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the particular fit). The integrals of Eq. (54) have also
been numericaBy calculated and we get

'8 —0.16 &
v 09 (63)

All the above results are summarized in Table I,
where we also report the numerical values of the
quantities I,s, I,v, I s, andI v of Eqs. (55) and (56).

%e note that Models I and II give values of the
integrals and of the anomalous moments which are
rather close to each other. Model III uses an empirical
6t and the problem arises whether the Macoowell sym-
metry is satisfied at least approximately by such Q.ts.
The prediction for p,

'8 can be considered satisfactory in

all three models, in view of the inaccuracies and approxi-
mations introduced. Pl esuITIabbJ the slTl.aB disci epancg
comes from errors in the high-energy tail of the photo-
production amplitudes, and it should be possible to
obtain better estimates by further re6nements. Our
general impression is that a better estimate (for tt'8 and

especially for tt'v) requires a better knowledge of photo-
production in the intermediate-energy region (beyond
the region of the static model). On the other hand, much
work is being devoted at this time in various laboratories
to a hetter understanding of these amplitudes, and we

hope that it will soon be possible substantially to im-

prove the results obtained here.
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It is proved, by perturbation theory and by the method of Sudakov, that if two Regge poles with tra-
jectories o.j,, a2 and signatures v j., r2 are exchanged, the resulting Regge branch point at j=n&+a2 —1 appears
only in partial-wave amplitudes of signature ~1~~g, vrhere q= —1 if both Regge poles are fermions and
q=+1 otherwise. An example is given from the case of proton-proton scattering.

I. INTRODUCTIOH
' 'N situations where it is impossible to fit experimental
~ - data by assuming Regge-pole dominance, it is useful
to investigate whether the discrepancy can be accounted
for by contributions from branch cuts in the complex
angular momentum plane. For this reason (as well as

simply to satisfy one's theoretical curiosity), it is
important to know which amplitudes receive contri-
butions from particular Regge cuts.

A Regge pole has associated with it de6nite quantum
numbers (e.g. , isospin, G parity, parity, signature) and
will a6ect only those amplitudes with an identical set of
quantum numbers. It can be shown' ' that the exchange
of two Regge poles with trajectories o.& and o, & will give
rise to branch points in the complex j plane; of these
branch points, the one lying furthest to the right has a
trajectory (1)

where the arguments of o.& and o.2 are given by definite
rules. ' 4 In order to discover which amplitudes possess
such a branch point, we need to know the quantum
numbers associated with a two-Reggeon system.

D. Amati, A. Stanghellini, and S. I'ubini, Nuovo Cimento 26,
896 (1962).' S. Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148
(1963).' C. Wilkin, Nuovo Cimento 31, 377 (1964).

4 V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martiros-
yan, Phys. Rev. 139, 8184 (1965).' J. C. Polkinghorne, J. Math. Phys. 4, 1396 (1963).

It is clear that internal quantum numbers, such as
isospin and G parity, will combine in exactly the same

way as if the Reggeons were elementary particles; for
example, the exchange of two Pomeranchukons will

give a cut in an amplitude with I=0 and G= 1, whereas
the exchange of a Pomeranchukon and a pion Regge
pole will give a cut in an amplitude with I= j. and
G= —1.Gribov' pointed-out that one would expect any
particular Regge cut to appear in amplitudes of both
parities because of the arbitrary orbital angular momen-

tum associated with the two-Reggeon system. There
remains the important question of signature.

Mandelstam~ proved that a partial-wave amplitude
involving a state of two elementary particles of spins O. l

and 0.
& has a singularity in the j plane at

J=o'a+os

provided this is a wrong-signature point. For positive-
signature amplitudes, the wrong-signature points are
the odd integers (or odd integers plus one-half in the
case of boson-fermion amplitudes); for negative-

signature amplitudes, the wrong-signature points are
the even integers (or even integers plus one-half). Thus,
if we put v=-', for a boson-fermion amplitude and v=0
otherwise, we see that the singularity at j=or+os —1

' V. N. Gribov, Yadern. Fiz. 5, 197 (1967) LEnglish transl. :
Soviet J. Nucl. Phys. 5, 138 (1967)g.

' S. Mandelstam, Nuovo Cimento 30, 1113 (1963).
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appears in partial-wave amplitudes of signature

(—1)r'+as—v

If we put i i equal to 0(-', ) if the particle of spin o.i is a
boson (fermion), and similarly for v, , we can write (3) as

(—1)&1 &I (—1)&2 &2 ( 1)n+~2—~ (4)

If one considers Regge cuts as the generalization of
these singularities arising from the promotion of the
elementary particles into Reggeons4 with trajectories
ni and ns, the obvious generalization of (2) and (4) is a
cut in the j plane at j =ni+ns 1 i—n partial-wave
amplitudes of signature

(5)

In this expression, v~ and r2 are the signatures of the
Regge poles (equal to +1 for a positive-signature pole
and —1 for a negative-signature pole), and r)= —1 if
both poles are fermions, and rl=+1 otherwise.

There has been a good deal of confusion in the
literature regarding the signature of Regge cuts, but it
is now wdl established that for amplitudes which in-
volve the exchange of boson Regge poles and which have
spinless external particles, the cuts have signature given
by (5). This has been shown by Polkinghorne' using
a perturbation theory method, and by Gribov using a
method devised by Sudakov. " However, it has been
shown" that if the external particles have spin, then the
Amati-Fubini-Stanghellini procedure gives a Regge cut
which appears in amplitudes of both signatures. This
implies that such cuts with both signatures exist on an
unphysical sheet, and it was conjectured that they
would be present also on the physical sheet. This paper
shows the conjecture to be false. Even when the external
particles have spin, the signature of Regge cuts is given
by (5).

In Sec. II, we construct helicity amplitudes that have
a definite relation between the signature of j-plane
singularities and behavior under crossing. We use these
amplitudes in Secs. III and IV to prove our result by
two different methods: In Sec. III we use perturbation-
theory techniques, and in Sec. IV we employ Gribov's
adaptation of Sudakov's method. In Sec. V we take, as
an example, the particular proton-proton amplitude
that was shown in Ref. 11 to have, on an unphysical
sheet, a cut in an amplitude with signature opposite to
that given by (5). We show that this cut is not present
on the physical sheet.

II. CONSTRUCTION OF HELICITY AMPLITUDES
WITH DESIRED PROPERTIES

In terms of the Mandelstam variables s and t, we
shall let s be the asymptotic variable, and describe the
t-channel reaction as

a+b~ c+d.

We use the labels a, b, c, and d to describe both the
particles and their helicities. Using the method of Jacob
and Wick" we decompose the 3-channel amplitude into
partial waves,

where A = u —b, p = c—d, and s is the cosine of the scat-
tering angle. (We do not make explicit the dependence
on the variable t.)

The d~ functions introduce kinematic singularities in
s which we remove in the usual way by defining

f,g,,s= t rs (1+s)g ~"+&~ ~'Ls (1—s)g
—~i—st&sf (7)

Since the function f,q, s is f,ree from s kinematic singu-
larities, we may assume it obeys a Axed t-dispersion
relation, and Reggeize as described in Refs. 13 and 14.
We are thus led to partial-wave helicity amplitudes
F+,q, ,s(t,j) for whose precise definition we refer the
reader to Ref. 14. The positive-signature amplitudeF,z &(j) coincides with the physical amplitude
F~,z, & when j is equal to an even integer (an even
integer +s when t =-,'), and the negative-signature
amplitude F,q,,s(j) coincides with the physical ampli-
tude when j is equal to an odd integer plus v.

Using (6), (7), and the relation"

dz„(j,s)= (—1)r "dz „(j,—s), forj =X,„,) „„+1,. ~

L), =Inax([) [,[p[), X; =min([PE[, [y[)j,
we can therefore write

f.~,.s= 2 (2j+1)[F'",.s(g)d'i. (j,s)
j='A max

where

d+~. U, &) = sLs(1+s)3 '"+"'"Cs (1—s)g " "~"

&&Ldll. U, &)~(—1)" "di-,(j, —s)7. (9)

We may continue the rotation matrices to complex
values of j by expressing them in terms of hyper-
geometric functions' ' and perform a Somme. rfeld-
Watson transformation on (8). From the known

J. C. Polkinghorne, Nuovo Cimento 56A, 755 (1968).
'V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 53, 654 (1967)

LEnglish transl. :Soviet Phys. —JETP 26, 414 (1968)].
'0 V. V. Sudakov, Zh. Eksperim. i Teor. Fiz. 30, 87 (1956)

/English transl. :Soviet Phys. —JETP 3, 65 (1956)j.
~~ D. Branson, S. Nussinov, S. B. Treiman, and W. I. Weis-

berger, Phys. Letters 25B, 141 (1967).

"M. Jacob and G. C. Wick Ann. Phys. {N.Y ) 7 404 (1954)
The d~ function that we use divers from that of Jacob and Wick
hy a factor (—1)" ~."F. Calogero, J. M. Charap, and E. J. Squires, Ann. Phys.
(N.Y.) 25, 325 (1963).

14 W. Drechsler, Xuovo Cimento 53A, 115 (1968)."M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).
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III. PERTURBATION-THEORY METHOD

(a)
FIG. 1. Ladder diagrams whose sum gives

asymptotic behavior (a) s and (b) u".

asymptotic behavior of the hypergeometric functions"
for large values of s', we may show that

L2(1+s)7 "+""L2(1—s)7 """d~.(j,s)
—,'sgn(X, is)F(2j+1)/I'(j+X„„„+1)1'(j—X, +1)

&&I'(j+l --+1)1'(j—l --+1)7 '"&& (ks)' "-*
where

sgn(X, p) =1, if X—ls)~0
= (—1)"-n, if X—&(0.

It is simple to derive the relation

sgn(X, —p) = (—1)™x"sgnP, ,ls),

and hence, from (9) we have

d+z„(j,s) const

)([(s)j—Xmsx~ ( 1)Xmsx v( s)s—Xmsx] (10)

If F+,z,,&(j) has a singularity at j =rr, we see froin

(8) and (10) that f.g, Q ha, s a term asymptotically
proportional to

Ke begin this section by briefly setting down some of
the relevant results from the high-energy behavior of
the perturbation theory of a neutral scalar particle.

The sum of all ladder diagrams of the form of Fig.
1(a) has, for large s& the behavior Ks t", where o. is a
known function. ""It follows that the sum of all
diagrams of the forin of Fig. 1(b) has asymptotic be-
havior (for large I) iru t". Therefore, if we take all
diagrams like Fig. 1(a) and add to them all diagrams
like Fig. 1(b), we obtain a combined asymptotic be-
havior that is ever under the interchange s+-+I; it
follows simply from Sec. II that the sum of all these
diagrams gives a model for a Regge pole of trajectory
rr and of positive signature.

We next review the properties of the diagram repre-
sented in Fig. 2 which is the simplest diagram which
gives rise to a branch point in the angular-momentum
plane. ' ' This diagram gives a model for the exchange
of a Regge pole (without definite signature) and a
spinless elementary particle. Setting 0;~——o., 0,2

——0 in
Eq. (1), we expect a branch point at j=rr 1.A—lthough
this situation is simpler than the exchange of two Regge
poles, it reproduces all the essential features of the
latter. We quote here the results obtained by Polking-
horne. '" " If we introduce the usual Feynman param-
eters (which we denote by P,) and perform the inte-
grations over the loop momenta, we obtaig. a function.
of the form.

(v) a &msx+ (—1 )&msx v( —s) a xmsx

Therefore, such a singularity will give to the function

g. .. (s) rts""* "f",. (s)

(—1)- e,~(1 ZC;)C."-"(~')
gmn+S(g+3) f

(16~v)n+3 D n+4($ ] p.)
(13)

an asymptotic behavior

Sa v~( «)a v

where there are (I+1) rungs in the ladder, g is the
coupling constant, Ct is a function just of the P;, and Di
is a function of the form

(14)

a.

t2
b =

g,~,,g As '+ 2 ' ", for large positive s,

LWe note that X, —r is a non-negative integer, so that
the factor s™s~"in (11) does not introduce any singu- D (V,~;)=fQ') +gQ;)~+du').
larities in s.]Thus, we see that a singularity in a partial-
wave amplitude of signature plus (minus) one gives to Polkinghorne showers that the behavior of this diagram

the function g,&„& a behavior which is asymptotically
even (odd) under the transformation s+-+—s (i.e., under /92 s
s ~+)

If we exchange in the t channel two Regge poles, the
product of whose signatures is ~1, the result we wish to
prove is that the branch point at j =nt+rr~ 1appears-
only in partial-wave amplitudes of signature ~p. From
the preceding paragraph, we see that this is equivalent
to proving that if

then

g,~,,~ ~gAN 1+ 2 ' ", for large positive u.
Fxo. 2. A diagram which gives rise to a

cut in the angular-momentum plane.

"Bateman Manuscript Project, Higher Transcendental Func-
$iovss, edited by A. Erdelyi (McGraw-Hill Book Co., New York,
&953), Vol. I, Chap. 2,

' J. C. Polkinghorne, J. Math. Phys. 4, 503 (1963)."R.J. Eden, P. V. Landsho6, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge University Press, New
York, 1966), Chap. 3.
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for large s is

( 1) ig2nt P (lns) n k'l.

2 (4~)' n+' (n+2) s'
where

dP, JC n+1(P )

Dg "+'(s,t, ,P;)
(15)

&=~(1 Z—P;)~(P~ PP—)~(P 'P ' P'-P ')

X~(P,)~(P,')~(P,)~(P,) " ~(P. ,)P,P,'; (16)

the parameters are labeled as in Fig. 2. The integrand is
independent of s since the effect of b is to set f(P~), the
coefficient of s in D~, equal to zero.

The expression (15) may be rewritten as

dt~dt2 {Ln(t~)+1]1ns) "+' 1g4

(4~)'s' ),&p QX
(17)

t2 —m(v+2)!

where t j and t2 are the squares of the momenta carried,
respectively, by the ladder and the scalar particle (of
mass m), as shown in Fig. 2, and

X= tp+t p+ tg~ 2ttg 2—ttp —2—tgt2.

The function n(t~) is the same function as was men-
tioned at the beginning of this section, i.e., the tra-
jectory function associated with the sum of ladder
diagrams like Fig. 1(a).If we sum (17) over e (i.e., over
the number of rungs in the ladder), we obtain

g4 Ctidt~S ('» '
7

(4m)' y(p QX t:.—m'

a S C

b

I'IG. 3. A diagram which must be added to that of Fig. 2. in order
to have a positive-signature Regge-pole insertion.

behavior characteristic of a branch point at j=a—1.
We now turn to the possibility of particles with non-

zero spin. We shall suppose at erst that the particles in
the ladder and the particle with Feynman parameter Pp

are identical neutral scalars; the other particles are
arbitrary.

Since we are interested in signature, we must con-
sider not Fig. 2 alone, but the sum of Figs. 2 and 3.
These two diagrams are identical except for the ladders,
which are, respectively, the same as Figs. 1(a) and 1(b).
From the remarks at the beginning of this section, it
follows that the sum of these diagrams gives a model for
the exchange of a positive signatur-e Regge pole and a
spinless elementary particle (which in this context we
consider to have positive signature). We now prove that
such a combination produces a branch point at j=o.—1

C

FIG. 4. Figure 3 redrawn with the external
particles in a difterent con6guration.

in positive-signature partial-wave amplitudes in agree-
ment with (5) (since in this case q=+1).

From Sec. II and from (15), we see that we need to
prove that, in the contribution of Figs. 2 and 3 to
g,q,,p(s), the leading term (of order s ', apart from
logarithms) is even under s ~ u, since it is terms such
as this that sum to give the behavior s

The presence of spin modihes the Feynman integral
so that the contribution of Fig. 2 to g, & & acquires an
extra factor, which we call Ey, in the numerator. The
factor E~ may depend on s, but, since we have removed
all s kinematic singularities, it must be a polynomial in s.
Thus, from (13), we see that the diagram of Fig. 2 con-
tributes to g,q, ,p the term (omitting all constant factors)

Let us suppose for the moment that the numerator
factors E are independent of s:

iV g(s, t,P~) =eg(t, P,),
1V,(s,t,P,) =~, (t,P,)

From (15) we see that the coefTicient of the s ' term
in T&(s,t) is (omitting constant factors)

dP SCAN"+'eg

D n+2($)
(20)

)In some cases 8 may diRer slightly from (16); for
example, if v~8 contains a factor PjP~', the factor
5(P~)5(P~') in (16) is replaced by Cs/P&Pz'C&', where C~'

is C~ evaluated with Pq=p~' ——0. Such differences will not
aRect our subsequent argument. ]

We may redraw Fig. 3 as in Fig. 4, when we see that
this figure differs from I'. ig. 2 only in that we interchange
c and d, Pq and P4, P p and P&, and s and u. (We recall that
c and d label particle types as well as helicities, and the
P;, as well as being Feynman parameters, also performs
the function of labeling particle types. Thus, the line
with parameter P& represents the same type of particle

dP't'(1 ZP')C —~""(P')&~(s,t,P,)
T, (s,t) = —,(1g)

D,"+4(s,t,P;)

whereas the contribution from Fig. 3 is

dP'~(1 ZP')C "—+'(P'P (s,t,P')
Tp(s, t) = — . (19)

D ""(,t,P.)



1612 DAVI D BRA NSON

—C

totic power of s is f(P,) defined in (14). Suppose, for
example,

1.e.)
Ni(s) = f(P;)sni(t, P;),

=N, ( )OLD (.)—D (O)~.

Then from (18),

FIG. 5. The effect of setting equal to zero
P5, P6, , P +5 in Pigs. 2 and 3.

whichever figure it appears in.) It follows that we can
find the behavior of T2(s, t) for large I in exactly the
same way as led to (20). The coefficient of the I ' term
in T2(s, t) is )omitting the same constant factors as in

T, (s,t) = e,&(1-Z ~,)C ""
D n+3(s)

dP, 5 (1—P P,)Ci"+'it iDi (0)

D,"+4(s)
(25)

(20)3 We can also write
dp, h'Cg "+'ng

8—
D "+'(s)

(21)

where 5' is the result of transforming 8 according to
pi ~ p4, and p2 ~ p3.

The factors 8(P5)8(P6) 8(P„~,) in 5 imply that we

are to contract the corresponding lines to points. Ke see
from Fig. 5 that the effect of this is to make Figs. 2 and
3 identical, which implies that we can set

T2(s,t) =

where

e.~(1 Z~)-C.-'".
D ++3(s)

dp, 6(1—Q p;)C2"+'n2D~(0)

D2""(s)

rt2 N2 (s)/I D2(s) D2(0)] .

, (26)

(27)

Cg= Cg,

D (s)=D (s)

Ni(s) =Ng(s),

(22)

That is,
T,(s,t)—T,(l,t) .

Sim&larly, we may show

so that
T, (s,t) Ti(N, t),

T, (s,t)+ T2(s, t)— T(u, )+tT2(tt, t) . (23)

e have therefore proved, as required, that the lead-

ing term in Ti+ T2 is even under s ~ N.

e must now consider what happens if the numerator
factor X& asymptotically depends on s. The function T&

defined in (18) cannot have an asmyptotic power of s

greater than —2 since, if it did, it would lead to a
branch point to the right of j=n —1. Therefore, if E&
asymptotically contains a positive power of s, it must
also contain a function of the P; which depresses the
asymptotic behavior by the same power. Essentially,
the only function of the P; which depresses the asymp-

whenever these terms appear in an integrand multiplied

by b.
@le have already remarked that 8 sets the coefEcient

of s in Di equal to zero (which is equivalent to setting s
itself equal to zero in Di). We may easily check that
under the integral 8'= 5. Combining these facts we have

dp, bCi"+'ei
=A.

D n+2(0)

As before, we extract the coe%cient of the leading
terms by multiplying the integrands by 5. It might
appear that when we multiply by 8 and set D (s) =D (0),
the two terms in (25) cancel. However, the constant
factors that we have omitted will be different for the
two terms. The effect of contracting the rungs of the
ladders is given by (22), and hence, by (24) and (27) we
can set

when these terms appear in an integrand multiplied
by b.

Therefore, we may treat the terms in (25) and (26)
exactly as in the previous case, reproducing the result
(23).

To generalize our result, we now let the exchanged
particle with Feynman parameter Po (see Fig. 2) have
spin 0.. (We retain spinless particles in the ladder. )
Thus, we are now exchanging a positive-signature Regge
pole and a particle which we consider to have signature
(—1)' ".Setting ni=n, and n~=0 in (1),we see that this
combination produces a branch point at j=n+o —1.
We now prove, in agreement with (5), that this branch
point appears in partial-wave amplitudes of signature
(—1)' "(it=+1 in this case also); we, in fact, prove the
equivalent result (see Sec. II) that g,d, i, has an asymp-
totic term of order s +' ' " which is even (odd) under
s ~ I according as (—1)' " is positive (negative).

As the presence of the particle of spin cr enhances the
asymptotic behavior by s " relative to the case where
all particles are spinless, it follows that the numerator
functions N must asymptotically behave as s' " Lor as
a higher power of s together with compensating f(P~)].
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We recall that S must be a polynomial in s. So we put

Ã, (s,t,p,) s' "n, (t,p~) .

We saw in (22) that the effect of 5 is to set Ei(s) =iV2(s),
so that when the coeKcient of the leading terms is
extracted in the expressions corresponding to (20) and
(21), we can set

$2(s) =X,(s) s' "ni (—1) "u "ni.

Pb

FIG. 6. The diagram under consideration.
The wavy lines denote Reggeons.

Pd

A=s~ "
dp, bCin+'ni

D n+2(0)

dp,6C 1 "+'ni

It follows that

( 1)c—vuc
—v

D n+2(0)

Hence, the appropriate modifications of (20) and (21)
are (taking into account also the other effects of 5) Gribov assumes that the dominant contribution to

the integral comes from that portion of the integration
region where the Regge-pole energies (ki+k2)' and
(P,,

—P,—ki —k2)' are large, of the order of s, and where
the momentum transfers k2 and (q —k)' and mass
variables k12& (p, —ki)', (k —k,)' (p„—q+k —k,)2
(pc+k2) v (k+k2)', and (p,—q+k+k2)' are of order m',
where m is a typical mass. In this region it is shown by
Gribov that

Similarly,
T,(s,t) (—1) "T2(u, t) .

T, (s,t) (—1) "Ti(u,t),

k~'~kg~'~k2~'~m',

x-y xi-y2 m'/s,

x2~py~1.
(3o)

It follows that in this region the Feynman denominators
can be written in terms of the new variables as

so we conclude that the contribution of Figs. 2 and 3 to
g,~ b gives an asymptotic term even (odd) under s 4-b u
according as (—1)' " is plus (minus) one, in agreement
with (5). (p.—ki)' —mi" xi(yi —1)s

+ (1—yi)m 2+k112—mi'2, (31a)

kl m2 xlyls+kll, m2 (31b)

(k k 1) m2 (xi—x)y»+ (ki—k ll) '—mb", (31c)

(p q+k —ki)' —m4" —(x—xi) (1—yi)s
—(1—yi) (q' —mb')+ (q.—kl+ki. )'—m4" (31d)

(P,+k2)' —mi' (x,—1)y,s
+ (1—X2)mc2+k21' —mi', (31e)

k2 m2 x2y2S+k2l m2 (31f)

(k+k2)' —mb' x2(y+y2)s+ (kl+k»)2 —m22, (31g)

(P,—q+k+k2)' —m4' (x2—1)(y+y2)s
—(1—x2) (q' —md')+ (ql —kl —k»)' —m42. (31h)

The momentum transfers become

IV. SUDAKOV METHOD

As in Sec. III, we begin by reviewing the spinless

case, this time quoting the results of Gribov, ' which we

generalize to the unequal-mass case. We consider the
diagram of Fig. 6 for large positive s= (p,—p,)' and
fixed t= (P,+Pb)'. We label the momenta and masses
as shown and set P +Pb q, so t——hat t=q'. The wavy
lines denote Reggeons with trajectories ni(k2) and

~2((&—k)').
We define p

' and p.' by

pa =pa+ ma pc/S v

pc =pc+me pa/S ~

The Sudakov method consists in resolving the momenta

k, k~, and k2 within and perpendicular to the plane
defined by p and p„ k' k~',

(q
—k)'- (q,—k,)2

(29) and the Regge-pole terms

gigi (X2yis) al "1

g2$2L(1 —x2) (1—y,)sja2—»

k = —xp, '+yp. '+kl,
ki x1p +yl p +kll

k2 = —x2p, '+ y2p, '+k21.

(32)

$1= (~ ' '" ""&1)/sinvr(n, —p,),
(2 (~ "'" ""&1)/sinir (n2 —p2) . (33)q [(t+m 2 m—g2) P.+ (t+—m ' mb') P,]/s+q, —

(Since we are here considering spinless particles and
boson Regge poles, v~

——&2=0, but we include v1 and v2

If we likewise resolve q, then we can show that asymp-
where

totically
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Pb

dicular to the plane defined by p, and pq,

k =- —xpg'+gp '+ki,
kl = xipd +culpa +kli y

k4= —xgpg +y.p. +4i,
and, resolving q similarly,

(36)

FlG. 7. A diagram identical to that of Fig. 6. q-((t+m„' m, ')p—.+ (t+m. '—mi, ')pdj/u+g,

Z

d kifi$2s +"~ " " d kiid kgidxdydxidyidxady2
s

E
&&s4gg&(x2yi)~~ »L(1—x,) (1—yi)j" "'—, (34)D'

where D is the product of the eight denominator terms

(31).If cV is a constant (as for example in the spinless

case), the second integral in (34) is independent of s as,

by (30), we can scale the variables x, y, xi, and y& by s.
If we wish to evaluate the diagram of Fig. 6, not for

large s, but for large I, we redraw Fig. 6 as in Fig. 7;
then, it is clear that the procedure will be similar to that
prescribed by Gribov, but we must interchange p, and

pg, k2 and k4 ———(k+k, ), mi and m4, m2 and m, . We
therefore define

p~ =p~+m~ p(g/u,

pd =pd+m&Ppa/u, (35)

and resolve the momenta k, kl, and k4 in and perpen-

"I am grateful to Professor S. =.;B. Treiman for stressing this
point.

in these expressions as we shall need them later. ) The
residue functions gl and g~ depend on the momentum-
transfer and mass variables of the particles to which the
Regge poles are coupled, and each pole has signature
&1. The Jacobian of the transforms, tion to the inte-
gration variables defined in (29) is asymptotically ss'.

If we now let the particles carry spin, we must, as
mentioned above, allow for the possibility of fermion
Regge poles by allowing vi, v2= ~ (as well as the values

vi, v2 =0 for boson Regge poles). As in Sec. III, the other
effect of spin is to modify the contribution of Fig. 6 to

g, q ~ by an extra factor T in the numerator. This
factor will contain momentum terms which may in-

validate" Gribov's assumption that the dominant
contribution to the integral arises when the mass
variables in the end crosses are of the order of m'. The
following argument is valid only when Gribov's assump-
tion is valid.

We see from the preceding paragraphs that when we

have spinning particles, we can write the asymptotic
contribution of the diagram in Fig. 6 as (omitting
constants)

Therefore, the expression analogous to (34) when u is
large will be

Z

d'ki(i(2u~&+~' "' "' d'kiid'k4idxdgdxidgidxgdygI

where

X
&&u gig2(xei) " "'L(1—*2)(1—Vi)]" "'= (37)D'

pi= L1&e ' ' ' "»]/sin7r(ni —vi),

p2
—L1~&—~~(a2—

v2i7/sin~(Q'2 v2) ~ (38)

xs~xN )

p'S~ —gN —2Aig ' Q'g )

XlS~glN )

3'l 9i )

xg~x~,

ggu+gu —x2g +2 (ki+k4i) ~ gi

kg ~lgJ )

k» ~lL )

k2J, ki k4i+x2gi,

(39)

Lk& is a two-dimensional vector perpendicular to p,
and p, ; ki is a two-dimensional vector perpendicular
to p, and pg. In changing from s to u, we replace p, by
pq. Therefore, k, in (34) and ki in (37), infact, span the
same two-dimensional space, so that the last three
equations of (39) are meaningful. jWe can easily check
that if we apply (39) to D, given by (31), we obtain D.
The numerator factor introduced by spin is first evalu-

From the comparison of Figs. 6 and 7, and from Eqs.
(28), (29), (35), and (36), it is clear that the factors in
D are obtained from the right-hand sides of (31) by
replacing x, y, xl, yi, x2, y&, k&, k», and g&, by the cor-
responding barred quantities, by replacing k2& by A:«,
by replacing s by I, and by exchanging m, ' with m&',
ml' with yg4') and m2 with m3'. The residue functions
gl and g2 are gl and g2 with their arguments modified in
the same way. The relation of X to E is discussed
below.

If we eliminate k, ki, and k2 between (29) and (36),
we obtain (retaining only the terms that are dominant
at large s or large u)
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ated in the t channel and then continued to large s to
produce cV and to large I to produce g. Since we have
removed all s kinematic singularities, and since the
transformation (39) contains no s singularities, it
follows that X is obtained from E simply by applying
(39).

We remarked above that if Ã is a constant, the second
integral in (34) is independent of s, so that (34) as a
whole has in that case, a power of s equal to nlja2
—1—v~ —v~. But we saw in Sec. II that a branch point
at j=lx,+n2 —1 leads to an asymptotic behavior of

g,g ~q of order s~'+"2—' ". It follows that E must con-
tribute to the asymptotic behavior a factor s"'+"2 ". LThe
factor E may contain further powers of s, but in order
to prevent the appearance of a branch point to the
right of j=nl+n2 —1, we see from (30) that any such s
must be accompanied by x, y, x~, or y2 and will disappear
when we scale these variables. f Making this factor
explicit, we may therefore write (34) as

In this case, the charge conjugation operator is equiv-
alent to —j. times the particle-exchange operator for
identical particles, so that the t-channel partial-wave
helicity state

is an eigenstate of C with eigenvalue" equal to (—1)~+'.
Throughout this section we restrict ourselves to the
exchange of Regge poles (or elementary particles) each
having C=+1.Thus we are restricted to C=+1 states,
and it follows that the combination of partial-wave
helicity states

vanishes unless (—1)~= —1; i.e., the positive-signature
continuation of II~ is identically zero.

We now consider the following combination of 3-

channel helicity amplitudes,

d2k ( ( gal+a2 1—v2g—vl+v2 —vI
s

=i d2k, (1$2s '+ ' ' "I, (40)

where I is independent of s. Ke may similarly write
(37) as

+72k $ ( Nal+a2 vl v2~vl+v2 vI
0

~( 1)vl+v2—vi d2k j (2N«+a2 —1—vI (41)

where I is also independent of s and is obtained from I
by (39). Comparing (40) and (41), we see that they
differ by the factor (—1)"'+"' "=g; they differ in that
s and I are interchanged, &1)2 is replaced by )1&2, and
otherwise the integrand of (41) is obtained from the
integrand in (40) by the change of variable given by
(39).This change of variable has no effect on the value
of the integral as the Jacobian of the transformation is
1. From (33) and (38), we see that $1)2 and $1/2 differ

by a factor ~1 according as the two poles have like
(unlike) signature. Hence, if 71 and r2 are the signatures
of the two poles, we conclude that the contribution of
Fig. 6 to g,q, ,~ has a term of order s~'+~' ' " whose
coef6cient varies under s &—+ u crossing by a factor
2.1r2q. This is the result (5) that we wished to prove.

P. EXAMPLE

In this section, we show how' the results of Secs. III
and IV apply to the particular example that was shown
in Ref. 11 to disobey the signature rule given by (5) in
the Amati-Fubini-Stanghellini approximation. Ke
consider proton-proton scattering in the s channel, so
that the t-channel states are proton-antiproton pairs.

h(s) =f.—;,~:(s)+f—::,:—:(z)
=p (2J+1)LF 1 1 ~ 2d 11(s)+4 22 1 vvd 1 1(s)j.

For large z, d ~~ and d ~ ~ both have leading terms of
order z~, with the coefficients of these terms differing
only in sign. Therefore, for large s, h(z) depends on the
difference of the partial-wave amplitudes, i.e., it
depends on H~. Hence, if the analytic continuation of
II~ contains a singularity at j=n, then k(s) will have a
term in its asymptotic behavior of order s . Recalling
that the positive-signature continuation of H~ is
identically zero, we now demonstrate that in cases
where (5) predicts a branch point at j=n in positive-
signature amplitudes, the coefficient of the s term in
h(s) is zero. (Reference 11 pointed out that the coeK-
cient is nonzero in the Amati-Fubini-Stanghellini
approximation. )

A. Perturbation-Theory Method

Consider the diagram of Fig. 2 and let the particles
associated with the Feynman parameters pl, p4, pl', and
P4' be protons and all other internal particles be iden-
tical neutral scalars (with C=+1). Then the sum of
Figs. 2 and 3 represents the exchange of a positive-
signature Regge pole and a spinless particle. This
combination, according to (5), produces a branch point
a,t j=o, —1 in positive-signature amplitudes. %e there-
fore do not expect a term of order s ' in 12(z).

If we label the momenta as shown in Fig. 6, the
numerator introduced into the Feynman integral for
Fig. 2 due to the presence of spins is

N(Pd) fV (Pg —k —k2)+&X'. (—P,—k2)+Mjl'{P.)
X~ (P~)$~ ( p .+k k-,)+~]—-—

XLy (P —kl)+M)u(P )

where I and v are proton and antiproton spinors, re-
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spectively, and M is the proton mass. If we evaluate the
contribution of this to k(s) in the t-channel center of
mass, where the incident particles move along the s axis
and the outgoing particles in the xs plane, we obtain

—g~2[(V'&) (k"+2k ")—k'k "+k "k ']
X[(Qt) (k"—2k ")+k'kP —k "k ']. (42)

The next step is to And the transformation needed to
cast the denominator of the Feynman integral into a
form suitable for symmetric integration, '0 to apply the
same transformation to the numerator, and to perform
the symmetric integration, leaving us with an integral
over Feynman parameters. This is a very lengthy
procedure, so we merely quote the result.

The coefIicient of (1ns)"+2/s2 (which gives rise to
behavior s ' when we sum all such diagrams) coming
from the contribution of Fig. 2 to k(2) is by (20)
proportional to

dP;5C1 "+'231

D m+2(0)

where the effect of 8, defined by (16), is to set

& = [Po(P +P ) {P '+P ')+P P (P '+P ')

+02 P3 (P2+P3)]4|11+(P2+P3) (P2 +43 )42 y

Dl(0) 3[POC1 PO (P2+P3) (P2 +P3 )41] Q P'233' C1

=D (0)~ (~. ~.)(~'—e')/C—',

where &f 1 and p2 are functions of only those Feynman
parameters associated with the sides of the ladder. If
we make the following transformation of variables in
the integral:

Pl+-+ P4, P2 ~ P3,
we see that

B. Sudakov Method.

Ke consider the same situation now for the diagram
of Fig. 6. Let us exchange two positive-signature boson
Regge poles with trajectories nl and n2 (with C=+1)
and, for simplicity, suppose that the protons have only
a scalar coupling to the Regge pole. %e take the
particles in the end crosses to be the same as in the
perturbation-theory discussion above. Then, again, the
positive-signature continuation of H~ is identically
zero, whereas (5) predicts a branch point at j=ni
+422 —1 in positive-signature amplitudes. Therefore, we
expect the coefficient of s '+ ' ' in k(s) to be zero. The
integral corresponding to the contribution of Fig. 6 to
13(z) will be, for large s, (34) with E equal to (42). If we
extract the leading behavior of (42) by use of (29) and
(30), we obtain

—8~'(4/~)l (1—l")k"+2k "]+k,k„—k;k„}
X {(Qt)[(1—-2y,)k, —2k„]+k,'k„—k, k„o} {43)

With this expression for S, (34) is not obviously zero.
However, let us apply the following change of variable
[derived from (39)]:

x, x&, y&, x2, k&, k» unchanged,

y~ —y —2k, ql/s,

P2 ~ 32+g X2g /S+ 2 (k1+k2l) ' gl/S )

k21 ~ —kl —k21+X2ql.

In (31) we now have 2332 ——2333 and 3331
——4334 ——233,

=m~=M, so we can easily check that this change Of

variable leaves (34) unchanged, apart from its effect on
X. The second bracket in (43) is also unaltered, but the
first bracket changes sign (since q10=0, q10 +t).
Hence, the integral (34) is, in this case, zero, in agree-
ment with (5).

a~b, C, ~C„D1(0)~D1(0), ACKNOWLEDGMENTS

Therefore, 3= —3=0.
"See Chap. 1 of Ref. 18.
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