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Generalized Potential and Bootstraps in the N/D Framework*
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In the p bootstrap, the generalized potential is usually computed by assuming that the p resonance is
the main feature of the scattering amplitude in the crossed channels, making the narrow-width-approxi-
mation, and using crossing symmetry to obtain the generalized potential in the direct channel. A specific
example is given to illustrate that one cannot expect to obtain meaningful results by using this method.
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where the partial-wave amplitude is A =X/D, p is a
kinematic factor, and we make a subtraction in D at
threshold s@.B(s) is the generalized potential.

Instead of computing 8 from the crossed channels,
we will assume that A or the phase shift 8 is known on
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'HE bootstrap problem within the iV/D framework
has been the subject of many papers. ' For the

purposes of this paper we will talk about the p-meson
bootstrap. ' The philosophy behind the calculation is to
begin with the assumption that the exchange of the p
meson generates the generalized potential in the S/D
equation which then produces the p meson. This is
equivalent to assuming that the p resonance is the only
important feature of x~ scattering in the crossed
channels and then using the narrow-width approxima-
tion and crossing symmetry to compute the generalized
potential. For the p bootstrap the hope is that the
generalized potential is primarily responsible for pro-
ducing the p resonance and inelastic effects are only
necessary to improve the agreement with experiment,
i.e., the p meson is not due to Castillejo-Dalitz-Dyson
(CDD) effects in one of the inelastic channels. ' Thus
one should be able to compute the p resonance in a
single-channel formalism.

Ke will investigate the question of whether it is
meaningful to attempt to compute the generalized
potential in the manner described above and expect to
get reasonable results in a single-channel calculation.

The single-channel Ã/D equations without in-

elasticity are
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where (PJ' denotes principal-value integral. By using
Eq. (3) we can compute B in the physical region if ii is
known for physical values of s. We have no way to
continue 8 to unphysical s, but that is irrelevant for
our purposes since we only need to know 8 for physical
s to solve the cV/D equations.

Now suppose that the l=1 partial wave has a reso-
nance and the low-energy phase shift is given by the
Layson resonant forms p= $(s—stt)/sjrt'(s —sz),

tan8= $y (s s~) sts//s jttl/(rntt' s)—) (4)—
and at some higher energy the phase shift is modified
so that it returns to zero. IQ the spirit of the narrow-
width approximation we would expect to be able to
compute B(s) approximately by ignoring the high-
energy behavior of ii Li.e., we let 8(~)=or in com-
puting Bg. We would expect to be able to use this B in
the X/D equations to at least compute the main
features of the resonance. The result of following this
procedure is shown in Fig. 1. Surprisingly, w'e find not
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the physical cut and compute 8 from this. I evinson's
theorem tells us that4 5

8(eo ) B(0)—7r(IV( nn Err)

where ECDD is the number of CDD zeros in D and Eg is
the number of bound states. We assume that no CD&
effects are present and that there are no bound states
so that tt(~)=0 if we take t't(0)=0. In order for the
calculation to make any sense, we must let tt(eo) =0 if
we hope to describe a resonance in a single-channel
calculation.

We can compute 8 from the partial-wave dispersion
relation

1 " ImA (s')
A (s) =B(s)+— — ds'
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or since A =e" sinB/p,
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even a slight hint of resonant behavior in the computed
amplitude. In Fig. 2 we include the high-energy be-
havior of B(s) in computing B(s).Now we find that by
using this B(s) in solving the X/D equations we are
able to duplicate the input phase shift. Thus it is
absolutely necessary to include the high-energy be-
havior of the phase shift in computing a resonance
which is not produced by CDD effects.

Computing the generalized potential from the phase
shift has nothing to do with bootstraps. However, the
conclusions we draw are relevant to the usual bootstrap
procedure. When one makes the narrow-width ap-
proximation in the crossed channels it is automatically
assumed that B(~)=7r. Setting B(~)=~ implies the
presence of CDD effects. The generalized potential
obtained in this way is then used to solve the E/D
equations in the direct channel in the hopes of reproduc-
ing resonant behavior in which no CDD effects are
present. This procedure is clearly inconsistent and can
only lead to meaningful results in the event that the
higher-energy behavior of 8 does not significantly
aftect the behavior of the generalized potential. By
computing the generalized potential from the behavior
of the phase shift in the direct channel, we have
explicitly demonstrated that the generalized potential
depends very strongly on the high-energy behavior and
the resonance cannot be reproduced unless we let
B(s) ~ 0 as s —+ ~. One cannot hope to obtain a
reasonable expression for B(s) by making the narrow-
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FIG. 1. (a) Input phase shift used to compute 8 (s). The param-
eters are p =0.6, s~=4, and mg'= 8. (b) Output phase shift found
from the N/D equations.
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Pro. 2. (a) Input phase shift used to compute 8(s). The param-
eters are the same as in Fig. 1, except that now we explicitly
include the behavior 6 ~ 0 as s —+ w in computing 8 (s). (b) Out-
put phase shift found from the Ã/D equations.
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width approximation in the crossed channels and
further mutilating the generalized potential term by
imposing an approximate form of crossing symmetry.
Any resemblance between the potential computed in
this manner and the potential which one would com-
pute from a complete knowledge of the (complex) phase
shift must be purely accidental.

If we attempt to include 6nite-width effects by using
a Breit-Wigner form for the phase shift in the crossed
channels, we are still faced with the problem that
8(s) —+ vr as s —+ ~. Instead of making the narrow-width
approximation in computing 8 from the crossed
channels, we might try using a form for the phase shift
which includes the asymptotic behavior 8(eo ) =0.Using
crossing symmetry to obtain B(s) in the direct channel
still introduces a high-energy divergence so that we
must use a cutoff in solving the N/D equations. If one
tries this for the p meson, it is impossible to adjust the
cutoff to obtain a solution describing the p in the direct
channel in anything but a very qualitative sense (the
resonance is still much too broad). The resonance is
probably produced as a function of the cutoff rather
than from the 8 computed in this manner.

These calculations indicate that commonly used
methods to compute the generalized potential are
clearly inadequate. Until we have a more accurate
means of computing B(s) from scattering in the crossed
channels it is impossible to carry out a meaningful
bootstrap calculation.


