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A theoretical calculation of the anomalous magnetic moments of the nucleons is presented, based on
Bincer s sidewise dispersion relations. Each of the relevant amplitudes is consistently derived in the approxi-
mation of keeping only intermediate ~E states. The result is obtained in terms of the elastic Sl.J. and E~~

phase shifts. The isoscalar and isovector anomalous magnetic moments are calculated for three alternative
models of the phase shifts involved.

1. INTRODUCTION

'HE electromagnetic structure of the nucleon has
been studied for many years, using dispersion

relations in the photon mass. ' Although some particular
features are reasonably well understood, there are
others, like the anomalous magnetic moments (a.m.m.),
that are still puzzling us. . A difficulty in the mentioned
approach lies in evaluating the isoscalar form factors,
since even the lowest mass intermediate state is a Bm

state. Such a state is presumably dominated at low
energy by the co, whereas the p dominates the 2x
(isovector) contribution. Experimentally, the isoscalar
a.rn. rn. is very small as compared to the isovector one.

A different approach was developed by Bincer' using
dispersion relations in the mass of one of the external
nucleons. Here it is relatively easy to account for the
lowest contribution, i.e., the xX state with I=J=~
(Fig. 2). However, there is no indication about the
asymptotic behavior of the amplitudes, so that the use
of unsubtracted dispersion relations remains at the
moment an assumption.

A rough evaluation of the nucleon a.m.m. within this
approach has been made by Drell and Pagels' in a paper
mainly devoted to the magnetic moment of the electron.
For evaluating the a.m.m. of the nucleon, they used the
following approximations: (a) a point srX1V vertex; (b)
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t On leave of absence from Istitnto di Fisica dell'Universita
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only Born terms for the pion photoproduction ampli-
tude; where, however, (c) the nucleon, in the zeroth-
order approximation, has no a.m.m. ; (d) the introduc-
tion of an external cutoff. Point (c) expresses the
philosophy that the a.m.m. can be constructed as an
expansion in the low-energy terms, starting from a pure
p„coupling, in analogy to the purely electromagnetic
problem of the electron's a,m.m. We will come back
later to this point.

An important (but not unexpected) feature of Drell
and Pagels's result is that the required cutoff turns out
to be relatively small, corresponding to about 1.5
nucleon masses. Now the fact that the relevant struc-
ture is confined in the low-energy region gives, a
posteriori, a justification for using approximations (a)
and. (b) above, as well as the saturation of unitarity
with mE states only. At the same time, it gives a simple
explanation for the dominance of the isovector part of
the a.m.m. , since the corresponding photoproduction
amplitude is the one which dominates near the xS
threshold.

In a more realistic calculation the cutoff should be
replaced by a natural damping of the amplitudes at high
energies. We can easily see that the unitarization of the
m-SX and photoproduction amplitudes, where we again
retain the m.X contribution and use the crude scattering-
length approximation, is enough to make the dispersion
integral of the magnetic moment convergent and
provides an effective cutoff of the same magnitude of
the one used by Drell and Pagels.

In this paper, we present a theoretical calculation of
the a.m.m. of the nucleons, based on the Bincer sidewise
dispersion relations and where each of the involved
amplitudes is consistently obtained by saturating
unitarity up to the xS intermediate state. In Sec. 2 we
write down the dispersion relation for the a.m.m. and
we express the absorptive part in terms of the xEX
vertex form factor and the pion photoproduction ampli-
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Fio. 1. Electromagnetic vertex
of the nucleon.

The form factors Fs v(+W) can be obtained from.
(1), using the formula

Q eu(p, s,r) r„(p,w)vs" e v(+W)u(p, r, r)

= —(e/2m)F, e, v(~ W

tudes. The +XX vertex is treated in detail in Sec. 3,
while Sec. 4 is devoted to photoproduction. At the end
of this treatment, everything is expressed in terms of
the mlV elastic S~~ and P~~ phase shifts. These phase
shifts are obtained in three different models valid at
low energy. In the 6rst model we use the scattering-
length approximation for both S and P waves, while in
the second model we use the scattering-length approxi-
mation for the S wave and a one-resonance formula for
the P wave. These are very simple models which, how-
ever, enable us to obtain simple analytic expressions for
the m.VE vertex form factors. The third model is a best
6t obtained from the experimental data on x.V scatter-
ing up to 350-MeV pion lab kinetic energy. Finally, in
Sec. 5 we report the numerical results. These are not
very different for the three models, and give p,

'~~ —0.17
and p'~ j..0 for the isoscalar and isovector a.m.m. ,
respectively.

2. DISPERSION RELATION FOR THE
ANOMALOUS MAGNETIC MOMENT

Let us consider the electromagnetic vertex of the
nucleon represented in Fig. 1, where the outgoing
nucleon of momentum p and photon of momentum I are
on the mass shell (p'= m' and ts=O), and the ingoing
nucleon of momentum u =p+1 has the variable mass
W'=~'. Here W will be our dispersion variable. This
vertex is described by six form factors' according to'

eu(ps)r„(pw) = eu(p)(Ly„F~(w)
—(i/2m)a „„i"Fs(W)+/„Ps(W)J
X(w+W)/2W+L~„F, (—W)
—(i/2m) o „„t"F2( W)+ f—„Fs( W)]—

X (—w+ W)/2W. (1)

The normalization is such that F~(m) is the nucleon
charge, in units of e, and Fs(m) =p' is the anomalous
magnetic moment, a.m.m. , in units of e/2m. Conserva-
tion of the electromagnetic current implies the general-
ized %ard identity'

(maw)Pg(&w, l') —PFs(&w P) = (m&w)e, (2)

but no conditions are implied for Fs(&w). In the
following we shall split the form factors in the usual
way, i.e., F;=F, +rsF, , where the superscripts S
and V denote the isoscalar and isovector parts,
respectively.

40ur notations are those of J. D. Bjorken and S. D. Drell,
Relativistic Quantum Fields (McGraw-Hill Book Co., New York,
&965).

where the sum is over the spin and isospin components
of the nucleon, and the projectors v&' (&W) are
given by

mw ~w+W
vs"e(&IV) =+ ( i~—v"f,),

(W' —m')' 2W (4)

v,"(aw) =-', r,v,"(Ww).

In his paper, ' Bincer proved that the form factors Ii;
satisfy dispersion relations in W. Here we assume that
F~ satisfies a dispersion relation without subtractions,
that is,

00

Fs(&w) =— dW'
ImF, (W') ImF s( —W')

-+
W'WW W'&W

This also shows that Fs(&W) can be considered as a,

unique function of W, for either positive or negative
values of W.

In the one-pion approximation, the absorptive part
of I'~ corresponds to the graph of Fig. 2 and can be
evaluated in terms of the xXS vertex, where one
nucleon is offshell, and of the usual photoproduction
amplitude. For the ~XX~ vertex we use the repre-
sentation

u(p, s) V~ (p,w) =- gu(P, $)l'rsvp

X PP.(W) (w+ W)/2W
+P (—W)(—w+W)/2Wj, (6)

FIG. 2. Pion-nucleon intermediate-state contribution
to the absorptive part of the nucleon current.

5 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

where o, refers to the isospin of the pion, g is the standard
pseudoscalar coupling constant (g 13.6), and F is
normalized such that F (m) = 1.

For the photoproduction, we use the standard Chew-
Goldberger-Low-Nambu (CGLN)' notation. Since the
quantum numbers of the m.X channel are J"=-',+, only
the multipole M~ will contribute to the process.
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The unitarity relation, using Eq. (3) for projecting
out ImF~, reads

1
ImF, s, v(+W) P d'g b(qs —stts)e(go)

8X2 s, z

XbL( —g)' —'$tl( —
go) (p, , )

FIG. 3. Pion-nucleon intermediate-state contribution
to the absorptive part of the xlV vertex.

Xg ~(W)(t7+stt)y ~t(& W)»o&, v(~W)tt(p s r) (7) and F(W) is an arbitr'ary polynomial. This expression
of F is valid, provided

where A„ is the photoproduction amplitude. ' Ex-
plicitly, we get

dWLn(W) —n( —W)$ (~ . (14)
ImFss v(W) = g(W/2ttt) P(W —rrt) s

F (W)Mi 8'v(W) (g)

ImFs ~ (—W}= g(W/2sst}DW+trt)' ts
—g"

XF *(—W)&s+ "(W) (&)

where W)trt+tt and we have used the reciprocity
relation' Mi (—W) =Es+(W). Also, note the relation
of the amplitudes M~ ~ ~ to the CGI,N amplitudes:

My =3M'

Mi v=Mi '+'+2Mt+' '.

The ~EX vertex and the photoproduction amplitudes
are studied in detail in Secs. 3 and 4.

3. TREATMENT OF THE PION-NUCLEON VERTEX

In this section we want to obtain an expression for
the srXiV vertex form factor F (&W) defined in Eq. (6).
In the approximation of elastic unitarity, the absorptive
part of Ii corresponds to the graph of I'ig. 3 and is
given by

IniF (&W)=e ' '+~i sinn(+W)F, (%W), (11)

The structure of the S- and P'-wave phase shifts is
rather complicated by the presence of several reso-
nances. The lowest of them are" Sii(1548) (probable);
Sii(1709), Fit(1466) (Roper resonances); Fit(1751)
(not confirmed). In order to treat the srlV scattering in
the low-energy region, we use the following three models.

Mode/ I.%e use the scattering-length approximation
for both S and I' waves. %e take the following numerical
values": a0=0.171' and ay= —0.101@, . Here the
approximation for I' wave breaks down at very low

energy, much below the 1466 resonance.
Mode/ II. Here we use the scattering-length approxi-

mation for S wave, which gives a reasonable agreement
below the 1548 resonance, and a resonant form for I'
wave, corresponding to the 1466 Roper resonance.

Mode/ III.Here the S~~ and P~~ phase shifts are taken
directly from experiment. Speci6cally, we use the 6t by
Roper et al."for elastic scattering, obtained from data
up to 350-MeV pion lab kinetic energy (corresponding
to 1350-MeV total c.m. energy).

In each of these models the phase shifts seem to tend
to a constant value, so that the condition (14) is not
satisfied. Therefore, we have to take, for Q(W), a sub-
tracted form and we get for P the following expression:

for W~&trt+tt. In Eq. (11), n(+W)=bi(W) is the Fit F (W) Q(W)
phase shift for sr' scattering, and n( —W)=by(W) is
the S~~ phase shift, according to the Macnowell' 8'—m
reciprocity rela, tion b&+(—W) =bit~» (W) (1=0 in our Q(W) =
case). 7r n+

The solution of the homogeneous Hilbert problem
associated with Eq. (11) is'

F (W) =F(W) expQ(W),

(W' —W) (W' —m)

n( —W')
(16)

(W'+ W) (W'+stt)

where Q(W) is of the form

1 " n(W') n( —W')-
Q(W) =— dW' +, (13)

sr +„W'—W W'+ W

' The correspondence with the CGLN notation is the following:
+ ''-'L. , ]+

7 J. S. Ball, Phys. Rev. 124, 2014 (1961).
8 S. W. MacDowell, Phys. Rev. 116, 774 (3960).

See, for instance, N. I. Muskhelishvili, SingnLar Integral' Eqla-
tiorts (P. Nordhoff Ltd. , Groningen, The Netherlands, 1953).

'o C. Lovelaee, Proceedilgs of the Hesdelberg INterrtatioitat Con-
ferertce ol Elementary Particles (North-Holland Publishing Co.,
Amsterdam, 1968),p. 79; CERN Report No. Th837 (unpublished);
A. Donnachie, R. G. Kirsopp, and C. Lovelace, CERN Report
No. Th838 and Addendum (unpublished).

~ J. Hamilton and W. S. Woolcock. , Rev. Mod. Phys. BS, 737
(1963).

'2 L. D. Roper, R. M. Wright, and S.T. Feld, Phys. Rev. 138,
3190 (1965). We use the solution 24 of these authors, obtained
from 576 data and 37 parameters for 5, I', and D waves. Fits up
to 2-BeV pion kinetic energy are also available (Ref. 10), however,
they are not free at present from serious ambiguities. See, e.g.,
M. Bander, P. W. Coulter, and G, L. Shaw, Phys. Rev. Letters
14, 270 (1965).
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form

F,(&w) =exp[Qp(&w)+in(&w) J, (15')

P~ ~t

+IG. 4. Pole-term contribution to the photoproduction amplitude.

&8'—m
Qp(+W) = F —dW'

n(w')

(W' —W) (W' —m)

n( —W')

(W'+ W) (W'+m)

(17)F (W):const W "' &&'e&"'+'P&"&'
g ~co The photoproduction amplitudes which are relevant

to our problem are the multipoles M~ and Eo+, as it
appears from Eqs. (8) and (9).These amplitudes can be
obtained from a unique analytic function M(W), such
that

We now consider the specific expression of the form
factor in the above three models.

Model I. In the scattering-length approximation the
relevant phase shifts are

M(W+i0) =((po+m)/(q. +m))'"
&&(ql)-M, (W), (27)(1s)h s(W) = arctan(aeq),

8p(W) = arctan(uiq') . (19)
M( W —i0) =—((pe+m)/(qo+m))'"~a+(W) (2s)

satisfying the condition F (m) = 1. The arbitrary (16')
polynomial has been dropped from Eq. (15) for
simplicity. If Ss(eo)=n(+eo) and hp(~)=n( —~) are
the asymptotic values of the phase shifts, the asymp- 4 TREATMENT OF THE PHOTOPRODUCTION
totic behavior of the solution is AMPLITUDE

F.(W) = (1—
q ')/(1 — q'), (20)

The Omnes function of Eq. (15) takes the simple
analytic form given by" where / is the photon momentum in the c.m. system.

M(W) satisfies the dispersion relation"

F (—W) = (1+rioqi)/(1 i«q)
00

(21) M(W) =B(w)+ dW'—
where 8'&0, q is the x~V c.m. three-momentum and

q, = i [1 i '/4m—']'i' (22)
IrnM(W') Im.M( —W')

X (29)

Mode/ II. In this model, the phase shift 6q is the same
as that of Eq. (18), while hz is given by

8i (W) = arctant y„q'/(W, —W)],

where B(w) is the contribution from the singularities
not included in the region of integration.

(23)

where TV„= 1466 MeV is the energy of the resonance and A. Born Terms

y,= I',./2q, .',

P+l+m q —l+m
8~ = ieg I» V&r 'r5r

y, (w) = (1/q) L~,qs/(w, —w —i~„q~)$.

(24) The term 8 of Eq. (29) will be approximated by the
Born terms of Fig. 4. These can be evaluated from the

where q,= q(W, ) and I', 211 MeV is the width of the perturbative current of photoproduction,
resonance. "Expression (23) corresponds to the follow-

ing resonant form for the I'y~ xÃ amplitude:

Even in this case, the vertex form factor takes a
simple analytic form:

F (W) = (W, m y,q$')/(W—, W— 1y, q'), (—26)—'

while F ( W) is still the sam—e as in Eq. (21).
Mode/III. In this case the form factors F (&W) have

to be numerically evaluated, starting from Eqs. (15)
and (16), which can be rewritten in the more suitable

"See, e.g., G. Barton, Dispersion Techniques in Field Theory
(W. A. Benjamin, Inc. , Net York, 1965).

k„
iy5e3, prp—, (30)

(k l)

I'„=-', (1+~3)y„—(i/2m) o „„l"(p'e+ r3@'~) . (31)

Explicitly, the contributions to the multipoles M&
and Eo+, separating the isoscalar and isovector parts
and the electric and magnetic (i.e., proportional to ii')

'4 See Ref. 7 and also N. Zagury, Phys. Rev. 145, 1112 (1966).
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parts, are the following:

3 g~ 8 3$—
4 4~ gs(g+1) L(g 1)&

3 gg S 3x—
4 4' x'(x —1) ((x+1)'—v'j'"

1 p $2

+2v2—lnA
x Q

P X2
—2v2 — 1nA )

3 g 1 1 x 2
M„s=——— 3 —x'+ v' ——lnA+ —(x' —1+v')

' L(*—1)'—'3'"- Q

3 g 1 1 x 2
S 3—x'+ v' ——lnA ——(x'—1+v')

4 4nx' t (x+1.)'—v'J~' Q x

1g 1 1 3 x2 2x
M, v= —— — g ——(1—v')+ —lnA+2v' 3+—ln8

~

4 4n x'(x+1) t (x—1)' —v']'" x Q Q )
1 g 1 1 3 x' f 2x

V x ——(1—')+—lnA —2 ~l 3+—1&B)
4. 4z g&(x+1) $(g+1)2 v&1&&2 g Q ( Q

(32)

1 g 1
M ~=———

4 4m x' f(x—1)'—v'j "~

gF
4 4m- x' $(x+1)'—v'$'"

g 2
1—3x'+ 3v'+ —lnA+ —(x' —1+v')

Q x

s 2
1—3x'+ 3v'+ —lnA ——(x' —1+v')

Q x

where M and E refer to the multipoles Sf' and Eo+,
respectively; the superscripts S and t/, to the isoscalar
and isovector parts; and the subscripts e and m, to the
electric and magnetic parts. Also,

x —e+Q

x —e —Q
(33)

(34)

In the above expressions, x= W/m, e=ko/m, Q=q/m,
and v =p/m.

3. Estimate of the Multipoles M~ and Eo+

This is the most delicate point of our analysis since
the numerical results for the a.m.m. depend very
strongly on the photoproduction process. On the other
hand there are some general aspects to be kept present,
which pose some restrictions to our treatment. First, we
are essentially interested in the low-energy region since
we believe, with Drell and Pagels' that the a.m.m. is
mostly due to the low-energy structure. Then, according
to the Kroll and Rudermann" theorem, the photopro-
duction amplitude near threshold is given essentially by
the Born terms in the case of charged pions. I'or neutral

'5 N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954);
A. Klein, ibid. 99, 998 (1955).

pions no such a limit exists and the Born amphtude
should be modified. In the CGLN notation the currents
involved in m- photoproduction are J„(+~ and J„"&.Our
modi6cation, however, will only affect J„&+&.

A second problem is the necessity of taking into
account the effect of the 3-3 resonance in the crossed
channel, as we know that this effect is important even
at low energy. Therefore, we must add at least the 3-3
contribution to the Born terms and to the rescattering
contribution.

Third, it is important for our purpose to have separate
expressions for the electric and magnetic parts of the
amplitudes. However, this is not easy when dealing with
the 3-3 resonance, unless we use a particular theory. For
this we shall use the static theory of Chew and Low."

In the static model we have for the magnetic part of
the multipole 3f~+&"" the expression'

(35)

f&p&"'&= (1/q)e'"& sinbgg (36)

is the resonant P~~ amplitude. ProIn here we can also

'6 G. F. Chew and F. E. I,ow', Phys. Rev. 10I, 1579 t', I956); see
also Ref. 5.

where p, ~ is the total isovector magnetic moment of the
nucleon, f is the isovector m X coupling constant
(f'= 0.082), and
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FIG. 5. Pion-nucleon Intermediate-s— tate contribution to the
absorptive part of the photoproduction amp &tu e.

where
4 " sin'lloo(oo)

Z33 =— QM

3' p q

4 &o Slil &Ioo(M )
Zo, '(&o) =— doo'

37I p &o +&o g

(43)

obtain the contributions of the 3-3 resonance to the
other multipoles. '

For the multipoles M~ (+' and Eo+'+ we ave e
following integral equations'.

Mi &+i(oI) Mi &+'a(&o)

/q

8 " d&o' ImM, +&'"i(&o')

O'Ir p &o +Co l g

The 3-3 contribution is negligible oor the electric
arts of Mg an(+& d 8 (+' and is absent in the otherp

that we can assume for theseisospin components, so a
amplitudes the following expressions:

Mi .&+'(&o) = e' &~i cosn(W) Mi, .&+is(&o),
1

E,+&())= ' &
—~~ cosn( —W) Eoi, (+)~ 46Eo+ q GO

Mi &
—oi(&o)=e' &~i cosn(W) Mi & '~a(&o),

1 " d&o' ImMi &+) (&o')

+ . 37

(3l~)&+~( ) E &+~a(&o) 4 " ImMi~&'"'(&o )Eo+ M
I

p /
M 3'

l&4 q

1 0 |—ImEo+ &+) (&o )+ ' ' ' . (38)
/

7I p &o &o &o

w ere co=a —m and we have neglected other terms
with nonsingular integran~s. ~ince t e
cannot contribute in e, ri-'b th direct channel, it only contri-
b t the real part of the amplitudes, in the p ysicautes o e

. In the approximation of keeping yonl a mX
onl fromd' e state, the imaginary part comes on y

rescattering, corresponding to the graph o ig. , and
is given by

ImMi (&o)=e ' &'~i sinn(W)Mi (&o), (39)

Imx. o+i+g = ~E, ( )= ' ' ~'sinn( —W)ZoI(&o). (40)

Mi, &+'(&o) =e' &"'i cosn(W)

2 p~ /q

X Mi „.&+'a(~)+——Zoo'(~)—
3 f &o

(41)

I' & i ) e' ' "iLosn( ll')— '
O-l, In,

p~
X Eo+., t&+"(~)+—Zoo~, (42)

(37) and (38) using also (35) and (36),
have the following approximate solution or e
magnetic parts:

E &
—o~(oo)=e'"& ~~ cosn( —W) Eo+(—')~ o) . 480+

We next need a further assumption in order to extend
(41) and (42) away from the static limit. In fact, we see,e, from Eq. (42), that the contribution of the 3-3
resonance would be linear y

'
gres rl diver ent. Now, in the

static lmlt, , e 0l' ', th Born terms as from expressions ( 2),7

are
Mi „&+)a(&o)= 2fproo, — (49)

~o+,-""(~)= —of~'(lC/~),

so that E&ls. (41) a,nd (42) can be written

(50)

Mi &+i(&o) = e' &~i cosn(W)

X Mi ...&+iat 1—Zoo'(&o)/2f'], (51)

L i+&(oo) =e' & '~& cosn( —W)

XEo+ '+' P1—Zoo/2f'] (52)

We will assume these expressions as approximat yximatel
valid at all energies.

rzin the numerical value of the parameterConcerning e nu
abl u sinfi d

'
(43) Hohler and Schmidt, proba y

'
g

an eRective-range formula, give the value
The use of a resonant 8~3 amplitu e aanalogous to

'
h 5' = 1236 MeV and I'„=125 MeV, gives

Z» ——0.120. Finally, using for 5» the expenmenta
by Roper et a . up oy t." t 700-MeV pion kinetic energy, we

d Z =0.091. Since the contribution fromhave obtaine
higher energies is expected to be very sma, e a,s

robably the most reliable value.
Z ' f E (44) can be reduced to Zoo byThe factor ~~ o q.

k' '
th

'
tegrand the approximation ~ co' co

oo/(&o, +co), where &o„=298 MeV is evaluate a e
resonance. We thus obtain

' G. Hohler and %V.. Schmidt, Ann. Phys. l,. (N. Y., 28, 34 (1964). Zoo'(oo) = L&o/(&o„+&o)jZoo. (53)
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5. NUMERICAL RESULTS TAaI,E I. Comparison among the three models described
in See. 3 of the text.

g
p&'8, V

2m 7r

8"
X L(W —m)' —p'O' "F.~(W)Mg ~(W)

tV —m

+ $(W+ns)' —p'j'"F *(—W)EO+e "(W)
W+m

(54)

%e have now the ingredients to calculate the a.m.m.
From (5), (8), and (9), we have the general expression

T
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Model I
-=- 0.0&5
—0.44 t.

+0.182
+1.389
—0.144
—1.771
—0.076
—0.373
—0.173
+1.084

Model II
-n. &o.~

--0.441
+0.390
+1.389
—0.156

1 ~ 771
—0.094
—0.373
—0.186
+1 211

Model III
=-0.568
—().589
+1.345
+1.786
—2.622
—3.669
—1.286
—1.022
—0.159
+0.947

where the form factors F (+W) are given in Sec. 3 for
three speci6c models of srÃ scattering and the photo-
production multipoles M~ and Eo+ are given in Sec. 4.
These expressions are such that the integral in (54) is
convergent.

In each case Eq. (54) is of the form

~~S—y S+~~8y S

~~V —j V+~~Vg V (56)

where I.~ v and I 8 v are the integrals containing,
respectively, the electric and the magnetic part of the
multipole amplitudes. These expressions, of course, can
be immediately solved for the a.m.m.

Before giving the numerical results, we want to make
a comment on the difference between the approach of
Drell and Pagels' and the present one. The tw'o ap-
proaches, besides the difference in the approximations
used for the amplitudes and for the evaluation of the
integral, diRer for the method itself of calculating the
a.m.m. In the Drell-Pagels philosophy, in analogy with
the electron case, the a.m.m. of the nucleon is expanded
in terms of the low-energy structure. In the first order,
the a.m.m. is given by the graph of Fig. 2, with a xX
intermediate state and where the nucleon is considered
as having no anomalous moment. In our notation this
would be

e' &~& cosn(W) =1j(1—ia&q'),

e' & ~& cosn( —W)=1/(1 —faog),

the Born amplitudes are those of Eq. (32),
Z33= 0.091.

For the isoscalar and isovector a.m.m. , we get

(58)

(59)

step-by-step saturation of unitarity. Our philosophy is

different and, in a sense, more conventional. Our ap-
proximation also consists of partial saturation of

unitarity, but we leave the magnetic moment as an
unknown and we look for a consistent solution at every

step.
%e remark that, in order to expect good results from

Drell and Pagels's first approximation, both the two-pion

contribution and the I term should be small. However,
in our analysis we find that I is large and of the same

order as I.. Therefore, we expect that our approach
should give a better result, provided the higher inter-
mediate states are negligible. On the contrary, the fact
that our result is not very good. indicates that those
contributions are not so small.

%e finally report the numerical results of our analysis

for each of the three models of Sec. 3.
Mode/ I. The expressions for F (+W) are given in

Eqs. (20) and (21), while the multipole amplitudes are

given in Eqs. (45)—(48), (51), and (52), where

@~s,v —I 8,v (57)
p s 0.17 p,

'v = 1.08. (60)

The second-order correction is then given by the
correction to the same graph of Fig. 2 coming from the
first order a.m.m. and by the graph with a ewe inter-
mediate state and normal moment, and so on. In other
words, to pass from a given order in the expansion to
the successive one corresponds to adding one more pion
in the intermediate state. Ke observe that in the electro-
dynamic case there is a strict correspondence between
this kind of expansion and the perturbative expansion
since adding a new photon corresponds to increasing by
one unit the order in n, while such a correspondence does
not exist in the case of strong interactions. However,
the Drell-Pagels philosophy is very interesting in order
to define a perturbationlike expansion in terms of

3fodet II. %e proceed here in a quite similar way.
Now we have

e' &~& cosn(W) =
O'„—S'—iy,q'

(61)

and we obtain for the a.m.m. the following values:

~'s= —0.18 p,
'v= 1.21. (62)

3IIodel III. Here the USE form factor has been
numerically evaluated from Eqs. (15') and (16'), where

the phase shifts are those of Ref. 12 up to 350-MeV pion

energy and have been taken as constant beyond that
energy (they are almost constant at that energy and in
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the particular fit). The integrals of Eq. (54) have also
been numericaBy calculated and we get

'8 —0.16 &
v 09 (63)

All the above results are summarized in Table I,
where we also report the numerical values of the
quantities I,s, I,v, I s, andI v of Eqs. (55) and (56).

%e note that Models I and II give values of the
integrals and of the anomalous moments which are
rather close to each other. Model III uses an empirical
6t and the problem arises whether the Macoowell sym-
metry is satisfied at least approximately by such Q.ts.
The prediction for p,

'8 can be considered satisfactory in

all three models, in view of the inaccuracies and approxi-
mations introduced. Pl esuITIabbJ the slTl.aB disci epancg
comes from errors in the high-energy tail of the photo-
production amplitudes, and it should be possible to
obtain better estimates by further re6nements. Our
general impression is that a better estimate (for tt'8 and

especially for tt'v) requires a better knowledge of photo-
production in the intermediate-energy region (beyond
the region of the static model). On the other hand, much
work is being devoted at this time in various laboratories
to a hetter understanding of these amplitudes, and we

hope that it will soon be possible substantially to im-

prove the results obtained here.
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It is proved, by perturbation theory and by the method of Sudakov, that if two Regge poles with tra-
jectories o.j,, a2 and signatures v j., r2 are exchanged, the resulting Regge branch point at j=n&+a2 —1 appears
only in partial-wave amplitudes of signature ~1~~g, vrhere q= —1 if both Regge poles are fermions and
q=+1 otherwise. An example is given from the case of proton-proton scattering.

I. INTRODUCTIOH
' 'N situations where it is impossible to fit experimental
~ - data by assuming Regge-pole dominance, it is useful
to investigate whether the discrepancy can be accounted
for by contributions from branch cuts in the complex
angular momentum plane. For this reason (as well as

simply to satisfy one's theoretical curiosity), it is
important to know which amplitudes receive contri-
butions from particular Regge cuts.

A Regge pole has associated with it de6nite quantum
numbers (e.g. , isospin, G parity, parity, signature) and
will a6ect only those amplitudes with an identical set of
quantum numbers. It can be shown' ' that the exchange
of two Regge poles with trajectories o.& and o, & will give
rise to branch points in the complex j plane; of these
branch points, the one lying furthest to the right has a
trajectory (1)

where the arguments of o.& and o.2 are given by definite
rules. ' 4 In order to discover which amplitudes possess
such a branch point, we need to know the quantum
numbers associated with a two-Reggeon system.
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It is clear that internal quantum numbers, such as
isospin and G parity, will combine in exactly the same

way as if the Reggeons were elementary particles; for
example, the exchange of two Pomeranchukons will

give a cut in an amplitude with I=0 and G= 1, whereas
the exchange of a Pomeranchukon and a pion Regge
pole will give a cut in an amplitude with I= j. and
G= —1.Gribov' pointed-out that one would expect any
particular Regge cut to appear in amplitudes of both
parities because of the arbitrary orbital angular momen-

tum associated with the two-Reggeon system. There
remains the important question of signature.

Mandelstam~ proved that a partial-wave amplitude
involving a state of two elementary particles of spins O. l

and 0.
& has a singularity in the j plane at

J=o'a+os

provided this is a wrong-signature point. For positive-
signature amplitudes, the wrong-signature points are
the odd integers (or odd integers plus one-half in the
case of boson-fermion amplitudes); for negative-

signature amplitudes, the wrong-signature points are
the even integers (or even integers plus one-half). Thus,
if we put v=-', for a boson-fermion amplitude and v=0
otherwise, we see that the singularity at j=or+os —1

' V. N. Gribov, Yadern. Fiz. 5, 197 (1967) LEnglish transl. :
Soviet J. Nucl. Phys. 5, 138 (1967)g.

' S. Mandelstam, Nuovo Cimento 30, 1113 (1963).


