brien's sug-
gestion is that if
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FIG. 3. Calculated parameters of ground vibronic states versus ratio of barrier half-height p to KK factor a=A'/2ppo~. (a) Tunneling
splitting 3F between ground doublet (E„,E„') and first excited singlet A, reduced matrix element for angular momentum cg= |',E„I
X8/88(E„') and ~=((1—(gg)c1/c~g, where c&=(A ( cos8[E ) and c2=(E ) cos8[E„)are reduced matrix elements for (cos8, sin8).
(b) Energy difference b, between lowest-lying B and A states and reduced matrix element cg for {cos8,sine) within ground doublet E .
See Appendix C for details.

Only tetragonal (e type) strains will be important, and
they are represented by an operator K,'=)Us+I U,
Drom Kq. (15)j, where $ and I are parameters which

vary from site to site and can presumably be described
by a statistical distribution function. The matrix of
BC' 1s D„

(26)Due

where D;;=(G;I $ cos8+t' sin8~G;) (ij =x,y,s); for
iW j, D;,=)e=g«P and we shall drop them. ' The
Zeeman interaction in this representation can be derived
from (14) and (18), setting P= X/5

3C'(Zeeman) = t 2—2P(2+ —ssP+So) jh S
-3hZ, —h S

—4PCs(1+srP —o) 3h„S„—h S
3hd, —h. S.

+6Po (4Cs+3)hP, —24Po Cs

hQ, +hg, +hQ„
X hg, +hQ.+h/

hg, +h&„+hg, .
(27a)(G, —r —r.

const I+ (G„—1' r .
(G, .—r r

(25)
where"

a
Cs -—$(G, ii 1+

i
cos8

4EgT/
8 A plot of the parameter ce appearing in O'Brien's matrix ele-

ments may be found in Fig. 3 as well as a parameter e = )P1—(g$)
Xcr/cQ describing the deviation of the ratio c&/cs from V2. It
should be remembered that the breakdown of the adiabatic ap-
proximation multiplies both c& and c2 by the factor (1+m/4EzT)
as shown in Appendix A.' L. C. Olsen and J.W. Culvahouse, Phys. Rev. 152, 409 (1966).

t/'SP0'

+ (cos28—cos48) i G,), (27b)
4g~T

'4 In the limit Ag= V2=0(P/a=0), C~ is identical to Ham's q.

which gives some insight into the variation of F with
P/cr. The actual values so obtained are not as accurate
as one might wish, however, due to the flattening o8 of
the potential in the regions of 8=ass.(2n+1), unlike
true harmonic-oscillator potentials. Ke have computed
3j. more exactly as outlined in Appendix C and those
results are plotted in Fig. 3 together with the energy
separation between the A level and the 6rst level (of
type B ) above it.

O' Brien goes on to give the matrix of the Zeeman in-
teraction in the representation (22) and calculates the g
values and hyperfine constants for H along a cube axis. '

Random strains in the sample could, however, some-
what alter the picture and we shall sketch a theory to
include both them and the trigonal Geld known to be
present in the double nitrate crystal. ' %e shall work
with the states G,(8) of Eq. (22) because they have a
more direct physical interpretation, especially when
strains are present. The matrix for Ky' is
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again neglecting the off-diagonal terms which are of
order Phy&&F. The remaining interaction which may be
important is the spin-orbit coupling which, from (13)
and (19), is

z —z

(2g)

where cs ——vS(G,
~
8/Be

~
G,) is computed as described in

Appendix C and plotted versus P/a in Fig. 3. Evidently
if D,;—D,,»I'," the ~G;) are good approximate eigen-
functions, the g tensors are those appropriate to an
axially distorted complex and the g tensor for ~G.) has
principal g values, for 0&(1,

gg*= 2—4P(1+2C2)(1—-,'P+o) —10P',
gg*= 2—4P(1—C2)(1—2P+o) —2oP —10P', (29)
gm*= 2—4P(1—C2)(1—2P+o)+2oP —10P'.

The principal axis for gl lies in the plane containing
L0017 and the trigonal axis, tilted from t 001) towards
L111) by an angle

2o (3+4C2) 10
tan ' 0

6C2(1+o)—o 3

that for g~ is in the same plane but perpendicular to the
g3 axis near $110) and that for g2 lies along L110).The
g values and principal axes for ~G,) and ~G„) can be
obtained by symmetry.

When D;;—D;,=(g'—g')h=l', the random strains
cause the resonance to smear into the region between
the strain-stabilized line positions just calculated; it is
to be noted, however, that the stabilizing inhuence of
the orbital Zeeman effect takes over as D;;—D,;
((g'—g')h when (g'—g')h» I', which is the regime cal-
culated by O' Brien. ' Whatever be the dominant aniso-
tropic force, the X(e) function will have the form

X= ~G;)+P a;, ~G,)/(I++ u ')' ' (i)j=x,y, s)

within which the expectation value of the Zeeman
operator is

H;, (Zeeman)+P a, ,.2H, ,(Zeeman)

(30)

whose limiting values are two of H, ;(Zeeman), i = z, y, e.
The spectrum will be seriously smeared only if most of
the distribution of strain parameters falls within ~F
and (g;—g;)h&I', for the n, ; are determined by the
competition between the off-diagonal terms F and the
diagonal ones H(Zeeman)+H(strain). It is interesting

"The D;; should really include the orbital Zeeman interaction
before comparing D;;—D,; with F to determine the degree of
stabilization of G;-type states.

to note that when g'= g&= g',

X,=gh

and is invariant to any mixup caused by strains ex-
cept that the selection rules are altered for zero strain-
see I, Eq. (4). All this is to be found in O'Brien's'
treatment, of course, but it is perhaps a little less
obvious in her set of basis states appropriate to
3C'(Zeeman) =3C'(strain) =0.

ag, 3C,(ag) =Gag,I,
eo 3C,(e) = Gg(Qe Up+ Q, U,),
t2o 3C.(t2) = 2PG2(S,Qt+S„Q„+S,Qr)A2,

t„3C,(tg) =0.

(31)

G~ is the reduced matrix element for the e, distortion
mode within E, manifold of pure electronic states. G2
is the reduced matrix element for t2, distortion mode
between E, and T2, electronic states. G6 is the reduced
matrix element for a~, distortion mode within E,
manifold of electronic states. These G; are identical to
those defined by Stoneham. " Inclusion of the Zeeman
interaction gives operators with matrix element be-
tween Kramers conjugate pairs, but smaller by a factor
of PH/6; it is these terms which are important in the
spin-lattice relaxation of an isolated Kramers doublet
ground state as appears in the Tutton salt, ""but the
relaxation rate they cause is some three to four orders of
magnitude smaller than found experimentally. They are
therefore ignored in what follows. "It is usual now to
express the Q in strain language, viz. ,

Q,~=&2Re,=R(+s)(e +e»+e,.),
Qq =42Reo= R(+3)(2e„e, e»), — —
Q, =v2Re, =R(e„e»), —

Qt=3Re„„Q„=2Re„, Qr=2Re „.

(32)

"A. M. Stoneham, Proc. Phys. Soc. (London) 85, 107 (1965)."B.Bleaney, K. D. Bowers, and D. J. E. Ingram, Proc. Roy.
Soc. (London) A228, 14/ (195~)."If one wanted to include these, they would have the form
noted by Stoneham for 3Cd;„c&, with 2; and 2;; rePlaced by 2 X2
matrices PZ; g and I Z;, j appropriate to the total E subspace
rather than for one member of it.

RELAXATION

Coupling to Lattice

The coupling Hamiltonian between the lattice vibra-
tion and the complex is commonly derived by pro-
jecting the lattice modes onto the ligand positions and
asserting that the ligands, accordingly displaced, im-
pose a crystal field on the electrons through the usual
first-order ligand-electron coupling. Proceeding thus,
we find the following effective operators within the E
subspace for the even modes of the octahedron before
including the Zeeman interaction:
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The strains are then expressed in terms of phonon
operators with the help of the assumptions of isotropy,
long wavelength, and uniformity within unit cell for
the lattice vibrations as exampled by Stoneham. "

Such a derivation for K.(e), however, is open to the
objection that we have already dealt with the term
3C,(e) in (31) in the solution of the isolated complex and
so have given Qg and Q, the status of variables acting
on the complex. We should not now treat them as
parameters determined by the state of the rest of the
lattice. Instead we can treat the coupling mechanism
of these modes to the lattice as a modulation of the
elastic potential; the phonons strain the lattice, so
exerting an additional force against displacement of
the Qy, Q, modes. "We show in Appendix D that such an

approach yields

I' as in (25). A;; is the matrix multiplying S, in (28).
(m, Ion;& is the overlap integral between S,= rz,; in the
spin coordinate system diagonalizing H(Zeeman), , and
S,=m; in the system diagonalizing H(Zeeman);, . The
quantity (m;IS, Im;& is the matrix element of S, be-
tween these states. If the (X,V;Z;) system has to be
rotated by Euler angles (npp);; to bring it into coin-
cidence with the (X;Y,Z, ) system, then

I(m, =+-,' Im;= ——',) I'
m = —

2 m'=g =Sin

in particular if the magnetic Geld lies along a principal
axis common to both, then (ns;=+z Im;= ——,')=O.

1(~~=~z I
~'= ~z& I'=cosz(zA~)-1,

since p, ; is never very large if the g tensors are not very
anisotropic.

Matrix elements of K,'(e) between these first-order
states are (for iWi)

(33)K,'(e) =-,&2c44R'I eQg+e, Q,]

A;,(~,Is. Im, &+ r;,(m, I~,&

(jm, 'I8c,(e) Iim &=B
E. .

XL(C;;—C,,)e + (S;;—S,,)e,], (36)(34)
where

3C'(c) =SDCQ '= B(cy cos8+—e, sin8),
with

for a uniform isotropic continuous solid of shear modulus

c44,. ey and e, are lattice strains due to phonons. When
the K,'(e) of (33) and the 3C,(e) of (31) are transformed
to the representation of Eq. (7) by the transformation S
and limited to the lower sheet, they have identical
forms

B= v2 VR for (31),
B= ', v2c44R'p for (-33) .

and

Cg'j= Lcos8]= cz

2.

Ke must also investigate the eigenfunctions. From
(25)—(28), the zero-order eigenfunctions may be written
Iirl;), where i ~ x, y, or z distortions and m; is the spin
projection quantum number (= &-,') in a coordinate
system (X,Yg,) for the spin which diagonalizes the

Zeeman interaction for the IG,) state; the appropriate
coordinate system can be easily found on noting that
(27) defines a g tensor for each state IG,) (see Fig. 2).
The 6rst-order eigenfunction from perturbation theory
for IG;,m, ) basis states are"

S;,= I sin8]=cz
0 I

(the brackets indicating the matrix of the operator),

(jm, I
H, '(i,) I

i~;)
= 2I'Gza, ,(m, I S,e,„+S„e.,+S,e,„Im;&, (37)

im = im;
u *=(gz)cz 0 i

—i 0 2EgT

(r, ;(m, Im, &+A,;&m;Is, I tn;&}+p I jm, ), (35) The size of a typical matrix element of BC,(iz) is
E;,—E, ,

0 —1 —1
I";;=F —1 0 1

-—1 1 0.
~'We are indebted to F. S. Ham for pointing out that the

philosophical objection can be reconciled by a transformation
Q ~ Q+Qo, where Qo is the "phonon" displacement of the ligand;
however, to obtain a value for Qo by the simple projection de-
scribed above is still rather dubious and the approach of Appendix
D, which takes into account the diBerence in stiffness of the hard
water octahedron and the soft crystal, should give a more
realistic estimate. 'l'his is a problem which occurs in all relaxation
calculations in molecular crystals when the relaxing ion is pro-
tected by the hard molecule.

~e The matrices are again indexed in the order i=x, y, s.

Q 8 n 2m P
f'2G, (G. I

—IG„&-I 2G,
2E~T 8|I E,T 3

where y is the overlap (G, IG„). The typical matrix
element of 3C,(e) for spin flip is

r(B(8)r=I'(B/8)Pv,

where 5=D,—D». The ratio

&TI~.(r)fl& 4G

&T I8C.(c)
I l) B B» p
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since 8=1 cm ', G~=B, and EgT=3000 cm '. %e
therefore neglect H. (rs) in what follows. Making the
aforementioned assumptions about the lattice vibra-
tions, we find that the thermal average spontaneous
transition ratefrom I jm;) ~ lim;) for the direct process
is given by

W( Jsmj j rsmi) e modes

E(j,m, )—E(i,m;)= tt',u( jm;; im;)!
EI—exp(LE(i, m j)—E(j,mi) j/kT) I

6(csB)' 2 vr '-
Ct= 1+——

Sxh4dep' 3 el.
(38)

Here d is the density, and el. and vz are longitudinal and
transverse sound velocities, and

u(jm;, im;) = la;;&m, ls, lm;&+ I';,&m, lm;& I
.

It will be noted that for IE;,.—E;,. I((kT, W(j,m, ;
i,m;) is independent of E(j,m, ) E(i,m,)—. This is a
very important feature, for it ensures a single relax-
ation rate for all sites independent of possible random
stabilization energies. The thermal average of the
square of the amplitude of strain of frequency co is

(Ate/2bIvs)n(cu), which is independent of td when
Ace»k T (n is the Bose-Einstein number), the frequency
density of lattice oscillators V(tds/v'), and the inter-
well coupling appearing in the matrix element = (I'/Ate) ';
putting these factors into Fermi's "golden rule, "we see
that the co dependence due to the strain decoupling is
just compensated by the increase in the density of
states.

Inspection of the u(jets;, im;) factor shows that, if I'
is the dominant term, reorientations accompanied by a
spin fhp (m;= —m;) are slower than simple reorientation
rates (m;=m;) by sin'(sP). It is then convenient to
divide the system into two groups of levels, a and b,
corresponding to spin up and spin down, respectively.
A spin-echo decay measurement on a given orientation

j, say, will measure the rate of rearrangement of the
system among the distortions without necessarily
changing the spin orientation. The rate for this is given,
for E(j,a) E(i,a)«kT, by—

1/r; (reorientation) = CkT p u( ja; ia)(1 b;,)—
= 2Q,kTF', I"&)A;;. (39)

The return to the equilibrium s magnetization for a
given distortion will be characterized by the spin-Rip
rate and occurs over a time much greater than ~;. %e
may then assume that each group, a or b, is in internal
equilibrium during this time which is then given, as
shown in Appendix E, by

1—(spin lattice)
Tj

2ekT
g u(ia; jb)(1—b;,)

3 sJ

=2osTI'i ) [l,'x, '+x„o,'+go. 'j, (40)
g

E, —E,'&(kT, P,,(&I, I TP„I» l~,, l'.

g is the average g value and X,, . are the direction
cosines of the magnetic field. The independence of this
relaxation time of the details of the stabilization energies
results both from the special form for W(im;; jm, )
commented on above and from the assumption that
kT is much greater than any energy difI'erences in the
system.

The phonons inducing this relaxation are of energy
E(i,a)—E(j,b) which may vary from site to site, obey-
ing only some statistical distribution function it if is due
to random strains; the spin energy is thus dispersed
over a wide band of phonons, reducing strongly the
likelihood of any phonon bottleneck eGects, despite the
strong coupling between spins and lattice.

As the temperature is increased, we must consider the
possibility of two-phonon processes. Provided there is a
direct phonon matrix element between the initial and
final states, we need not invoke a third electronic level
at all; the energy denominator appearing in the two-
phonon transition probability is proportional to one of
the phonon energies Ace~ provided that A~&&E —Eg,
thereby reducing the frequency dependence of the
integral by 2. This brings the more familiar T depend-
ence down to T'. This is just the process considered by
Ham' for his Kq. (57) and, presumably, by Bersuker
and Vekhterts for their Kq. (2).

If the two states are labeled a and b, (i I cosa
I j)=C,,

and (i!sine!j)=—S... the two-phonon transition prob-
ability is

I summing over the paths just mentioned as
well as the paths involving the third ground level
labeled c (T«On))

84k' 2 vr)' '
W, 1+——

! T'I Cs,(S„—Sbs)
375 k d vr' 3 vr, P

+Sso(Css —C„)+C.S.,—Ss.C„I' sec ', (41)

"Should the inequality be reversed such that ~A;, &&I'p, the
angular dependence would be quite diGerent and, notably, would
not have nulls along the principal axes. The factor r L(gll —gI.)/gg'
t —j in (39) would be replaced by A~ multiplied by a much weaker
angular factor. It may seem curious to reject H,~s, and nonetheless
retain the A. term, but it is not diKcult to show that the ratio of
spin-lattice relaxation ratio caused by these two mechanisms is

n BoX a PB(v'.)" (&&)" *= — .~JT ~ ~ST
Here P =X/6, where b, is the cubic 6eld splitting making the ratio
(5/ab, )~=1 when a =10 ', in which case Ag&(Fp for our regime.' I. 3. Bersuker and B. G. Vekhter, Fiz. Tverd. Tela 7, 1231
(1965) )English transl. : Soviet Phys. —Solid State 7, 986 (1965)j.
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6 (CB)'I'k' 2 s )'-
1+- —

I
T

25m Avd~e~io 3 ~~j
(42)

between any two of the states
~
G ), ~ G„),and

~
G,).

If A«1', (41) and (42) taken together would indicate
that the spin-lattice relaxation rate should be related
to W, g without spin Qip in the same way as for the
direct process, indicating that the two-phonon processes
contribute

1—(two phonon) =2(hg/g)'W(X~9. „'+X„'X,'+ X.'X~'),
Tg

where

16s (BC,)'(kT)'- 2(sr' ~-&

W=-- 1+-I —
f

125 Ard srio 3 (sr,)

where both phonons are e-type. To the approximation
that ~=0, the terms in

~ ~

' in (41) cancel, so that the
6rst nonvanishing term involves the true cross matrix
elements like (G, ~costt~G„) e which we neglected in
calculating (36). The result for the

~ ~

' part of (41) is

48C,4e~((~. t ~,) ~

~

In view of the cancellation to order e in (41), we
should estimate the contribution from the I'/b admix-
tures taking into account the difference in phonon
energies for the two-phonon process. Such terms are of
order (I'/b)'(b/ro)', where ra is the phonon energy and b

is the energy splitting of the two states. By introducing
another ~ ', the temperature dependence is reduced to
T'. The result is analogous to that obtained by Pire,
Ze&, and Gosar" for the O~ center in KCl and is, for
no spin Rip,

the quantization axes of the ground states and the ex-
cited state. The simpler expression (44) will be sufhcient
for our purposes of using the nonappearance of an
Orbach process to place a lower limit on 6,

In summary, then, if A(&F we expect the non-spin-

fHp and the spin-Hip reorientation rates to be related
to one another by a factor of order (hg/g)' for each of the
processes considered. We expect 1/r to have the form

1/r=aT+bTe+cTS+de +~r,

about which we can make a fem general observations.
Inspection of (43) tells us that the T' terms should not
dominate the T' term until k T) I'/6e=2a, noting from
Fig. 3 that I'/n and e scale roughly together. bT' takes
over from aT when

kT (5A'der')'" 10'

kc C,B (B/kc)(cm —')
cm ' typically

if B and I' are each expressed in cm '. If such a tem-
perature should turn out be to higher than 2a/k, then
we should ask when the Orbach term exceeds the T'
rate, i.e., when

for d= 2 g cm ' and ez = 2&10' cm sec '. It is much
more dBBcult to predict when the exponential term
might dominate, if indeed there is a vibronic level low

enough to be directly excited by a phonon. The condi-
tion for the Orbach term to dominate the T' term is that

( 6 ) 27 (Bl')' (BI'q '
exp] — [)— =7)

kT k kTJ 80 k'der' 410'I

X ~k& ' I' 43
8s'

to the spin-lattice relaxation rate.
If the splitting to the excited ~B„) vibronic state

lies within the phonon spectrum, there is also the pos-
sibility of an Orbach-type" relaxation process. If the
excitation energy is 6, the Orbach process predicts a
reorientation rate without spin Rip:

1 2 (aB)'6' 2 sr)' (1+- —
~

exp(—
45 0'dv ' 3 J \ kt)

a= (8„'icos8) B„)= 1. (44)

There is a similar expression for the spin-lattice rate
but containing an additional factor, similar to the
sin'~P described above, appropriate to the angle between

'9 R. Pire, B.2eks, and P. Gosar, J.Phys. Chem. Solids 27, 1219
(1966).

~o R. Orbach, Proc. Roy. Soc. (London), A264, 456 (1961).

if B and 5 are again in cm ', and d and e ~ are as assumed
above.

A physical picture of the relaxation mechanisms can
be quickly sketched with the aid of Figs. 1 and 2.
Figure 1(a) shows the lowest-lying vibronic energy
levels in the absence of strain and magnetic 6eld; these
two perturbations modify the A„and E levels in the
way drawn schematically in Fig. 1(b). In this figure,
the thickness of the lines is intended to illustrate the
relative density in that angular portion of the three-
fold potential trough. The lengths of the spin arrows
are drawn to indicate the relative amounts of up and
down spin referred to the quantization axis appropriate
to the s distortion. Wavy line A is a phonon-induced re-
orientation transition without spin Rip, while B repre-
sents a reorientation accompanied by a spin Qip. The
vibronic matrix element for A will be proportional to
the integral of the product of the wave-function
densities at the end points of the "vertical" transition.
The strength of the B transitions is this multiplied by
the square of the down-spin component in

~
G ). Figure



264 WILLIAMS, KRUPKA, AND BREEN l79

2 shows a section through the g tensors corresponding to
i=x, y, and z; they are drawn for perfect cubic sym-

metry. A magnetic field direction is drawn in together
with two of the quantization axes corresponding to
Fig. 1.

If one chooses to view the relaxation from the point
of view of the electronic parts of the wave function,
one can attribute the spin relaxation to the action of the
magnetic Geld in breaking the Kramers conjugate nature
of the electronic function of

~ G;$) to the electronic func-
tion of ~G,$) because of the difFerent action of the
orbital Zeeman Hamiltonian in each state. It is in-

teresting to note that Stoneham's" theory for Cu'+ in

the Tutton salt breaks down for cubic symmetry (d=0
in his paper) and causes the spin-lattice-relaxation ex-

pression to diverge except when H is along a principal
axis. For very strong coupling, both I' and a tend to
zero, making our mechanism completely ineffective as
appropriate for a static tetragonal Geld.

C2 ——0.535~0.005 (45)

"A. Zalkin, J. D. Forrester, and D. H. Templeton, J. Chem.
Phys. 39, 2881 (1963).

DISCUSSION

The following features of the experimental results
should be accounted for. (1) The Cu'+ spin-resonance

signal appears to originate from only one of the two
inequivalent divalent metal sites in LMN; (2) g values;

(3) spin-echo decay times; (4) spin-lattice relaxation
time Ti.' (a) magnitude, (b) angular dependence, (c)
absence of bottlenecking, and (d) isotope effect; and

(5) transition temperature. The portions relevant to
each of these points are distinguished by the correspond-
ing numbers.

(1) The x-ray analysis of Zalkin et ul. ~' indicates two

types of Mg: 6H20 octahedra in La2M gi(NO3) in 24H20,
rotated from one another by 60' about a common (111)
trigonal axis which is also the trigonal axis of the crys-
tal. Mg(1), of site symmetry 56, is in what would be a
regular octahedron of water molecules with a Mg-0
distance of 2.07 A if the bond angles were changed by
less than 1'. Mg(2) is at a site of Cz symmetry; the
Mg-0 bond distances of its H~O octahedron are also
2.07 A but their angles deviate by up to 5' from the
cubic conaguration. There are twice as many Mg(2)
as Mg(1) sites. The octahedral axes for sites (1) and (2)
are obviously not coincident. Since these should deter-
mine the direction of the principal axes for the g tensors
and there is no evidence for two noncoincident sets of

g tensors, we must conclude that we are seeing a Cu~
resonance from only one type of site. We shall return
to this question later and concentrate for the moment
on the one site we do see.

(2) The principal values of the g tensor are gs ——2.465
&0.001 and g~=g2 ——2.099&0.001. Inserting these into
Eq. (29), we conclude that

Cg =0.506+0.005,

which would suggest that, if c~= ~ and V~=0,

Egr/ha)= 2.0 0.4+",

(47)

(4g)

which is more in keeping w'ith the parameters of
Opik and Pryce. ' We discuss the value of Cm again at
the end of this section.

Olsen and Culvahouse' have derived a value for the
trigonal crystalline field for a Co2+ ion in the site Mg(2).
Using their value and scaling according to the (r~)
integral from Co'+ to Cu'+, "we estimate our parameter
0 in the g-value equations to be

a=0.045+0.010. (49)

This should cause an anisotropy in the waist of the
g tensor of

gg
—g2= 4PO =0.8840.=0.04,

which is not observed. We conclude that the EPR is
due to the nearly cubic site Mg(1).

(3) The reorientation rate without spin fhp as
measured by spin echoes is

1/r=2X10'+5X104T sec '.
If we apply Eq. (39), we find

1/x=21"Ck2', (51)

from which we can extract a value for I' given the value
of 8. To get some feeling for the reliability of I' so
found, we will apply in parallel the two models pro-
posed for the coupling constant B. By model (D) we
shall mean the picture obtained by pretending that the

"B.Bleaney, K. D. Bowers, and M. H. L. Pryce, Proc. Roy.
Soc. (London) A228, 166 (1955)."R.E. Watson, M. I.T. Solid State Molecular Theory Group
Technical Report No. 12, 1959 (unpublished).

and, from Eq. (27), that

Eg r/Sue & 1.6, (46)

whereas the value supposed by the parameters of Opik
and Pryce' used by O' Brien~ give

Egr/Ace=10.

It must not be forgotten, however, that Eq. (29) does
not include the splitting of the T2 state by the e vibra-
tion; this would decrease the C2 value if the sign is as
suggested by O' Brien. ' An estimate of this effect (the
value of O'Brien's Q) can be gotten from measurements
on the CuK Tutton salt. "The environment there is
nearly tetragonal (the ground state is cosa

~
e)+sina

~
e),

with a= 9'), the splitting of the E state is estimated by
Stoneham' from relaxation measurements, and the
splitting of the T& state is gotten from the analysis of
Bleaney, Bowers, and Pryce. "One Gnds

Q= —0.061(4PEgr/6) .

The C2 value then becomes
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deformation of the octahedron is estimated by pro-
jecting a uniform lattice wave onto the ligands to ob-
tain their displacements. The other approach —model

(T)—tries to account for the difference in stiffness
between the octahedron and the rest of the crystal
which is assumed to be an elastic jelly of average force
constants appropriate to the low-frequency sound
velocity and density, i.e., the bulk elastic constants.
Thus from (34)

B=&2VR=60000 cm i Lmodel (D)], (52a)

B=xv2R'pvvr'd=500 cm ' Lmodel (T)], (52b)

10 K described by

1/Ti ——100T sec '.
Comparison with (50) shows it to be some 500 times
slower than the reorientation rate. On comparing (39)
with (40),

1/Ti&
R= I=-', P u(ia;jb)/ g u(jb; ib). (59)

1/r )

This ratio is orientation-dependent, but its value for
H along a (110) direction is, if A&(I',

and, from Eq. (38),

3 V'R' 2 (vr) '
1+-I —

I

5v. A4dvr'z 3 Eel.)
Lmodel (D)], (53a)

1 gli —gR=-
I
=0.7X10 ',

4 g

whereas experimentally

(60)

4 R4dpo' 2(vr)'
0'.= 1+-I —

I

15ir h'vr 3(vr, )
Lmodel (T)]. (53b)

F= 30 MHz=10 'cm ',
I'=3000 MHz= 10 ' cm '.

(54a)

(54b)

Using Fig. 3 and taking a value of n=10 cm '
I see

Eq. (20)] we find for p/n and 0 (the energy of the first
excited vibronic state B„) for models (D) and (T),
respectively,

2P (barrier
1' P/n 6 height)

0.12X10 ' cm ' 45 250 cm ' 900 cm ' (55a)

9.0 X10 i cm ' 20 160 cm ' 400 cm '. (55b)

The absence of any Orbach-type dependence on tem-
perature up to 10'K indicates from (44) that

2 (nB)'10'k'
I expI — I(5X10'sec ', (56)

45ir A4dvr' 10k) E 10k)

which reduces to Dor models (D) and (T), respectively]

A)180 cm ',
A&100 cm '. (57b)

These are consistent with Eqs. (55).
(4a) The spin-lattice relaxation time for the most

dilute (5X10ii Cu atoms cm ') sample measured in
detail shows a linear temperature dependence up to

'4 C. A. Bailey, Proc. Phys. Soc. I',London} 83, 3N I,'1964}.

The density d=2.10 g cm ', from Zalkin et u/. "From
the specific-heat data of Bailey, '4 we estimate (1/vr')
XI 1+-', (vr/vr)']= 0.15X10 "cm ' sec and by assum-

ing that i2(vr/vc)'(&1, we take vr ——1.84X10' cm sec '.
The values for F, which scale inversely with the

values for B, are found to be Dor models (D) and (T),
respectively)

R=0.2X1o '. (61)

The spin-lattice relaxation rate above 10'K is dom-
inated by a T' contribution'

1/Ti=3X 10 'T' sec ' (T in 'K). (62)

For the parameters (55) we calculate from Eq. (43)
that, for Ho along a (110)direction,

1/Ti=1.5X10 'T' sec ' Lmodel (D)],
1/Ti 1.5X10 'T——' sec '

I model (T)]. (63)

1 11 g„—g~)'
I

sin'2q
Ti r4 g )

(64)

It seems curious, however, that T' should dominate T'
at so low a temperature. From the discussion following
Eq. (44) we do not expect this to happen until kT&2n
=20 cm ' or 28'K. It may be that what looks like T'
over the range 12(T(20'K is in fact a combination of
T' and an Orbach process due to the B„ level. The
theory indicates that T' should begin to dominate T at
k T/hc= 10'/(B/hc), i.e. , T= 3'K, using the B of model
(D) and T= 300'K using model (T). Although the data
between 12 and 20'K fit an Orbach curve with 5= 38'K,
the model certainly does not predict a level so l.ow and
the theoretical coefficient of such a term should be
some three orders of magnitude larger than such a 6t
indicates. The interpretation of the T term is, then,
not very clear.

(4b) This is quite encouraging agreement until one
considers the angular dependence. It is evident that for
cubic symmetry when A,,=O, the u(ia,jb) =0 when Ho
is directed along a principal axis of the octahedron for
it is a principal axis of the g tensor of each distortion;
there is no tip angle between quantization. axes so
that (m;Im, ) sin~P=O for m, = —m; for all i, j. ff
the magnetic field is in a (100) plane at an angle p from
a principal axis, the spin relaxation rate should vary
like
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if A;;=0. The experimental angular dependence (Fig. 8
of I) does not show so marked a variation. The maxi-
mum rate does seem to be at about @=45', but the
ratio of maximum to minimum rate is at most a factor
of 2. We note that H A;, WO, then 5, can Qip spin.

As w'e noted earlier, a trigonal field can modify the
angular dependence of 1/Ti, notably in causing it not
to vanish with Ha along a (100) axis. The spin-orbit
coupling operator for the lower sheet introduced by the
trigonal 6eld and the incomplete decoupling of the two
potential surfaces is [see Eq. (28)]

A =X'0 —i
Z

(65)

C, Sh'e'
~500.

C~ 2(kT)'+co)
(66)

If we assume Tib 1 p,sec and T,i 2 msec, appro-
priate to our most dilute sample with 5X 10"cm ' and
4'K, and divide the spectrum into 3X4 noncoincident
lines, we 6nd Ii 0.05; bottlenecking there should not
be serious. At X~2)&10" cm ', and 7=1.3'K, how-
ever, Ii 5, but there was again no evidence of bottle-
neck. This lends support to the hypothesis of stabiliza-
tion by random strains which increases the band of
phonons into which the spin energy is fed. A rough
idea of the random strain present can be gotten from
Culvahouse's" measurements of linewidth versus con-

'~ J. W. Culvahouse (private communication); J. W. Culva-
house, L. Pfortmiller, and D. P. Schinke, J. Appl. Phys. 39, 690
(1968).

with X'= av—3X(a/Eqr)cs Fo.r ii=700 cm ', a/EJr
= 1/300, and P/a= 20, we find X'=4X10 ' cm '. The
spectrum is apparently cubic, but due to the linewidths
and the complexity of the spectrum it is unlikely that
one could detect even a 2-G variation in the waist of
the g tensor caused by a small trigonal 6eld. Such a
variation would correspond to 0=0.012 applying Eq.
(29), suggesting that X'o&5X10 ' cm '." Equation
(36) would then predict that (1/Ti)/(1/r) (li'rr/F)'
&4X10 ' [for both model (D) and model (T) since cs
and F scale together] for Ho along (100). This is still
far too small, but we shall see at the end of this section
that it is possible that the estimate of a/Eqr=1/300
could be wrong by as much as a factor of 6, altering the
ratio to 1.4)&10 '.

(4c) With such a rapid direct-process relaxation, one
might expect a phonon bottleneck. The usual factor
representing the extent of bottlenecking is F= (C,/C„)
X Tlb/T. i, where C, is the spin specihc heat, C„ is the
phonon specihc heat for the heated band of phonons,
T.i is the spin-phonon relaxation time, and Tib is the
lattice-bath relaxation time. Taking e = 2&(10' crn
sec ', a phonon bandwidth Aced corresponding to 3-G
EPR linewidth, a spin concentration .V of 10" cm ',
and T=4'K,

F'(H&O) =31'(D2O) [model (D)],
F'(H~O) =2F'(D~O) [model (T)],

(68a)

(68b)

increasing the direct-process relaxation rate propor-
tionately.

(5) The absence of a spectrum from site Mg(2) may
be due simply to a preference of Cu'+ for site Mg(1), but
it may also be due to a diBerent energy-level structure.
If p/a were sufficiently different for site Mg(2) that F
or A would be comparable with (gii —g,)PH and the
random strains, the spectrum could become very strain-
sensitive and the lines too broad to see [see Eq. (30)].
Such an increased value of I' should cause more rapid
reorientation and one might expect the trigonal site to
show' motional narrowing at a lower temperature than
the cubic site.

The transition temperature for the Cu'+ in LMN
reported by Bijl and Rose-Innes~' with Ho along the
trigonal axis is 0" qT 38'K.

Applying the Ts lawfor Ti at38'K, weind 1/Ti(Oqr)
2.5X10' sec '. We expect the ratio (1/r)/(1/Ti) to

remain the same for the direct and two-phonon processes,
indicating that 1/r(OqT) 10' sec '. With Ho along a

~'P. L. Scott and C. D. Jerries, Phys. Rev. 127, 32 (1962)."D. Bijl and A. C. Rose-Innes, Proc. Phys. Soc. (London)
A66, 954 (1953).

centration for the non-Kramers rare-earth Pr'+ in
LMN. Using Scott and Jeffries'2a treatment of the spin-
lattice interaction by the Orbach'0 approximation of
using the static crystal-ield parameter, Culvahouse"
estimates the rms residual strain at zero paramagnetic
concentration to be

g(e').„10-'.
The model (T) lattice-orbit interaction suggests that

((E' E')strain)=&V'(e )av

=40 cm ' [model (D)] (67a)

=0.5 cm ' [model (T)]. (67b)

This admittedly very crude estimate makes plausible
both the lack of a bottleneck and the single relaxation
time (E'—E'«kT), at least if model (T) is more
correct.

(4d) The spin-lattice relaxation rate for the pro-
tonated double nitrate was found to be some four times
faster than that for the deuterated salt at the same con-
centration level. Although the relaxation rate is con-
centration-dependent, it is not so strongly so that the
small difference in concentration would account for the
difference in rates. The increase in rate on lightening the
ligand mass has a natural explanation on our model.
The only modidcation introduced by changing the
effective mass (ti=20 amu for deuterated complex,
is=18 amu for the hydrated complex) is to alter the
moment of inertia factor a=A'/2itspP by 10%; from
Fig. 3(a), we see that F' is increased by factors of
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trigonal axis, the typical frequency separation is
b,~ 2P 10' sec ', thus only beginning to approach the
motionally averaged regime, but already broadening
the lines to about 50 G. The appearance of the isotropic
spectrum at 38'K does not fit the motional-narrowing
picture very well, but the evidence does not suggest an
excited vibronic level so low, either. A possibility is that
the isotropic spectrum at 40'K or so belongs to a faster
relaxing-type Mg(2) site and that the cubic spectrum
has become so broad from r reorientation as not to be
noticed.

That the ratio T~/r is preserved independent of
temperature is supported by the observation' that, for
Hp along the L100] direction, a minimum linewidth of
about 40 G occurs at 100'K; 1/Ti 2.5X10' by inter-
polation and applying (gP/h)EH=L(gi~ —g&)PH /h]'r
gives 1/r 10 "sec. The ratio T~/r 400, as observed
in the direct-process region.

If one chooses to take seriously the value of C2 given
by Eq. (47), and, furthermore, assume that P arises
entirely from the second-order ion-ligand electronic
coupling so that VpppP=a from Eq. (21), we may use
Eq. (27b) to obtain

=4.1&0.6 )model (D)]
Ao)

=3.6&0.6 Lmodel (T)], (69)

where the error estimate makes no allowance for un-
certainties in Q and in the theory but reflects only the
error in experimental g values.

Assuming Ace = 300 cm ', self-consistent sets of
parameters for each coupling model are found in
Table I.

It might be noted that since o/Eqr appears in all the
angular-momentum matrix elements, they are en-
hanced by a factor of about 6 over what we had assumed
from the estimation of Opik and Pryce. This, for ex-
ample, increases by 36 the ratio (X'o/I')P talked about
after Eq. (65) in connection with the angular variation
of T1.

Comparing the results of models (D) and (T), we
believe that the latter is closer to the truth; the strain
splittings of 0.5 cm ' obtained from the estimated rms
strain by Eq. (67) are consistent with the low-tempera-
ture linear temperature dependence of the relaxation
rates. Also the value of P predicted by model (D) seems
excessively high, particularly if one accepts the parame-
ters of Table I.

Experiments with uniaxial stress could evidently
provide a very stringent test of the theory. Applying
stress along a (110) direction should leave a singlet
state (z distortion) lowest and a doublet (x and y
distortion) lying above it by an amount b=38cpep,
where erat in the strain resulting from the uniaxial stress.
This should lead to a redistribution of population
in these states and hence a relative intensity variation

TAaLE I. Self-consistent sets of parameters for
each coupling model.

Parameter

F
~ST

P
z(a„)—z(a„)

Model (D)
(cm ')

10 '
1250

18
810

1000

Model (T)
(cm ')

10 '
1100

20
450
360

Unfortunately, the double nitrate is a very fragile
crystal and it might break before sufBciently high
stresses can be applied, but it should be possible with
harder crystals, e.g. , for Cu'+ in CaO, ' MgO, "' or

nF3 al

CONCLUSIONS

We have been able to account reasonably suc-
cessfully for the spin-lattice and reorientation relaxa-
tion rates for Cu~ in LapMgp(NOp)&p 24HpO as mea-
sured in I by developing somewhat the basic model
proposed by Van Vleck" and elaborated on by Opik
and Pryce' and O' Brien. ' The model is a Cu~. 6H20
octahedron, with linear and quadratic ion-ligand cou-
pling and some elastic anharmonicity, perturbed by the
phonons of the crystal in which it is embedded. The
phonons induce relaxation between those lowest-lying
spin-vibronic levels which give rise to the spin-resonance
signal by both resonant (one phonon) and nonresonant
(two phonon) processes. We found that the reorienta-
tion relaxation rate is directly related to the "tunneling"

V'

parameter, similar to what Pire, ZeH, and Gosar"
found for the reorientation of the 02 center in KCl,
which they called phonon-assisted tunneling. We con-
cluded that the spin-lattice relaxation was really a two-
step process wherein the complex undergoes a simul-
taneous spin Rip and reorientation followed by a simple
reorientation without spin Rip. The ratio of the spin-
Rip rate to the non-spin-Rip rate was found to be ap-
proximately the square of the low-temperature (frozen
spectrum) g-tensor anisotropy, independent of whether
one- or two-phonon processes dominated. The model's
success can be judged by the reasonableness of the
parameters (Table I) required to flt the experimental
data. However, the model has not accounted con-

'g W. Low and J. T. Suss, Phys. Letters 7, 310 (1963).
2~ J. W. Orton, P. Auzins, J. H. E. Grifhths, and J. E. Wertz,

Proc. Phys. Soc. (London) 7S, 554 (1961)."R.E. Co8man, J. Chem. Phys. 48, 609 (1968).I' F. I. B. Williams, F. R. Merritt, and H. Guggenheim
(unpublished)."J.H. Van Vleck, J. Chem. Phys. 7, 72 (1939).

in their ESR lines from which a value for J3 may be
obtained directly. In addition, the relaxation rates
(both 1/r and 1/T&) in these states should change
with 8 as

g/(e+6/kT 1)
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vincingly for the angular dependence of the spin-
lattice relaxation rate or for the transition temperature
to an isotropic spectrum, although possible means of
reconciliation have been proposed in each case.

APPENDIX A: BREAKDOWN OP ADIABATIC
APPROXIMATION

Working in the representation of Eq. (7), we shall
label the solutions before consideration of X~~ of
Eq. (12) as

p.s(8)=( ) p=(8)=( )
Here n and m are quantum numbers distinguishing
solutions. The energies of the upper- and lower-sheet
solutions are E and E +, respectively; for g and f
concentrated around po, E„—E„+ 4E~T. The 6rst-
order wave functions for the lower sheet are seen to be

-2- 2

I
v-+'&= If-) +Z I &g-ILo15~» If-&

0 0

Now
2

Co 15~»
0

0
(E-+—E=) I g-& (A1)

2

8=—n—+Vtp' sin38,
88

and noting that

&g- I ~(8/88) I f.&*=&—f.Io(8/88) I g-&,

we can write

(v-+'1=&f- IL1O5
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where o is a general 2X2 matrix as

2 2

&v- "IoI ~-"&=&f" II 1o5 oIf.&
—2

0 E„+—E—
0 8

x &f- IL1o5~ olg-&&g-Io —v3p'»n381 f )
2 88

+(f„.I
83(—8/88) V—3p' sin38

I g )

X(g„lLO150 Ol f ) . (A3)
0

0

the energy denominator may then be replaced by
4E3T and clo—sure applied to the p lg )(g I

to give

0
&&. + I ol v.+ &=(f..lLIo5. Olf.&+

2 4EgT

0 „8
X(f ~

[10] 0 —V,p' sis38)
2 88

2 8—$01] —+V,' si 38)O~f],
0 ae

+ZCL

=(f- I

4Rg T

for u= I
for o=Uq

8 8
X 0—+—0—V,['Op'si 38])~f )

ae ae

for o.=A.

8
= (f„ I 0, ——Vgp' sin380

4EgT 88

If we restrict f„and f„ to the lowest-lying solutions,
they are quite localized in p about po, so that if 0 is a
suitably well-behaved operator, the state

I g ) to which
the matrix elements are appreciable will be similarly con-
centrated around p=po with energies all about 4EgT
above

(f ~ I33(8/88)+ V3p'»»8lg &+2 &g-I L»5 (A2)
SL g,+ Noting that

We can write the matrix element of an operator

—V20p' sin38 for o = U, . A4

Lsin8, 8/885 = —cos8,

L sco, 8/ 8858=sin8,

0=0(p, 8)0, we see that the matrix elements for SUyS '= —cos8Uy
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—sin8U, of Eq. (16) are

( n t/'2PO'

(f. ~
cos8~ 1+ + (cos28—cos48) ~f„), (AS)

4EgY 4EgT

where w= *, (—P/2o)'I' .This is the C~ appropriate to
Eq. (27).

APPENDIX 3: CLASSIFICATION OF
VIBRONIC STATES

those of

are
SU,S '= —sin8 Uy+cos8 U, Equation (21) may be written in terms of the angle

p=-,'8 to become

( n ~2PO'

(f ~
sin8I 1+ + (—sin28 —sin48)

~ f„), (A6)
4EgT 4EgT

1 A 8'
—P cos6y iX(q) =Ex(y). (B1)

4 2pp' 8p' i
and those of

are
SA2S '= —A2

ZQ

2EgT 88
(A7)

It evidently satisfies the point group C6,. The boundary
conditions of Kq. (10) require that X(ip) =X(ip+ 2s.), and

x(q) = —x(p+s-). We note that

C6u C3v XC2 y C2 = iy C26= GC2 p

If we choose for the function f„ the ground-state solu-
for all members G of the group so that the IR's of C6,
may e divide into two sets—t ose even under

tion for no warp f&= cos-', 8 and f~= sin-,'8, then

quired solutions of (1).To make the application of Ce,
to our problem more evident, we shall rearrange the

(f& IS f/ S '
I f&)=k(1+o/4E») s ( g) character table of Cs, from its usual form and relabel the

(f)~SAg5 '~ fg)= in/4Egr. — IR's. See Table II. We have chosen as standard sets
of bases for the E IR's

The factors p and q defined by Ham' are then seen to be

q= ', (1+o/4EzT) = s-51+(Aid/4EJT)'j,

p =o/4Egr = (&co/4Eg T)',

/E, cos2 ip /cosQ

kE; sin2ip Esin8i

and (A6) as
C(I' I")(fr,.l cos8I fr, ')
C(1',I")(fr,„~sin8~ fr, , ).

C(1',I") is essentially a correction factor for the matrix
elements of SUOS ' and SU,S ' due to the breakdown
of the adiabatic approximation. If one uses linear com-
binations of harmonic oscillators for the E„and 3„
ground states following O' Brien, it can be shown that
for y«1 and V,po'/4EqT«1

which satisfy the relationship q= ,'(1+p). -
Recalling that the solutions f„can be classiied ac-

cording to the irreducible representations (IR) of Cn.
as outlined in Appendix 8, we note that each of the
pairs (cos8, sin8), (cos28, —sin28), and (cos48, sin48)
forms a basis for the E, IR of C6„ transforming in the
same way. We can then write (AS) as

Some other basis function pairs transforming in this
standard way are

(cos(3m+ 1) / cos(3m+ 2)

isio(3n+1)S E—sin(3 +2)p)

g =0,1,2,3, . (B4)

~ ~

cos(3m+-', ) ( cos(3n+-', )

sin(3n+-*, )e i—s'n(3n+-,')e)
v=0, 1,2,3, (BS)

TABLE II. Rearrangement of character table of Cs, . The
IR's are relabeled, and n=1, 2, 3,

C(E„,E„)= C(E„,A „)= (1+a/4EgT) . (A10)
Usual Our
labels labels

Sample
E 2C 3a, Cg 2C6 3o,' bases

—=V2, C2= — 1+ j.—— (A11)

(The matrix elements for cos28 and —cos48 cancel to
6rst order. ) Still in this approximation, then the c~

and c2 of O' Brien are modified to C~ and C2, where

A1
Ag

E2

Av

Bv
E„

1 1 1 1 1 1 cos6n y
1 1 —1 1 1 —1 sin6n q
2 —1 0 2 —1 0

B2 A„1 1 1 —1 —1 —1 cos3nq
B1 B„ 1 1 —1 —1 —1 1 sin3ny
E1 E~ 2 —1 0 —2 1 0
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APPENDIX C: COMPUTATION OF MATRIX ELE-
MENTS BETWEEN GROUND VXBRONIC

STATES

where e is defined by cl/c&=42(1 —3e). The states
(G,), ~G„), and [G,) correspond very closely to the
states

Vfe wish to solve the eigenvalue problem

Bl (E P
+i —+-cos38

)
P(8)=0,

88' Ea a (C1)

and

(&2)Lf(8—kx) —f(8—10'/3) j,
(Qg)Lf(8 —xm) —f(8—8x/3) j,

(V'k)Lf(8) —f(8—2x)j
(C4)

0(8)= f(8+~—) =W(8+2~)

for its lowest-lying eigenstates and to compute the
matrices of cos8, sin8, and 8/88 within these states.

As discussed in Appendix B, the solutions may be
classified according to the IR's of the point group C~,.
In the notation of Appendix B, the solutions which will

particularly interest us are the lowest-lying state of
each type E„,A„and 8„.

Consider the manifold spanned by j E„), ~E„'), and
(A„) and define states [G,), (G„), and (G,) by the
orthogonal transformation

gl gl gl
(C2)

C1

f8= cos8) N = cy c2
—cg

—1+2'
M'= cg —2~

t
1+26

2 4E.

et= sin|I, M =
—cy c2

C2

M'= v3C2 1+2E.

C3 )

or, symbolically, U=SX, SS~=I. If the matrix of an
operator m in the U representation is 3f, its matrix in
the X representation in M' is S~3fS. It is easily shown
(Ref. 2) that if

described by O'Brien's Eq. (27) in the limit of small
overlap; the convenience of the G„G„,G, representa-
tion lies in their orthonormality.

O'Brien has suggested that, for deep wells P/n))1;
it should be a good approximation to the states A, E,
and E' to assume the ~G,), ~G„},and ~G,) states to be
those appropriate to harmonic-oscillator potentials
centered on 8=-', m. , 3x, and 0, respectively. However,
the fact that the potential flattens oA between the wells
suggests that the decay of f(8) functions should be less
fast than suggested by the harmonic-oscillator approxi-
mation and matrix elements sensitive to this region of
the wave function —those for I' and 8/88—may not be
well approximated. Indeed, a WEB solution for
P/a»1 in the region near the 8=-',n.(2n+1) approxi-
mates the form (sinx28) ' expL&(gP~9a)"'j cos-,'8 rather
than expL —(948/Sn)'"8'j. It seems wiser, therefore,
to try to get better wave functions for evaluating those
matrix elements sensitive to this region.

The method used was to adopt the Fourier-series
solution —O'Brien's Eq. (23)—and cut off the series
when the eigenvectors look suSciently convergent.
The cuto8 was chosen at an order such that the last
coeScient in the series was 10 ' of the first one. As
pointed out by O' Brien, the 3 and 8 are 2x periodic
Mathieu-type solutions Lon replacing 38 by 2x, Eq. (1)
takes the Mathieu form; the A„and J3 solutions are
each periodic in -', x for 8 or 2x for xj, so the eigenvalues
and Fourier series coeKcients published in the N.B.S.
tables" were used for them. The E„-type solutions were
computed by matrix diagonalization, the requisite order
for P/a= 36 being 14X 14. The values of 3F, cl, cl, c, and
E(B„) E(A „) so compute—d are plotted in Fig. 3.

The results for ca and 3F were found to deviate quite
considerably from those indicated by the harmonic-
oscillator approximations, e.g., ce was higher by a factor
of 160 and 3I' higher by a factor of 8 at P/a=36,
these factors becoming more pronounced as P/a is
increased.

M'= (Qxl)cl —1
1 1

APPENDIX D: INTERACTION ENERGY OF COM-
PLEX WITH LATTICE STRAIN CAUSED BY

PHONONS
m= n(8'/88')+P cos38, 3E= F

M'= F —1
—1

—1 —1
1

We assume the host solid to be an isotropic homogen-
eous continuum with shear modulus P and bulk modulus
$(2a+P).

~ Tables Relating to 3fathieu FNnctioes (Columbia University
Press, New York, 1951),p. Z4.
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The energy density due to strain is

W =
2 Qey p eve+ sPe pv8 pv
1 1

(summation over repeated Greek indices). A strain field
is accompanied by stresses

The radial minimum of the lower-potential sheet occurs
at po where @compo= V, but ~' is just the force constant
for the e mode, ~. Thus v2VR=V2ep0R in (D7). The
shear modulus p=l'/R, where x' is an interatomic elas-

tic constant typical of the crystals and (D6) becomes

pa= BW/Be;;, (D2) X,(e) = N224'pa(ee cos8+ ee sin8) . (Dg)

w'hich give the forces necessary to maintain the shape
of a hole cut out of the strained solid as

F;=p;„dS„

The ratio of the two coupling constants is $e/e', illus-

trating directly the dependence on the relative hardness
of the complex to that of the crystal.

W = Q p„'J', = n„'p„„dS„,
surface

(D3)

where I; is the component of displacement of surface.
When there are no body forces, p;, ;=0 and we can write

W= e„„'p„„dV
V

on the element of area dS of the area S defining the hole.
If the hole is filled by the complex, the complex must
push against these forces in order to distort the hole.
The extra energy required to do this is then

APPENDIX E: DERIVATION OF RELAXATION
TIME BETWEEN TVFO GROUPS OF LINES

IN INTERNAL THERMAL EQUILIBRIUM

We suppose the levels to be divided into two groups,
a and b, each group in internal equilibrium over the
time scale for intergroup relaxation. Let the popula-
tions be denoted by n(j,m, ), where m;=a or b, and j
refers to levels within the group. If W(im;; jm, ) is the
spontaneous transition rate from im; to jm; and
1V„=P;n(i, m), m=a, b then

N, = —P n(i, a)W(ia; jb)+P n(j,b)W(jb;ia); (EI)

1
Q8yfs yp ~ (D4) blit

Here 0 is the volume of the hole. Ke are only interested
in W for strains like e,, (A l- and E type distortions o-f

the octahedron). With this restriction and noting that

p;,= BW/Be;;=ne»+pe;;,
we find

where

N„ f E(i,m)y
n(i, m) = exp~

Z„ E kT j '

E(i,m)qZ„=g expl-
uv' )

egI gl

V'2

gl
e„„

W = Oe„.'(ne»+Pe„.)
= QL(3a+P) e~,'eg, +P(ey'ey+ e,'e, )j, (D5)

for thermal equilibrium within a group, and

W(j b; ia) (E(j,b) —E(i,a))= expi
W(ia; jb) 4 kT

in general, so that (D7) becomes

Recalling that v2Ree'=Qe, v2Re, '=Q„and that the
volume of the octahedron is 0='E.' we havet dt

-N. / E(i,a) ~—exp/ ——
Z. E kT )

X,(e)= ssV2R'P(Qsee+Q, e,) (D6)

3C,(e) =v2VR(eg cos8+e, sin8) . (D7)

p may be related to the density d and velocity of trans-
verse sound, er, if desired, by P= der'

It is interesting to compare this result with that ob-
tained by assuming the lattice wave to be uniform
throughout the unit cell, ' so that the simple projection
onto the ligands of the complex gives the interaction to
be

E(i,a)q——exp —— —
~

W(ia; jb).
z,

Application of the normalization X,+Xq=i gives a
relaxation rate for X to equilibrium of

1 I I y E(i,a)~—+—
~
exp —— ~W(ia; jb). (E2)

T &J g Zgl kT )



272 WILLIAMS, KRUPKA, AXD DREE'

On inserting the special form (38) for W, we have

1 (1 1 l+—~u(ia; jb)
r '~ Q. Zbi

E(i,a) E(j—,b)
X

exp LE(i,a)/k Tj—exp(E(j,b)/k Tj
When E(i,m)«kT, we have Z, =Zq=g, the number of

levels in each group and the right-hand factor —+ 1,
giving

1 2
—=—(tkT g N(ia; j b) .
7 0 ij

(E3)

Since the groups are in thermal equilibrium, the
magnetization for a given distortion is linearly related

(independent of time) to cV„so that the magnetization

of each distortion has the same relaxation given by (E3).
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Systematics of the Hyper6ne and Exchange Interactions in the
Chromium Chalcogenide Spinels
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The NMR of nuclei at each site in the cadmium and mercury chromium chalcogenide spinels has been
studied at 1.4 K. Experimentally, we find an approximately linear relation between the isotropic hyperfine
field of ~Cr nuclei and the near-neighbor chromium-chromium exchange constants. This observation is
interpreted in terms of a systematic variation in covalency and constant overlap for these compounds. The
"Se isotropic hyperfine field is large and oppositely directed to the magnetization. This field can be under-
stood in terms of a spin polarization of Se s orbitals by the unpaired Cr spins. The Cr and Se results are
consistent with a theoretical formulation due to Huang and Orbach. The '~Hg, ~'Hg, "'Cd, and '"Cd hyper-
fine fields are found to be isotropic, large, and positive with respect to the magnetization. These fields are
shown to be mainly due to overlap of unfilled outer s shells of these nonmagnetic ions with the Cr 3d orbits.

HE magnetic chromium chalcogenide spinels oGer
an unique opportunity to study the hyperfine

interactions of nuclei in a system for which the relevant
exchange interactions have been independently deter-
mined. ' We have investigated the NMR of all nuclei
except sulfur in CdCr2S4, CdCr2Se4, HgCr2S4, and
HgCr2Se4. The similar angular relationship of the
cations to the anions in these compounds is reflected by
their identical crystallographic u parameters. ' This
factor, the essentially constant ionic radii, and the
direct correlation of our NMR data to the nearest-
neighbor (nn) exchange parameter allow reliable con-
clusions concerning covalency and overlap to be drawn
for this system. '

In this paper we report new NMR data for these
compounds from which we conclude: (1) the "Cr
isotropic hyperfine interaction exhibits an approxi-

~ Jointly sponsored by Air Force Cambridge Research Labora-
tories, Once of Aerospace Research, under Contract F19628-
67-CO175, and RCA Laboratories, Princeton, New Jersey, but
this report does not necessarily reflect endorsement by the sponsor.

f Supported in part by the National Science Foundation.' P. K. Baltzer, P. J. Wojtowicz, M. Robbins, and E. Lopatin,
Phys. Rev. 151, 367 (1966).

~ R. E. Watson and A. J. Freeman, in Hypergne Interactions
edited by A. J. Freeman and R. B. Frankel (Academic Press
Inc., New York, 1967), pp. 81-91.

mately linear variation with the nn exchange inter-
action, and (2) the nonmagnetic cation (Cd or Hg)
hyperfine interaction and the next nearest-neighbor
(nnn) chromium exchange interaction' are dominated
by an overlap contribution, since both are noted to
decrease with increasing lattice parameter. The first
observation divers froIn that found for the dissimilar
manganese monochalcogenide series' and is describable
as a systematic variation of the covalency in the present
compounds consistent with a theoretical evaluation of
the important nn exchange paths. 4 This covalency
change is also a critical part of our interpretation of the
Se hyperfine interactions.

In Table I, a summary of our results for the isotropic
hyperfine fields H;„ in these compounds is presented.
The data were obtained at 1.4'K using spin-echo
techniques on polycrystalline samples. For the noncubic
sites the spectra were analyzed to determine the iso-
tropic contribution. ' The signs were found by measur-
ing the frequency shift upon application of a magnetic

' E. D. Jones, Phys. Rev. 151, 315 (1966).
4 Nai L. Huang and R. Orbach, J.Appl. Phys. 39, 426 (1968).' S. B. Berger, J. I. Budnick, and T. J. Burch, J. Appl. Phys.

39, 65S (1968).
'G. H. Stauss, M. Rubinstein, J. Feinleib, K. Dwight, N.

Menyuk, and A. Wold, J. Appl. Phys. 39, 667 (1968).


