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TABLE II. The static polarizability n(0)
for alkali atoms.

Atom [2n(0) l

Lowest core-
excitation energy

Ll
Na
K
Rb
Cs

1.76
0.72
0.30
0.21
0.17

2.00
1.15
0.71
0.59
0.50

our zero-order description of the transition, Eq.
(6), is not a good approximation. The values of
[2~(0)]

"' for alkali atoms' are shown in Table II.
Equation (16) would be satisfied for lower energies
of transitions because a(e& ) & n(0). The small-

est single-particle excitation energy of the core is
also listed for each atom to show that excitations
from the core are not important when the energy
of transition satisfies Eq. (17).

It would be of great interest to know the varia-
tion of the correction f ") with the energy of
transition, for transitions from low-lying states,
where penetration effects cannot be neglected. If
the correction behaves as (16), even qualitatively,
great caution is warranted in the calculation of
photo-ionization cross sections.
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The numbers of bound states for mixtures of alkali and noble-gas atoms have been calcu-
lated for a 6-10 Lennard-Jones interatomic potential function. For this calculation, a simple
analytic expression for the number of bound vibrational levels as a function of the angular-
momentum quantum number has been obtained. Bound molecular states were found for all
alkali-noble-gas atom pairs for which potential-function data are available. From these
numbers of bound states, internal partition functions have been calculated and, finally, values
obtained for the number densities of alkali-noble-gas molecules.

I. INTRODUCTION

In determining the properties of gas mixtures,

the degree of molecular association is of prime
interest. We have considered here the interaction
between an alkali and a noble-gas atom through a
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Lennard- Jones type of potential. Thus they may
bind together to form molecules: we use the term
"molecule" to refer to a pair of atoms which pos-
sess at least one bound state within their inter-
atomic potential well. We have calculated two
properties of such molecules: (1) the number of
vibrational and rotational bound states for each
pair of atoms for w'hich data are available for their
Lennard-Jones potential, and (2) the statistical
fraction of such molecules present in a gas of al-
kali and noble-gas atoms. We note that the cal-
culation of these two quantities just takes 1 min by
slide rule, and also emphasize that the method is
applicable to any pair of atoms which interact by
a Lennard- Jones potential.

The technique which we use to calculate the num-
ber of vibrational and rotational bound states is
easily described in this introductory paragraph. '
Let l denote the relative angular momentum of the
alkali and noble-gas atoms. Then calculate the
dimensionless constant

n =8[(lP)'" —I]- l&

where P= & u, R '/&'.=
0 m

(1.2)

max
Q "= 2 Q (2l + l)Q

l=0
The factor of 2 is spin degeneracy, (2l+ 1) is or-
bital degeneracy, and Al is the number of vibra-
tional levels calculated above. The maximum
value of angular momentum lmax is the maximum
value of / such that r)f & 0 in (1.1). The partition

The Lennard- Jones potential has maximum depth
E, at an interatomic separation of Rm, and p, is
the molecular reduced mass. The number of bound
vibrational states Ol with angular momentum l is
obtained by rounding pl off to the next-highest
integer. For example, if pl=1.4, then ~l=2. I
gl & 0, then no bound states exist. This simple
prescription is mathematically exact for a (6-10)
Lennard- Jones potential. The justification for
this simple procedure is given in Sec. II. There
we discuss why the (6-10) potential is used rather
than the (6-12) or some other popular form. In
Sec. III we show that, for l=0, the Morse potential
predicts a number of bound states quite similar to
(1.1) and (1.2).

For most conditions of experimental interest, it
is also easy to calculate the fraction of bound
molecules in a gas of alkali and noble-gas atoms.
Most experiments are done at elevated tempera-
tures, where kT is much greater than E,. This
means that all of the various bound states have an
equal probability of being occupied. In this case,
the internal partition function Q~* for the mole-
cule just equals the sum over all bound levels,
i. e. , it equals the number of bound levels

function Qg~* is easy to evaluate, and one can
thereby determine the fraction of molecules in a
gaseous mixture. The details are presented in
Sec. IV.

Details of bound states for alkali-noble-gas
molecules are of particular interest in the study
of satellite bands associated with atomic lines, '
which result from close encounters between the
alkali atoms (or other active species) and the
noble-gas atoms (or other foreign species). One
type of explanation for certain of these bands re-
lies upon a molecular model, and therefore re-
quires: (1) the existence of bound states, and
(2) an estimate of the molecular concentration,
which is based upon counting the number of these
bound states. Other explanations of satellite bands
which do not require bound states in their develop-
ment are, of course, also possible. These have
been quite successful in some cases, and it is not
our intention to choose sides in these approaches.
However, it is reasonable to assume that both these
approaches have merit for the full explanation of
satellite bands. It is therefore our intention to
provide in this paper calculations of the number
of bound states and the molecular composition for
alkali-noble-gas systems for use in the develop-
ment of molecular models. Some earlier calcula-
tions of these properties have appeared in the lit-
erature, but these have not resulted in simple re-
lations of general use nor have they had the bene-
fit of recent potential-function data.

II. THE NUMBER OF BOUND STATES

An alkali atom has an attractive interaction
with a noble-gas atom. This is conventionally
represented as a potential V(R), where R is the
separation of the two atomic centers. Molecular-
beam scattering experiments have been success-
ful in determining the magnitude of this potential
for a wide variety of diatomic systems. The data
are often presented in terms of a 6-n Lennard-
Jones potential

V' =E Z — Z, Z=RR, 21

where &, is the maximum depth of the potential for
angular-momentum quantum nu~ber l = 0, and Rm
is the atom separation at this maximum depth.
This potential has a long range R ' attractive part
plus a Z-n (n&6) repulsive core. Bernstein and
Muckerman' comment that the data are best fit by
the choice n=8 or n=12.

Given this potential, the two atoms may be able
to form a bound state with a number of vibrational
and rotational levels. Here we wish to determine
the number of these vibrational and rotational
bound states.

We assume that the Born-Oppenheimer approxi-
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mation is valid. Since the potential is spherically
symmetric, we need to solve the radial part of
Schrodinger's equation

.-"".'
(-' —'' —'-"")

+V (R) —E /=02
n

(2.2)

[- (a'/2l )V'+gv(R) E) y=O.

The dimensionless coefficient g indicates the
strength of the potential. Assume that the poten-
tial V(R) has attractive regions so that bound
states can exist. Now consider the bound states
which occur as g takes on different values. As
shown in Fig. 1, there are no bound states for
g= 0. As the strength of the potential increases
from zero, there is a value g, at which the first
bound state appears for the potential. At g=g„
the binding energy of this bound state E, is zero,
and as g increases the state becomes more bound
as E, increases in magnitude. Similarly, at a
higher value of coupling strength g, the second
bound state appears, and also increases in binding
energy as the value of g is increased further. As
the strength of the potential is increased further,
additional bound states appear in succession.

Suppose that the actual potential we wished to
solve has a strength g'. In the example shown in
Fig. 1, there are five bound states at this value.
This is also the number of E = 0 bound states which
exist for g& g'. Thus, if we are able to solve the
Hamiltonian for E= 0, we can thereby determine
the number of bound states allowed for any value
of coupling strength g.

This method does not work for Coulomb poten-
tials of the type g/r Th—is po.tential has an in-
finite number of bound states for an arbitrarily
weak value of g. The method only is applicable if
the potential has a finite number of bound states
and works well for the Lennard- Jones potential of
interest here.

where p is the reduced mass. This equation can-
not be solved for the potentials Vn of interest.
Nevertheless, the number of bound states can still
be determined accurately. For this we use the
method of Schey and Schwartz. '

These authors point out that the number of bound
states can sometimes be determined even though
one cannot solve the Hamiltonian of interest. Their
method consists of solving the desired Hamiltonian
for E = 0. If this is possible, the number of bound
states can be determined. This method provides
neither the energies nor the wave functions of these
bound states; it just provides information on the
number of such bound states.

In order to see how the method works, let us re-
write our Hamiltonian in the form

POTENTIAL

STRENGTH 9

p 9~ 9p 9p 94 95I 96 97

LLJ

CD
Ck j
LLJ
~IK I

LLJ

LLJ

CPJ

FIG. 1. A schematic representation of the change in
the number and energy of bound states as the strength of
the potential g is increased.

The Hamiltonian (2.2) can be solved for E= 0 if
we use a Lennard-Jones potential with n = 10. Al-
though this is neither the n= 8 nor n= 12 values
which are of most interest, the case n= 10 is cer-
tainly of the right magnitude to be of significance.
The fact that only n=10 is solvable is a mathemat-
ical accident with no physical significance. An
important feature of this technique is that it works
for all values of angular momentum E.

We define a dimensionless parameter

P=e pR '/h'
0 m

and our Eq. (2.2) is, with X= Zg and E= 0

l(l+ 1) 3 5
~Z Z Z Z

Sety =Z-', which transforms it into

5 & l(l+1) 3 5 P
2+———

2
——p+—— X(y) = 0.~y' 4y ~y 16y' 16 16 y

This is a confluent hypergeometric equation with
a solution4

X(2)=Ae 2 2'
2

—k;1 ~ 2 —2';2ke)
—4y A, 1+X —A.

'

-ky X' 1+X'-Z
+ Be y F —&;1+A.

'- X; 2ky

where & = —,
' l, X = ——,(l+ 1),

& =-'(ll/3)'~ ~= Iii/3)'~.

The condition that the wave function be well be-
haved at R-~ (Z-~, y -0) requires that B=O.
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The confluent hypergeometric function is

aZ a(a+1) Z'
F(a b Z)= 1+—+

b b(b+1) 2!

a(a+1) (a+2) Z'
b(b+1) (b+2) 3!

If the series is allowed to continue to infinit, then
F approaches the asymptotic value of I'(b)e Zs —b/
I'(a), or -exp(2ky) in our case. This causes the
wave function to diverge as R-0(y —~). The di-
vergence is avoided by causing the series to trun-
cate at a finite number of terms. This is achieved
by insisting that the parameter a be a negative in-
teger or zero. For the present problem, this
leads to the eigenvalue condition

—N= z(1+ X —X') —&,

where X is a positive integer and where zero
counts as an allowed integer. Rewriting this in
our conventional notation,

N=8[(p/3)«-1]- 4I

According to the theory of Schey and Schwartz, '
one gets an E=O bound state whenever P and l are
such that the right-hand side of this equation is an
integer. For a given l value, the number Al of
bound vibrational states for a given value of Po
equals the number of integers allowed for all values
of P «P, . This is just the value calculated on the
right-hand side gl after it is rounded off to the

(2.3)

The number of bound states 0, in an l =0 configura-
tion is obtained by rounding off go to the next-high-
est integer. Values of g, are presented in Table I
for molecules of alkali-noble-gas systems. The
first-two numbers in each set are Rm in A and &o

in units of 10 "erg. These values have been tak-
en from Bernstein and Muckerman. ' Spaces left
blank indicate that no experimental numbers are
available for &, and R~. The third number is g, .
Similarly, one can easily evaluate

r! = q —I/4
l 0 (2.4}

which, when rounded off to the next-highest integer,
gives the number Al of bound states with angular
momentum l. There are no bound states unless

0.
Values of Al as a function of l for KAr molecules

are presented in Fig. 2. The heavier molecules
have more bound states because of their larger re-
duced masses p. and greater potential well depths
&0, the atom separation at the maximum well depth
R~ remaining fairly constant.

III. COMPARISON WITH MORSE POTENTIAL

The Hamiltonian for the Morse potential can be
solved exactly' in the zero angular-momentum

next-highest integer. For example, if pl= 3.6 there
are four bound states corresponding to the integers
0, 1, 2, 3. Define

TABLE I. Bound-state parameters for interactions between an alkali and a noble-gas atom. The two parameters
R and &0 characterize the radius and depth of the Lennard-Jones potential. The quantity qo is defined in Eq. (2.3).
By rounding qo off to the next-higher integer, one obtains the number of bound levels 00 in the l = 0 angular-momentum
state.

K

Ne

4 6

0.19
1.4

5.3
0.14
2.6

4.2

0.92
3.7

4.1
1.0
6.3

4.3
1.0
7.8

Kr

4.0
1.5
4.9

5.0
1.4

10.5

5.1
1.4

13.2

Xe

4.1
2.4
6.6

4.9
2.1

13.3

5.8
1.8

18.3

(A.)

&0 (10 erg)
~0

Cs 5.8
0.8

12.2

4 4
1.6

15.3

5.2
1.4

18.9

5.6
1.9

27.2
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FIG. 2. The number of molecular levels Q~ as a
function of the angular-momentum quantum number /

for KAr. Only levels up to the dissociation limit are
counted.

and where n can assume all integer values includ-
ing zero such that the quantity in brackets is posi-
tive. The maximum value of n, found by setting
the quantity in brackets equal to zero, is

n = 0.273 vp ——,', (Morse) .
max

The maximum value of n is nmax rounded off to
the next-lowest integer. Since n =0 is a bound
state, the number of bound states is nmax round-
ed off to the next-highest integer (as long as nmax
&0). This should be compared with the results

state (I =0). Hence in this case one can also count
the number of bound states. We have done this
calculation in order to compare it with the results
of the (6-10) potential. This comparison is only
possible for the l =0 state, since the Morse po-
tential is only solvable in this case. The great
advantage of using the (6-10) potential is that one
can count the number of bound states for all val-
ues of l.

The Morse potential can be written as

( ) (
—2o. (R —R,} —n(R —R,))

In order that U(R} have the same minimum energy
e, at the same radius R~ as our (6-10}potential,
we require that A =4& and a = ln2/(Rm —R0). The
potential U(R) vanishes at R =R,. For our com-
parison we have selected R, to be given by
&0=R0/R~=( —,')'~'=0. 866. Figure 3 shows a com-
parison of this Morse potential with the (6-10) and
(6-12) potentials. AII three potentials are very
similar.

Since the solutions to the Morse potential for
l = 0 are well known, ' we do not need to describe
the derivation in detail. The bound states are at
energies

Z =- &[I- (n+-,')/(yap)]',

y = (1 —Z, )4 /In2 = 0.273,

I

o.s—
MORSE

V 12

MORSE —-—

C2

-0.5—

l

I.O
I a, l I ) I

L

I
I

1',

I

il
I

MORSE

R~Rw1 Za
I i l i i I

-I.O—

FIG. 3. Three interatomic potential functions. They
are arranged to have the same maximum depth &0 occur-
ring at the same radius R~. The symbols V&0 and V~2

refer to the (6-10) and (6-12) Lennard Jones potential.
The Morse potential is described in Sec. III.

for the (6-10) potential in Eq. (2.3):

g =0.361' P--' .
The two forms are remarkably similar: both
have a square root of P dependence upon the basic
parameters, and the numerical coefficients of
0.273 and 0.361 are similar. The Morse potential
has fewer bound states, but this is reasonable
since it falls off faster at large R (see Fig. 3).
Thus we conclude that the Morse potential and
(6-10) potential predict roughly equal numbers of
bound states for l =0.

IV. THE NUMBER OF BOUND MOLECULES

from the equilibrium constant. This equilibrium
constant K(T) may be evaluated through use of the
numbers of bound states for the molecules which

Consider a gas mixture of two atomic species,
A and N, where A is an alkali and N a noble gas.
At a given temperature, we wish to determine
the number of molecules AN which form accord-
ing to the reaction

A+N= AN
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were computed in the previous section. It is giv-
en by'

lf(T)=n /n n =(q /q q )e 'e,/KT

where n denotes the number of each species, Q
the total partition function, and e, the maximum
well depth (i. e. , dissociation energy for l = 0).
Here,

—Z /aT
q=Z g.e (4.1)j

where the sum is to be evaluated over all energy
levels j of statistical weight g and energy E . In
turn, Q may be separated into translational and
internal factors, Q' and Q~, where

'=(2vm kT/h')~~ V .
Thus

n 3/2
Q

( )
AN AN o/kT (42 )

~A~N 2m', kT QA QN

3/2
a

2m', kT Q +Q
(4.2b)

l
max

q ~- Q (2J+1)Q
1

where p, is the reduced mass of the AN molecule.
In Eq. (4.2b), the exponential term has been omit-
ted since it is close to unity for most conditions of
experimental interest for the alkali- noble-gas sys-
tems. (Its neglect is consistent with the accuracy
to be used in the calculation of the internal molec-
ular partition function. ) The maximum depth of
the potential well e, corresponds to about 100'K,
whereas the optical experiments concerning these
molecules are performed at temperatures greater
than this by a factor of at least 4 (and, for the
numerical calculations made later in this section,
by a factor of 6.5).

The ground states of the alkali and noble-gas
atoms are, respectively, 'S and 'S&, which lead
to the ground state 2Z+ for t e AN molecule. '
For the atoms, Q*=g„where the ground-state
statistical weight go is given by (2Z+ 1). Hence,
QA* 2 and QN+ 1.

For the calculation of qAN, we note that the
exponential factors in Eq. (4.1) are close to unity
because of the weak binding and, by their neglect,
introduce the realistic approximation that all
bound states have an equal probability of being
occupied. In this approximation, q~ is just
equal to the number of bound levels. In the pre-
vious sections, calculations were shown for the
number of vibrational levels Ql corresponding to
each allowed rotational angular-momentum quan-
tum number l. The molecular internal partition
function QAN is given by

l
max

=2 Q (2l+1)Q
l=o

(4.3)

where Ql may be calculated from Eq. (2.4) and

lmax is determined by the condition that the mini-
mum value of gl is zero, which gives lmax as the
integer next lowest to 4',. The summation in (4.3)
may be evaluated by using the formulas given in the
Appendix.

With the additional approximation for the usual
experimental conditions that

where p is the total system pressure, we finally
obtain

(2l+ 1)Q . (4.4)
PEA

The calculated values of the fraction of bound
alkali atoms (nAN/nA) for the particular choice of
p=1 atm and T =374'C are given in Table II along
with the corresponding values of qAN computed
from (4.3). For any alkali atom, this fraction in-
creases greatly for interactions with the heavier
noble gases. There is considerably less variation
when one considers a single noble gas interacting
with the various alkali atoms. The fraction of
bound molecules scales linearly with pressure and
to the —(-, ) power with temperature. These pre-
dictions could be checked experimentally.

V. DISCUSSION

The present calculation of the chemical equilibri-
um constant is considerably different from the
usual one for molecules. In the usual case, the
dominant temperature dependence is exponential.
This is not the case here since the levels are so
weakly bound. To a first approximation, all lev-
els are equally occupied at the relevant experi-
mental temperatures.

Another feature of the usual calculations is to

where J is the total angular-momentum quantum
number, including electron spin, and is a function
of l (i.e. , by summing over l, each algebraic val-
ue of J except Jmax is effectively counted twice
in this case of a doublet, as will be seen below).
For the molecular species in question, which cor-
respond to Hund's case (b) for the coupling of angu-
lar momenta' since there is no component of orbital
angular momentum along the internuclear axis, we
have J= l+ —,', l ——,

' (for l & 1). Thus

l
max

q„~= Q [2(1+-,')+1+2(i--,')+I]Q,
l=0
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TABLE II. The quantity Q&N" is the number of different rotational "nd vibrational molecular bound levels. It is

defined in Eq. (4.3). Also shown is the fraction of alkali atoms n~&/n~ bound in molecules at T= 374'C and a pressure

of one atmosphere. It is assumed that the alkali atoms are dilute in the noble gas.

Ne Kr Xe

Li 0.0080
0.12

0.0808
1.0

0.364
1.2

0.176
2.0

1.52

0.405
4.4

2 ~ 92
6.2

Q~N* (units of 10 )

"AN A units of 10 )

K 0.0358
0.14

0.653
1.4

2.76
3.7

7.32
8.1

4.36
2.9

Cs 2.20

2.4
7.90
3.9

22.8
7.8

separate the internal partition function into vibra-
tional and rotational factors

internal vib rot '

This cannot sensibly be accomplished in our case,
since there is a strong interaction between the vi-
brational and rotational degrees of freedom. The
weak binding accentuates the importance of the ro-
tational potential- energy term, which significantly
alters the potential shape as a function of the rota-
tional quantum number l . Thus for different val-
ues of /, the vibrational levels are constructed
from potential functions different enough to cause,
for example, the characteristic average vibra-
tional energy interval [ef/(Qf —1)]= bceuf to vary
strongly with /. (See Fig. 4. ) Here, &uf is the
defined vibrational constant. For a harmonic os-
cillator, this parameter would be constant. The
relatively modest number of allowed vibrational
and rotational levels in this problem in any event
do not permit the usual integral representations
of the harmonic-oscillator vibrational partition
function and rigid- rotor rotational partition func-
tion which result in simple analytic formulae.

One should be careful to distinguish between the
real number of bound states and the effective num-
ber of bound states. %'e have just calculated the
real number of bound levels, which are charac-
terized by having an energy less than zero. How-
ever, let us consider the effective potential func-
tion

V = V (Z)+(I'/2pR ') l (l+1)/Z'
eff n m

which we have schematically plotted in Fig. 5 for
various values of l, where Z =R/Rm, For E& 0,
there exist states where the two atoms are tem-
porarily bound inside of the centrifugal barrier.
Since the atoms can tunnel out of this barrier,

they are not true bound states but rather scatter-
ing resonances. But if they remain together for
a sufficiently long time compared to collisional
and radiative lifetimes, they can add significantly
to the number of effective bound levels. Thus
our calculated values of the fraction of alkali-
noble-gas atom pairs bound as molecules repre-
sent lower limits.

One area of particular interest to which these
calculations may be applied is the explanation
of satellite bands, ' which appear in the wings of

O

0.5

0.4

I I / I
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I I I /
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] I I I
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I & & I
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I I I I
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FIG. 4. Average vibrational constant (average spacing
of vibrational levels) col as a function of the angular-
momentum quantum number l for KAr. Only levels up
to the dissociation limit are considered. Here, &l is
defined as the maximum depth of the effective potential.
This estimate is intended only to illustrate roughly the
variation of the vibrational constant with l. It is cal-
culated according to the crude assumption that the vi-
brational levels are evenly spaced between the maximum
well depth and the dissociation limit for each value of l.
Since only one vibrational level exists for each value of
l from 28 to 31 (lm~), the plot is terminated at l = 27.



26 G. D. MAHAN AND M. LAP P 179

~max

e&o

eff

FIG. 5. A schematic diagram of the effective potential
energy Veff as a function of normalized interatomic dis-
tance Z, for various values of angular-momentum quantum

number l.

atomic spectral lines due to perturbations caused
by close encounters with foreign gases.

Explorations of satellite band formation have

been made primarily in two fashions: (1) in terms
of the shape of the potential function, without re-
course to bound molecular states, and (2) in terms
of molecular binding. Our work applies to the
second of these approaches.

In pursuing the first approach, Jefimenko' re-
lated alkali-noble-gas satellite bands to peculiari-
ties in the potential curves; Kielkopf and Gwinn"
correlated red satellite band data for alkali-noble-
gas atom pairs with a model based on a Lennard-
Jones potential curve; and Farr and Hindmarsh"
predicted red satellite bands for a radiating or
absorbing atom perturbed by a foreign gas atom
through use of the quasistatic theory of pressure
broadening with a Lennard- Jones potential curve. "

Attempts to explain satellite bands in a molecu-
lar fashion, the second approach previously men-
tioned, have been considered by Klein and Margen-
au, "who ascribed red satellite bands of alkali-
noble-gas pairs to transitions from bound molecu-
lar levels'; Michels, de Kluiver, and ten Seldam, "
who found that violet satellite bands of mercury-
noble-gas atom pairs could be explained on the
basis of transitions from a bound molecular
ground state; Herman and Herman, "who ascribed
various CsXe satellite bands to the molecular
transitions A'Z+- X'Z+ and 8'm- X'Z+; and Takeo
and Chen, "on the other hand, who concluded that
red satellite bands associated with Rb lines in the
presence of Xe were not due to RbXe molecules
in the electronic ground state.

In the course of their work, Klein and Margenau

estimated the fraction of alkali-noble-gas bound
molecules through use of a statistical- mechanical
argument with a Heller potential" for which val-
ues of Rm were estimated. For an alkali-argon
mixture at a density of 1 amagat (O'C and 1 atm),
they found the fraction of molecular species to
be 3.0x10 '. Corrected to their conditions, our
corresponding values range from 8.6x10 ' to
2.1x10 '. lf we consider that bound states for
Veff ~ 0 will increase our results by a factor of
roughly 2, our values become 1.7 X10 to 4.2
X10 '. Since these calculations were performed
in a very different fashion and since considerably
more accurate potential-function data are now
available, the difference between these results
is not surprising.

Michels et al. also performed a similar calcu-
lation for Hg noble-gas molecules. Their Eq.
(8, 5") is essentially the same as our Eq. (4.2a).
Using a Heller potential and a numerical calcula-
tion of the energy levels of the HgAr molecule,
they found the fraction of bound molecules nH Ar

= 6.63 x10 ' at an argon density of 1 amagat.
For rough comparative purposes, our value for

Hg

CsAr (increased by a factor of 2 to account for
the levels bound by the centrifugal barrier) is
4.2x10 ', which is of the same magnitude.
Michels et al. used approximately 3.3 A for Rm
and 4.8x10-' ergs for 6p yielding a value of

p = &0' '/k' which is 2.1 times our value form.
CsAr. This indicates for purposes of compari-
son that our result for CsAr should be less than
theirs for HgAr, as indeed it is, since the num-
ber of bound levels is proportional to P'I'.

VI. CONCLUSION

A calculation of the number of bound states of
alkali-noble-gas molecules is presented which
results in a simple analytic expression dependent
on the reduced mass, the depth of the potential
well (taken to be a 6-10 Lennard- Jones potential),
and the interatomic separation at the well maxi-
mum depth. All the alkali- noble-gas atom pairs
for which potential-function data were available
were found to have bound states, increasing (for
angular orbital-momentum quantum number l = 0)
from 2 for LiNe to 28 for CsXe.

The fractions of bound molecules in alkali-noble-
gas systems were also calculated at T =374'C and
p = 1 atm, resulting in values ranging from 10 '
for LiNe to 8x10 ' for CsXe, (omitting states ef-
fectively bound due to the centrifugal barrier).

Our estimates of the numbers of bound states
of alkali-noble-gas molecules and the relative
concentrations of these molecules do not prove
the value of a specific approach to the solution
of the general satellite band problem. However,
the fact that molecular bound states exist for all
the alkali-noble-gas pairs considered and that the
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molecular concentrations may be easily estimated
provides a firmer ground for those approaches
based upon a molecular model. This work may be
extended to other active atom-foreign-gas sys-
tems for the same purposes.

Note added inproof. F. Calogero and G. Cosenza
[Nuovo Cimento, 45A, 866 (1966)] also discuss the
number of bound states in Lennard- Jones potentials.
Some of their results are similar to those in Sec. II.

APPENDIX: SUMMING THE NUMBER OF BOUND
LEVELS

In Section IV we show that the internal partition
function of the molecule can often be approximated
by the expression

l
max

AN (2l+ 1)Q

Some simple analytical formulas for evaluating
this summation are presented in this Appendix.

Starting with the value for g„which is some

n. 250 g&n&500. Q *=~&Q (4Q '- 1), (A-2)

n 500. &g &n. 750 Q&
~ = 3Q (16Q 2+12Q —1),

(A-3)

n. 750&@ &n 999 .Q&
*=~6Q (Q +1)(2Q +1) .

(A-4)

Two examples: if g, =3.14159.. . then A, =4 and
one uses (A-1); if r), =6.283. . . then Q, =7 and one
uses (A-2). These formulas are exact.

number such as 3.14159.. . , we obtain 0, by
rounding up to 4. Four different formulas for
evaluating Q~~* are required: one applies if the
decimal part of q, is between 0.000. . . and

0.250. . . , the next between 0.250. .. and 0.500. . . ,
the third between 0.500. . . and 0.750. . . , and the
fourth between 0.750. . . and 0.999.. . . Let us
express go as n. xxx. . . , where n is the integer
part and xxx. . . is the decimal part. Then 0,
=n+ 1. The four formulas are

n 00.0&g &n 25.0 Q *=fQ (16Q ' —12Q —1),
(A-1)
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