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Spectral Density Sum Rules, Current Algebra, and Zero-Mass Extrapolations*
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The new spectral sum rule
"~ ")(~')p-'" (p')&p'=

0 0 P,

is derived under the assumption that there exists a unique limit in which all masses are zero for the A 1px
and p~m decay amplitudes. In this sum rule, p (') (p') is the pseudoscalar spectral function and p (» (p2) is the
axial-vector spectral function, both of which occur in the Kallen-Lehmann representation of the propagator
of the vr-type axial-vector current. An experimental test of this sum rule is proposed. The equivalent sum
rule for E-type axial-vector currents is derived from considerations of the gEE amplitude, and applications
of these sum rules in conjunction with the first Weinberg sum rules are discussed. In particular, it is found
that fz/f = 1 for the pion and kaon decay amplitudes.

I. INTRODUCTION

'HE results of using the hypothesis of partially
conserved axial-vector currents (PCAC) and the

algebra of currents to obtain coupling constants consist
of empirical determinations of these coupling constants.
That this is so, can be seen in the context of Lagrangian
field theory where renormajized coupling constants are
by definition experimentally determined parameters in
the theory. The results of current algebra and PCAC
are therefore simply approximate relationships among
quantities which are accessible to experiment. If these
relationships turn out to be valid experimentally, then
a test is provided for the current algebra and the
validity of the mass extrapolations employed. However,
these methods cannot be considered to be a dynamical
determination of the couplings as in the bootstrap
theories, for example. This paper extends the concept
of mass extrapolations in such a way as to provide a
dynamical determination of some of the coupling con-
stants. In particular, we will treat the well-known
Kawarabayashi, Suzuki, Riazzudin, and Fayyuzudin
(KSRI') relation for the p-meson coupling g, ."Their
result is

g, = m,/f. ,

where f is the pion decay amplitude. The use of
p-meson dominance of the pion electromagnetic form
factor and Eq. (1) yields a p width of approximately
144 MeV. If the results of Das, Mathur, and Okubo
are taken, ' the derivation of which utilized a once sub-
tracted dispersion relation for the amplitude for p

—& 2x
and pole dominance of the pion electromagnetic form
factor, then. (1) is replaced by

where 5(0. Reasonable values for 6 yield a width of
about 140 MeV. However, if the results of the recent
colliding-beam experiments are confirmed, 4 which yield
a width of about 90 MeV, then we must conclude that
neither Eq. (1) nor Eq. (2) is well satisfied.

Ke propose to use PCAC and current algebra to ob-
tain vertex functions at a point. where all the masses are
zero rather than on the mass shell. To do this, we must
formulate our method of zero-mass extrapolation in
such a way as to yield results with dynamical content.

. In this paper, we first consider the extrapolation of the
A&p~ and pe~ decay amplitudes. Our dynamical as-
sumption is that the zero-mass extrapolation using the
held theoretical form of PCAC and the zero-mass ex-
trapolation using pole dominance in the form of field
current identities yield identical zero-mass limits for
the relevant vector-meson decay amplitudes. This
"loose" statement will become more speci6c when the
applications are discussed. The result of this assumption
when it is applied to the A &pm- system will be a new sum
rule for the spectral densities of the Kallen-Lehmann
representations of the axial-vector and vector-current
two-point functions. When this new sum rule is added
to the first steinberg sum rule, which is on rather firm
footing in the context of field-current identities, "a set
of relations among vector-meson and axial-vector-
meson coupling constants can be derived which is
consistent with experiment. Such applications are dis-
cussed in Sec. VI. This new sum rule is shown to imply
the equality of the two possible zero-mass extrapolations
for the p7r7r system and therefore the consistency of our
dynamical assumption is demonstrated. Also, applying
a recently derived sum rule involving the cross section
for the hadronic yield of electron-positron annihilation,
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a test is proposed of this new sum rule. The method is
then extended to the @I(.'E system in Sec. V. Finally, the
results are discussed and compared with more conven-
tional calculations of vector-meson coupling constants.

II. ZERO-MASS EXTRAPOLATIONS FOR
THE Agy~ SYSTEM

These extrapolations are performed by employing
the Lehmann-Symanzik-Zimmermann (LSZ) reduction
technique. The 6eld-theoretical form of the PCAC
hypothesis consists in the proportionality of the pion
6eld and the divergence of the axial-vector current.
Different extrapolations are de6ned by the order in
which the integration by parts of the divergence of the
axial-vector current is done, i.e., whether before or
after the decaying vector or axial-vector meson is
taken out of the state vector. The decaying particle is
always the last particle to be taken out of the state
vector. The extrapolation by PCAC, which we will
consider, is defined by doing the integration by parts
6rst. The extrapolation using pole dominance is defined
by 6rst reducing the amplitude to its 6nal form as the
Fourier transform of a three-point function and then
using the Ward identity to extrapolate to zero mass. It
is possible to use the Ward identity because the field-
current identity for the p' meson introduces the iso-
vector part of the electromagnetic current into the
three-point function.

A. PCAC Extrapolation for

Aisle

In general, there are two form factors for the Alps
decay

(~'V)p'(q) IAi'(P)&

i (22r) '(24(p (g k)— —
[gA,.( mA ', —m„','-—m')'-e"—4('

[8Pp(Pqp(22r) ']'"
+hA, .(—mA' —m, ', —m 2)(sA k)(e& P) (3)

where e„ande„&are polarization vectors.
We next perform the I.SZ reduction a,s described

above. Ke do not, in the interest of simplicity, exhibit
the wave-function renormalization constants explicitly.
Since we wi11 derive results based on the equality of
completely reduced amplitudes, these wave-function
renormalization constants which occur as multiplicative
factors will cancel and do not enter into our 6nal re-
sults. Therefore, we write the following expression for
the decay amplitude:

in the form

B„A„(x)=—m 2f~ (x)

and the field-current identity'

p.'(x) = g.l—m. 'l'2. (x) . (6)

d'xd'y f.*(x)f.*(y)(0
I
T(l'.b),A. (x)) I

A i'(P))

(02+m ')(q'+m ')g (22r)4
(24(p —

q
—k) 4„&

m. f.m„[(2~)4qp~]'&

X (0 I
A.-(0)

I
A,+(p)) . (8)

We next take Ay+ meson out of the state vector and
take the limit p„,q„,k„—+0. The result is, using the
definition of gA, given by Eq. (3),

gA„(0,0,0)= —(2g,mA'/f )a, (9)

where the I'ourier transform of the relevant two-point
function is

A(p) =i d4x e'& "(OI T(A„—(0),A,„+(x))IO); (10)

Ai„+(x) is the Ai+ field. The spectral representation
fol Ap„ is

P.("( ')
A (p) d+2

(22r) p2+P' —ie

p "'(4')pj pv+ — -d4(2
(22r) . p'(I4'+P' ie)—

P."'( ')
dp2. (11)

PIIPV

(22I ) p +p —se

The definition of a is

Next, we integrate the divergence of the axial-vector
current by parts, throwing out the surface term, and
use the following commutation relation:

(I (x(I—y(I) [Vs„(y),A (I
—(x)]

= —6'(x—y)A,
—(y)yS.T. (7)

When the Schwinger terms (S.T.) exist, they will not
contribute to the zero-momentum limit and henceforth
are ignored. The resulting equation is

(&2+m.s) (q'+m„')g,
(~+(k)p'(q) I

A,+(p)) = —— e„~ik„
2 2SS7i '1rSSP

(i22+m ')(q'+m ')
-g."' d'xd'r f~*(x)f.*(r)

PE 1r 7rPEP

P-"'( ')
dp .

p 2
(12)

where fs [(22r)22pI] "'e'"'* a——nd we have used PCAC

The next step is to relate p ("(44') to the spectral func-

' T. D. I.ee and 82, Znmino, Phys. Rev. 163, 1667 (1967).
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yo)I:

A +(0))=AI.'(x)~'(')g( )t'Vzo(x /A la (2,3)

b is

2Wp
d/tz

gp2
Jd xVBO /

z xo)These re ae relations follow «om
Eq (21) becomestpr. Therefore,isos in genera, pr.

(13)

is the

q q, 0IT(g„A„-(y)Vz(') A,.+ o)) Io

(0I T(4 ( )

))Io)g ( y), (24)(0I T(AI.+(0) ~pAp ('

2x'

As+b used to relateField current ident ities' can e u
to A„+

(14),() ' A„.(),
~2mp'

(15) . .
l;es the following e lu "'(g imp'~2) ~""( ) 'gp mp

therefore

whel e

g„A„-(y))I
o&q„P„=&a

p~ (& )

z+ pz —io

(25)
. „(IT(A, +(0),g„A„-(y))I0.

~„,"(P)=2

p~' 4)
d zp

z( 2+p2 —zo)

p/pp

ctral representa, tioe npw use t e o
ducts in Eq.time prdered p«) „h levant, tlm

p l(Z/ )

pz+Zz- —zo

p pP"

A + 0),g„A„-(y))I0)2 ..., . (0IT( (

v2m, ' 2v

(16) and (14) bycanbe derived«p q
er A deriva-

Equatipn 2 ca
'

htf rw»d manned ff rentiatio»n
d' Equation

~ '
a str»g or

2 now
i er

ed in the APPen lxis presente in
takes the form

(9) becoIII

p l (Zz)
dp (17)

j.g 2m'
000 =

0 Extg gPP1Rt~o+

h's method of extr p
f a three-point

olati on w e rsI-or t ism
pu. rierr 'er transform o a

mmutators areThe relevant

)4 y) (22)

the first Weinb«K s

( )g ——g„A„(y)
(I) / 2) which occurs

Vzo(x) ~

tjpn p~ V

Xp
rule' whic

gpf0 k~
iq„W„=

%2m, zr

'f/4 —
q
—k, 18Xg,o„pW„(k,p, q) (2zr) 'P(p q—

wllel e

A d4g e-iq x—iI(; yW„(k,p, q) = o
~ d x e

'

amplitude to t

2+m/I

to

( '(&)p'(q) I
A +(P))=— p'p-"l(p')

dp,

pz+ pz —io

p- I 'p. "'(z '))
dp

2x' p, '+p' —zo/'

enominators, w e obtainExpanding the spectral den

(28)higher powers of k, pm '(k'+m ')(q'+m, ')(p' mg

X olT(~pAp (y) Vz.(x) Al (X«0 T. . . . o))I» (19)

2 2wll ~ s of tile folII1 factors
z Wwrite 8'„in terms o rs

P

We may now wri
d hg . Compa, ring q.gap~ an op~.

obtain

m// fgmp

p

„gp — '- —m p', —m. ') . (20)XP„Izap ( m~' , —mp—, —-' . 20

m', —m ')+(o" q-gAp~( m / //

k„~0. The result istake the limit p„,q„,%emay now a

zgp mg 1
' 00,0)=

e now use the following identity:

BiBx„(0I T(8pA „(y),Vz„x,A

«IT(~( o)I:V o() A -' (21)

a different limitingtes the fact that a iThe prime denotes a
procedure has eeen used.

dictated by our initial d namica a
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leads to the following sum rule'.

» -"'(» ')
d» '= »-"'( ')d» '

p
(30)

If we combine this sum rule with Eq. (13) and ap-
proximate p t"(»i') by the pion pole, we obtain the
KSRF relationship, Eq. (1). Equation (30) gives the
KSRF relationship dynamical content.

III. ZERO-MASS EXTRAPOLATIONS FOR
THE y~~ SYSTEM

Calculations for the p7r~ system, using procedures
similar to those discussed in Sec. II, have essentially
been carried out. "Thus, we will only briefly review the
steps involved and state the results. To perform the
PCAC extrapolation, the pions are taken out of the
state vector, partial integration is performed, and then
the current commutation relations are used. Finally,
the p meson is taken out of the state vector. When all
the masses are taken to zero, the following result is
obtained":

f (000)= » f (31)

The Weinberg sum rule for the vector spectral
function is'

» "v'(» ')
dp2 = (32)

2' 7r2 g
2

where pv&" (»i') for conserved currents is defined. by

d'x e'& '*(0
I (V„(0)V„(x))I 0)

2'
» v"'(» ')

4@~

»i +p se

p ppv » v"'(»')
dp, ' (33)

ps(ps+ps se)

To extrapolate by using pole dominance, the decay
amplitude is first reduced to the Fourier transform of
a three-point function. Then, using the field-current
identity, Eq. (6), this vertex function is related to the
pion electromagnetic form factor. The pion electro-
magnetic form factor is then taken to the zero-mass
limit by the use of the Ward identity. The result is'"

f.-'(o 0 0) =
up 1+—

2'
~.'(»»')

1p-
4p

' R. J. Oakes, Phys. Rev. Letters 20, 513 {1968)."J.Dooher, Phys. Rev. .163, 1852 (1967).

and where f, is defined by

s(2x.)48'(q —k+ —k )
(~+(k+)~ (k )I»'(v)) =—

[8qsM+~-(2~) 'j'"
&&e.p(k k+).f ..(———m ' —m. ' —m.'). (34)

Equating f, '(0,0,0) and f, (0,0,0), the following
equation is obtained:

m. ' o.'(»r') ) m, 'f '(I+ -— —dy'
~

=
2~ »' i g'

(36)

Using Eqs. (5), (13), and (32), it is a simple matter
to show that Eq. (36) is equivalent to Eq. (30).We have
demonstrated that our new sum rule is equivalent to the
equality of zero-mass extrapolations for the pxm' system
as well as the A~p~ system. Therefore, our dynamical
assumption is consistent in the context of the vector
and axial-vector decays which are complicated to treat
by more conventional approaches. ' " ' We now pro-
ceed to develop an experimental test of Eq. (30).

A. Continuum Contributions to the Pseudoscalar
Spectral Integral

We use the form of the pseudoscalar spectral integral
which involves an integral over the pion spectral func-
tion, i.e., J'[o '(»i')/»i4jd»i' which occurs in Eq. ('36&'

~ '(p') =(2~) 4 Z 84(p —p„)I &0 I y. (0) I ~) I
'. (37)

Because of the p 4 factor in the spectral integral, we
expect the low-lying states to yield the most important
contribution. We shall consider only the per contribu-
tion to Eq. (37). This contribution involves the matrix
element, (~(k)p(q) Ig (0) IO). This element may be re-
lated to the pion electromagnetic form factor corre-
sponding to an oR-shell pion of mass —p' interacting
with a virtual photon with a four-momentum of q„and
becoming an on-shell meson. Using standard LSZ reduc-
tion techniques and the translational invariance of the
Wightman functions, the relationship is

(q'+m, ')
( (k)»4)ly. (0)lo)=-

m '(p'+m ')

yg 2(ep. p)p (qs m s ps) (38)

where q'= nz, ' and —the field-current identity, Eq. (6),
has been used. We next neglect the off-shell variation of
F and assume p-meson dominance. This is equivalent
to the approximation

(q '+mp ')'-'-
(q', nN ',p')=1—

2
(39)

~ D. A. Germen, Phys. Rev. Letters 19, 770 {1967)."S.G. Brown and G. B. West, Phys. Rev. 168, 1605 (1968).

IV. TEST FOR EQ. (30)

To test this sum rule, we first show that the pion-pole
dominates J'p "'(p, ')d»is. Continuum contributions
will be estimated to be smaller than the pole term by
a factor of 10 '.



DQQHER

entat ion of th e1'mit '3 Instead, a sPectra P0

folnl
(38) and applying this o l.

Summing over
d -state phase spaceintegra in't' g over the interme iate-s

obtain

(4o)

Z d4x o'~ *(Ol T(i -(O)q„-(x))lo)

"'"'
d, (.5)=(q 8„,—q„q,2 )

p +q —$6

—+0 limit o q.f E . (45) is zero. Also,
h % b 1p ginte rais in t e

herefore, the resu ts o
text of 6eld-current identities i—

dependent o m

Sar(p' —nz. ') 'p'
where

(4~)X(x,y,s) = (x—y
—s)' —4yz.

inte ral in theema now evaua ete the continuum in g
. (36). The result rsleft-hand side of Eq. &

o (p,') g, ') (nz. /m, )'
dp2—

4 4m) 48vr(3m )' P
need then is

B„„p' („'
dpd'xe".(0 l -(o)i.™(x))

I o)=-&&L1+O((nz /ns, ' (
Of course, there are ot er oh 1 w-mass contributions

s the S-wave 3z con-portant such as t e
all

' E (36) d ~ the ' factor in q.lIldlcatlon that the p
nonpo e1 contributions. Equation

p"'(p')

2(p2yq2 ~~)

gpgv

2'

s
' ++ ~ hadrons involvessection for e e

The result is~

(43)
(47)

' ' (x) =Up„(x)+—Us„(x). (48)

(49)

(50)
7Ãp 82p 2

&'em
Dp ~=& PIJ ' (44)

ated by

p, p t p (q)p~"'( ')
o p ——S~'(n'p"'(q')/q'), n= e'/4s. .f~ = dp ~

ow p
' ' sists of a contribution from the iso-

27l p

3
toB. Sum Rule for th e Total Cross ec i

1 1 fh
rule exten e o

ese

Hadronic Yield of Electron- os' r

current commutators relate spec raAnnihilation

b h
' d'

ns.
'soscalarh Th 1

spectral integra s
or ++- hardons may

r h I'o i r — „(„,ie
0 If th fild

ectral function or t e 'ours

nt of the value of the un-

exn 0
'

em(x)

th th tmeson mass,

iatel that

renormrmalized vector
f the electromagnetic currrents has the It follows immed' y

ered pro

pv'"(p')
sentation as e

ps' p

same
'f th fi l.d- tH wever, i e

p.
p

p
2

't of i fi t
p

hold only in t e imi o

43 and (49) imply that
l

'
hip between the

p"'(p')
dp =sf

latter situation is

2' p

used in the Fourier transform of

sp "" "p
d h f 1will not exist in general, a

33 wi 110sentation such as Kq. 3 no

32
~3n2f 2—
3

E'or (Z)dE. (5&)

ner of the electron-position p
''on air is KThe c.m. energy o e

sion of this point.T. D. Lee for a discussion o t is"Iwish to than

E s. 47 and (50), we obtain theTherefore, using Eqs. 47 an
following sum rule for or(E):



SPECTRAL DENSITY SUM RULES

Equation (51) provides a test of the sum rule, Eq.
(30), and therefore, of the equality of the zero-mass
limits for the vector-meson and. axial-vector-meson
decay amplitudes. To test Eq. (51), it is not necessary
to have an accurate value of the p-meson parameters.
In previously discussed methods of measuring g„the
leptonic decays of the p meson were emphasized. '4

However, g, as used in this paper is dehned at zero-
momentum transfer whereas the decays involve g, on
the mass shell. The difference is a factor of the p-meson
renormalization constant, "Z3p. The results correspond
only if Zsp= 1, which is equivalent to pole dominance.
What is needed to test Eq. (51) is an accurate plot of
oz(E) versus E over a range of energies from threshold
to a value of E large enough to include most of the
contributions to J'E'ar(E)d.K If there is not a la,rge
number of high-mass resonances, p', p", etc. , with the
quantum numbers of the p, then this cutoB energy is
probably of the order of several p-meson masses. Satura-
tion of Eq. (43) by a p and p' resonance yields

tPSp 1Ãp~
2 2

2 — +
2 2

gp~~ gp'++

Equation (52) has been derived previously by more
conventional means by Moffat. "At present the data
on the 2x contribution to |T~ are inconclusive as far as
checking the validity of Eq. (51). Also, the existing
data do not include contributions from a possible p'.
Therefore, it is not possible to check Eq. (52) .However,
it will be important in the future to see whether more
accurate data on e++e ~hardons verify Eq. (51).

V. INVESTIGATION OF THE /XX' SYSTEM

ing sum rule:

' px'"(~")4'= px"'(u')4', (54)

where the spectral functions are those that occur in the
E-type axial-vector current. Equation (54) is the ex-
tension of Eq. (30) to the strangeness-changing axial-
vector current. Equation (53) is the extension of Eq.
(36) to the kaon spectral integral. In the next section,
we discuss the equivalence between Eqs. (54) and (53)
and discuss the application of all these sum rules when
they are used in conjunction with the erst steinberg
sum rules.

35$$
f~rrx(0)0, 0) =—

g 'M'
4frr'

ok~(p )
2p —II

The relevant matrices in Eq. (55) are defined below":

(56)

VI. APPLICATIONS OF THE
SPECTRAL SUM RULES

A. Equivalence Eqs. (53) and (54)

To prove the equivalence of Eqs. (53) and (54), we
must first examine the derivation of Eq. (53) carefully.
Following Kroll, Lee, and Zumino we treat ~-p mixing
with a matrix formalism. " Applying the techniques
discussed in Sec. III to the PER system, "we obtain
the following result for the PCAC extrapolation of

fqrrrr( mq', mrs—', mx—') whic—h is defined analogously
to fp..(—mp') —m„')—m, ') )see Eq. (34)]:

Applying the techniques described in Sec. III to the
amplitude for g ~ E++R, we may derive the analog
of Eqs. (30) and (36) for the strangeness-changing
axial-vector-current. Since this has been done in a
previous paper, we just state the result

3 m&' cos8r cos(8i —8~)

4 gy cosH~

cos H y —sin H y
T=

~

~

sin H~ cosH~
(57)

(58)

(59)

os'(p')
=fry' 1+ —dp' (53)

p

In Eq. (53), gr is the isoscalar coupling constant, 8r
and 8~ are the two ~-P mixing angles, f» is the kaon
decay constant, and o.&'(p') is the continuum part of the
kaon propagator spectral function. Application of the
techniques in Sec. II to the IC&pE system, where Ez
is the chiral partner of the E*meson, yields the follow-

'4 J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).
'~¹ M. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157,

1376 (1967).' J. W. MofFat, Phys. Rev. Letters 20, 620 (1968); 20, 977 (E)
(1968).

In Eq. (58), g& is the coupling of the baryon current.
The spectral density oq (p ) in Eq. (55) is a matrix
which occurs in the Kallen-I ehmann representation of
the time-ordered product of the renormalized p a,nd ~
6elds.

For the pole-dominance extrapolation, we obtain

ox(p')
fpxx'(0, 0,0) =my'(cV 'g)ii dp' (60)

2m p4

Equation (6) is equivalent to Eq. (16) in Ref. 10.
However, Eq. (55) reduces to its equivalent in Ref. 10
/see Eqs. (15) and (17) in Ref. 10$ only when the pole
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approximation is used for the propagator in the reso-
nance regloil —my + g (—m~ T. herefoie, Eq. (53) is
an approximate equation. The exact equation is ob-
tained by equating fq«(0, 0,0) and fq«'(0, 0,0), which
occur in Eqs. (55) and (60), respectively. Before pro-
ceeding, however, we inust introduce the steinberg sum.
rules for the a&-P system U.sing the field-current iden. tity
for the &u-P system, which reads"

l:i.™(&)3r=o=—k(g 'MV.)i, (61)

(62)

4 nzp2
g-'M'

3 gp

~~-( ')
dp ~ gy'

p
(63)

where T denotes transpose.
Introducing a similar field-current identity for the

baryon current, " and noting that the Weinberg sum
rules are diagonal in the 5U3 quantum numbers, we
6nd

g 'M'
0'4~(P )

dp2M2gp '
p2 -12

~~-( ')
dp'M'gr ' =0. (64)

p —21

we obtain the following form for the relevant steinberg
sum rule:

The result of equating f&zz(0,0&0) and f~&&lr'(0,0,0) is

&++ x

2'
(re(y') mp

4~ 11/~11
p4 g

2
(71)

B. Vector-Meson and Axial-Vector-Meson
Coupling Constants and frr/f

Ke discussed an experimental test of the new sum
rule for x type currents in Sec. IV. We now proceed to
examine the experimental consequences of Eq. (54). If
we are interested in approximate relations among
vector-meson and axial-vector-meson coupling con-
stants, we may use the assumption of global pole
dominance though it is possible that this may not in
general be a good approximation.

The relevant coupling for the pole-dominance ap-
proximation are de6ned as follows:

Using ihe equivalent of Eq. (13) for A -ty pe currents
and PCAC for kaons, we see that Eq. (71) is equivalent
to Eq. (54) and again the consistency of our initial
dynamical assumption is demonstrated. It is interest-
ing to note that if 0& is dominated by @ and cv poles in
the resonance region (local pole dominance), Eq. (64)
implies

tan8r = (mp'/m„') tan8~. (72)

This result, which corresponds to the current-mixing
model, "has been derived previously from the Weinberg
sum rules under the more restricted assumption of pole
dominance of o ~„(ii') for 0& ii'& ~ (global pole
dominance) .'~

Therefore, the matrix

(~')
dye gg

p

then it follows that

is diagonal.
If we have two 2)&2 matrices, A and 8, such that

AB '=A,
where

(Xi 0

ko

(o l V" l~') = t:2Vo(2~)'3 '"~.'(m '/g ) (73)

(ol(A„)s=olAi)=(2qo(2~)') '"e„"(mg'/gg)
1 (74)

(ol(v.)s=il&*)=(2vo(2~)') '"" *(ma"'/gran*), (75)

(0 l (A„)s i l
R ~)= (2qo(27r) ') "'e„~"(mrr„'/glr„). (76)

(77)

(7g)

(Vp) s=i= v2mp'/g pK—„*,
(A„)8,= v2m, '/g, Kg„. —(66)

We now apply global pole dominance to the Weinberg
sum rules and ignore the scalar contribution to (V„)s=i

These couplings may all be related using the following
(65) 6eld-current identities in conjunction with Eqs. (6)

and (14)'.

Ke now let

+11/+11 ~l ~ (67) 2mp2=
gp

(79)

dp 2

p2
(68) m+g 2

+fx'=
2mp

(go)

8 =g&M-2

and note that since M2 is diagonal,

+11 (gFM )11 (M g) 11 ~

(69) sf~ * 2Psp

g
Q2

g
2

' R. J. Oakes and J. J. Sakurai, Phys. Rev. 19, 1266 (1967).
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v2(m, s/gp) = mg'/g~, (83)

&2(m, '/gp) =mK*'/gK, (84)

&2(m, '/g, ) =mK„'/gK„. (8S)

Combining Eqs. (83)—(85) with Eqs. (79)—(82), we ob-
tain the following mass relationships:

mKg —m+ —I/2m

mQ+ —mp )

and the following coupling-constant relationships:

(86)

(87)

g~ gK„%——2g, =%——2(m, / f,), (88)

g *=(1/~2) g.= (1/~2) (m./f-)
The mass relationships, Eqs. (86) and (87), which are

most easily accessible to experiment, are valid within
about 10—20%. This can be considered reasonable
agreement considering the approximate nature of
global pole dominance.

VII. DISCUSSION OF RESULTS

We have shown that a sum rule, equivalent to the
KSRF relation, can be derived under the assumption
that a unique zero-mass limit exists for the A&pm, pew,
4ICE, and FgpE amplitudes. It is logical to ask for a
motivation for this postulate. Indeed, it is logical to
ask for a motivation of the assumption that certain ex-
trapolations to zero mass are slowly varying. Since dif-
ferent methods of using the PCAC partial-integration
procedure in multipion processes determine different
extrapolations, it is not clear which extrapolation is the
most slowly varying.

Of course, those extrapolations which yield interesting
results are generally assumed to be slowly varying.

' This result has also been derived using local pole dominance
by Acharya and Aly. See R. Acharya and H. H. Aly, Phys. Rev.
I-etters 27B, 166 (1968}.

Equations (71) and (36) imply, neglecting the
continuum, that"

fK ~ (82)

Actually, Eq. (82) provides a test of our sum rule,
Eq. (54), if according to our estimates the continuum
contributions to these pseudoscalar spectral integrals
are negligible. The neglect of the 0+ contributions to
Eq. (81) imposes an additional limitation on the ap-
plicability of our sum rules. However, the derivation of
Eq. (82) does not involve this assumption but depends
only on the neglect of continuum contributions to
(36) and (71). Therefore, Eq. (81) should hold, if our
equal-limit hypothesis is valid, independently of any
signi6cant contribution from 0+ states. At present, the
experimental situation on fK/f„ is not clear because
of the existence of two Cabibbo angles Oy and 0~ which
do not necessarily have to be equal. '

The field-current identities imply that

However, other extrapolations may be slowly varying
also. For example, one method of extrapolating the porn

amplitude consists in 6rst reducing the amplitude to the
Fourier transform of a three-point function, applying
the PCAC partial integration, and the current algebra,
and then taking the zero-mass limit. " The result is
equivalent to the Ward identity approach and the as-
sumption of slow variation yields the equation

gp~~= gp (9o)

~9 Ken Kawarabayashi and Shinsaku Kitakado (to be published).
's J.J. Sakurai, Phys. Rev. Letters 17, 522 (1966).

which is just global pole dominance of the pion electro-
magnetic form factor. Equation (90) is not considered
to be very interesting at present. However, the KSRF
relation, Eq. (1), which is the result of a different
PCAC extrapolation, is considered to be a very interest-
ing relation. Phenomenological theories are constructed
to yield Eq. (1)."It may turn out that Eq. (1) is not a
good approximation. In that case, the most slowly
varying extrapolation would be that leading to Eq. (90),
and therefore, Eq. (90) would be considered to be the
PCAC and current-algebra result. We have taken the
easy way out of this dilemma by replacing the assump-
tion of slow variation of a particular well-chosen ex-
trapolation by the assumption that the zero-mass limit
is independent of the particular method of extrapolation
used. We have shown that such an assumption is con-
sistent when applied to several vector-meson and axial-
vector-meson decay amplitudes. It remains to be seen
if it is useful to generalize the equal-limit hypothesis to
other processes.

It is not possible to derive such a sum rule for ampli-
tudes like E~E*m which do not involve a conserved
current. This is because of the presence of scalar excita-
tions in the strangeness-changing vector current which
lead to additional terms when the Ward identity ap-
proach is applied. However, this new sum rule is not
inconsistent with the Weinberg sum rules with scalar
excitations included. Indeed, several calculations using
the Weinberg sum rules ignore the scalar excitation of
the strangeness-changing current and these calculations
have yielded successful results. "

This procedure of defining a unique limit is really not
new. For example, Sakurai's derivation of KSRF as-
sumes that the zero-momentum limit for the xE elastic
scattering amplitude obtained by current algebra is the
same as that gotten by using perturbation theory and
keeping only those diagrams which contribute to p
meson exchange. "In a sense, we have just extended this
concept to decay amplitudes such as pox. Sakurai's
limit using p exchange is now replaced by a limit which
is taken using either perturbation theory for the
three-point function or the Ward identity since they
must yield equivalent results.

Of course, we may relax our restriction of equality of
limits and assume only that the limits are approximately
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p~"'( ')
-dp— p (I)Q2)

p-'"'(p')dp'

equal (assumption of slow variation). If we then assume

tllat $(Jq is valid fol zero=mass extrapolations of pyre,

JET, EgpE, and A Ipm, we obtain the result 2imp' 884(x)
= —28'(x) V „(x)— 8„„—. (A2)

Bx~g
2

Using Kq. (A1), we find

relations with the Schwinger term exhibited:

~(xo)LAo (x), 4,+(0)j

i d4x e' '(0~ T(A„+(0),B.A.-(x))
~
0)

=c pa (p, )dp (91)

where c is close to 1. This result has been obtained by
Oakes using a special model' for SUB breaking. The
constant c may then be determined by the colliding-

beam experiments by comparing the left and right sides

of Kq. (51).Finally, we may say that it is clear that the

principle of equality of zero-mass limits removes some

ambiguity in the application of PCAC and current
algebra and leads to a new sum rule with dynamical
content. If experiments bear out the implications of

this sum rule, particularly Eqs. (51) and (82), then the

equality of zero-mass limits must be seriously considered
in the construction of any Lagrangian theory.

~A (~) 2'

p-'"(~') v.v p-"'(p')
dpo — + dy-

e'+ II' io —2~ IJ, '(p'+ g' io)—
p-"'( ')

dp' ——28„45„4 . (A4)
2'II' p + Ip —le gp

Using Eq. (A4), the result is

i d4 ex* o (0~T'('A„+(0),B.A. (x))~0)

To correctly evaluate the 6rst term on the right side

of Eq. (A3), we must include the Schwinger term

APPENDIX: SPECTRAL REPRESENTATION FOR

d'x e* *(0
~
T(A „+(0),8 A -(x))

~ 0)

%e 6rst integrate by parts using the following
identity:

Le' '*(0~ T(A „+(0),A (x))
~
0)j

ax

=ig e" (0(T(A„+(0),A -(x))~0)

+e" (0~T(A„+(0),g A —(x)) ~0)

—(2' '/g ')e'& *8 P&4'(x)/gx„]. (A1)

Zgp,

27r

p "'(p') p "'(p')
clap,

—zg„g dp
ta +g Zo p (III +If Zo)

q' p &oI(p') 2im 'ig„—dp' — + -q„. (A5)
2' P +g M gp

i d4x e'&'(0~ T(A„+(0),B.A.—(x)) ~0)

z'q„p'p Io)(p')
dp~ . (A6)

2II p +g —zo

%e may now combine the 6rst two terms on the right
side of Eq. (A5). We then replace the last term by the
sum of spectral integrals in Eq. (13).

The 6nal result is

In Eq. (A1), we have used the following commutation This is the desired spectral representation.


