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The new spectral sum rule

o= D (u?)
f o=@ (u)du?= f —%duz
0 0 13

is derived under the assumption that there exists a unique limit in which all masses are zero for the 4 pm
and prm decay amplitudes. In this sum rule, p,© (u? is the pseudoscalar spectral function and p.® (u?) is the
axial-vector spectral function, both of which occur in the Kallén-Lehmann representation of the propagator
of the w-type axial-vector current. An experimental test of this sum rule is proposed. The equivalent sum
rule for K-type axial-vector currents is derived from considerations of the ¢ XK amplitude, and applications
of these sum rules in conjunction with the first Weinberg sum rules are discussed. In particular, it is found
that fx/fr=1 for the pion and kaon decay amplitudes.

I. INTRODUCTION

HE results of using the hypothesis of partially
conserved axial-vector currents (PCAC) and the
algebra of currents to obtain coupling constants consist
of empirical determinations of these coupling constants.
That this is so, can be seen in the context of Lagrangian
field theory where renormalized coupling constants are
by definition experimentally determined parameters in
the theory. The results of current algebra and PCAC
are therefore simply approximate relationships among
quantities which are accessible to experiment. If these
relationships turn out to be valid experimentally, then
a test is provided for the current algebra and the
validity of the mass extrapolations employed. However,
these methods cannot be considered to be a dynamical
determination of the couplings as in the bootstrap
theories, for example. This paper extends the concept
of mass extrapolations in such a way as to provide a
dynamical determination of some of the coupling con-
stants. In particular, we will treat the well-known
Kawarabayashi, Suzuki, Riazzudin, and Fayyuzudin
(KSRF) relation for the p-meson coupling g,.*:? Their
result is

go="mp/ [, (1)

where f. is the pion decay amplitude. The use of
p-meson dominance of the pion electromagnetic form
factor and Eq. (1) yields a p width of approximately
144 MeV. If the results of Das, Mathur, and Okubo
are taken,? the derivation of which utilized a once sub-
tracted dispersion relation for the amplitude for p — 27
and pole dominance of the pion electromagnetic form
factor, then (1) is replaced by

o= (m,/ f=)(1+9), (2)
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where §<<0. Reasonable values for § yield a width of
about 140 MeV. However, if the results of the recent
colliding-beam experiments are confirmed,* which yield
a width of about 90 MeV, then we must conclude that
neither Eq. (1) nor Eq. (2) is well satisfied.

We propose to use PCAC and current algebra to ob-
tain vertex functions at a point where all the masses are
zero rather than on the mass shell. To do this, we must
formulate our method of zero-mass extrapolation in
such a way as to yield results with dynamical content.
In this paper, we first consider the extrapolation of the
Aipr and prm decay amplitudes. Our dynamical as-
sumption is that the zero-mass extrapolation using the
field theoretical form of PCAC and the zero-mass ex-
trapolation using pole dominance in the form of field
current identities yield identical zero-mass limits for
the relevant vector-meson decay amplitudes. This
“loose” statement will become more specific when the
applications are discussed. The result of this assumption
when it is applied to the 41pm system will be a new sum
rule for the spectral densities of the Ké&llén-Lehmann
representations of the axial-vector and vector-current
two-point functions. When this new sum rule is added
to the first Weinberg sum rule, which is on rather firm
footing in the context of field-current identities,’ a set
of relations among vector-meson and axial-vector-
meson coupling constants can be derived which is
consistent with experiment. Such applications are dis-
cussed in Sec. VI. This new sum rule is shown to imply
the equality of the two possible zero-mass extrapolations
for the prm system and therefore the consistency of our
dynamical assumption is demonstrated. Also, applying
a recently derived sum rule involving the cross section
for the hadronic yield of electron-positron annihilation,’

4 The most recent data on e*+4¢~ — 27 are not conclusive on
this point. See V. L. Auslander et al., Phys. Letters 25B, 433 (1967);
J. E. Augustin et al., Phys. Rev. Letters 20, 129 (1968). These
two groups have reported different cross sections and widths.
The Novosibirsk group has since increased their width to 10515
MeV. However, there is still disagreement.
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6T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).
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a test is proposed of this new sum rule. The method is
then extended to the K K system in Sec. V. Finally, the
results are discussed and compared with more conven-
tional calculations of vector-meson coupling constants.

II. ZERO-MASS EXTRAPOLATIONS FOR
THE A;px SYSTEM

These extrapolations are performed by employing
the Lehmann-Symanzik-Zimmermann (LSZ) reduction
technique. The field-theoretical form of the PCAC
hypothesis consists in the proportionality of the pion
field and the divergence of the axial-vector current.
Different extrapolations are defined by the order in
which the integration by parts of the divergence of the
axial-vector current is done, i.e., whether before or
after the decaying vector or axial-vector meson is
taken out of the state vector. The decaying particle is
always the last particle to be taken out of the state
vector. The extrapolation by PCAC, which we will
consider, is defined by doing the integration by parts
first. The extrapolation using pole dominance is defined
by first reducing the amplitude to its final form as the
Fourier transform of a three-point function and then
using the Ward identity to extrapolate to zero mass. It
is possible to use the Ward identity because the field-
current identity for the p° meson introduces the iso-
vector part of the electromagnetic current into the
three-point function.

A. PCAC Extrapolation for 4:o=

In general, there are two form factors for the 4ipm
decay

(mt (k)" (9) | A1H(p))
_1Q@m)t(p—g—k)

= M%[gAﬂw(—mAz,—mpi,—’mnz)é‘d'ep

[8puwgo(2m)*]" "
+hAp7r(_mA2;—mp27_m7r2)(6‘4'k)(ep'p> ’ (3)

where €, and ¢,” are polarization vectors.

We next perform the LSZ reduction as described
above. We do not, in the interest of simplicity, exhibit
the wave-function renormalization constants explicitly.
Since we will derive results based on the equality of
completely reduced amplitudes, these wave-function
renormalization constants which occur as multiplicative
factors will cancel and do not enter into our final re-
sults. Therefore, we write the following expression for
the decay amplitude:

(wt(k)p(g) | A1+ (p))
B2 22)(g? 2
_ (k*+m )(q +m, )gpeyp/d4xd4y fk*(a/)fg*(y)
ma” fam,? .

XOI TV (),0udw= (DA (@) (4)
where fir=[(2m)%2w /%% = and we have used PCAC
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in the form
0,4 (%)= —ma*fap(x) (5)
and the field-current identity?®

pul(x)= —gp/meg,‘(x) . (6)

Next, we integrate the divergence of the axial-vector
current by parts, throwing out the surface term, and
use the following commutation relation:

8(xo—y0)[Va(y),45 (x)]
=—(x—y)4,~(y)+S.T. (7)

When the Schwinger terms (S.T.) exist, they will not
contribute to the zero-momentum limit and henceforth
are ignored. The resulting equation is

(B*+m.*) (g*+m,*)g,

m7r2f rmp2

(mt(R)p"(9) | Ar*(p)) =

€1 u

X / dtxdty fi* () fFNOI T(Va (), 4= ()| A1 (p))

(k*m?) (g*4-m,*) g, (2m)*
ma® fxmy*[ (2m) 4go ' V2
XO[4-0)[4r+(p)). (8)

We next take 41T meson out of the state vector and
take the limit p,, gu, ku— 0. The result is, using the
definition of g4, given by Eq. (3),

gAp‘lr(O,O,O) = (igpmA2/f1r)d ) (9>

where the Fourier transform of the relevant two-point
function is

Hp—g—kler

B (p) =i / dc e =(0[ 7(4,7(0),d*(#))[0) 5 (10)

Ay t(x) is the At field. The spectral representation
for A4 is

o O pr P (u?)
- [,
(2m) ] witpi—ie
P;qpv ﬁ1r<1)(ﬂ2) 79
@n) ) Wt p—ie
= 0)(),2
+?MPV/ Pr (ﬂ)d;ﬁ. (11>
@m0 ) wtpr—ie
The definition of @ is
1 "1r(l) 2
gt [B06, (12)
2r u?

The next step is to relate 5, (u?) to the spectral func-
8 T.D. Lee and B, Zumino, Phys. Rev. 163, 1667 (1967).
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tion p,®(u2), which occurs in the first Weinberg sum
rule® which is

1P

2

1 2m
it [ o= (13)
™

&

2 u?

Field-current identities® can be used to relate Aq,*
to 4,t.

8
Ay tx)=— A, (%), 14
1p N/Z—mf M( ( )
therefore,
65;‘;': - (gp/mp2\/2)A,,,,A(O> ’ (15)
where
ow [ P V(W)
ap) = [
2w J pi-pP—ie
@y,
: Pup / = (u?) o
2w ) et pi—ie)
v Pw(o) 2)
;P i / . du?.  (16)
2T prut—ie
Thus, Eq. (9) becomes
igotma® 1 [ pr D (u?)
G40 (0,0,0) =——- dp*.  (17)

V2m,* fr 2w u?

B. Pole-Dominance Extrapolation for 4;p=

For this method of extrapolation, we first reduce the
amplitude to the Fourier transform of a three-point
function

(4m ) (@ 4m?) (P +ma?)
(B A (p)y = — e L T p*+m

m,,zf,,mpz(Z'lr)s/2(8powqo)”2

XgpeVpWV(k;P)Q) (27")454(17—(1—]3) ’ (18)
where
Wy(k,p’q) - eaA/d4x e—tq-a—ik-y
X0]T(9,4,~(5),V 5 (%),4:7(0))[0).  (19)

We may now write ¥, in terms of the form factors
24,7 and fi4,,. Comparing Eq. (18) and Eq. (3), we
obtain

(Brme?) (g me?) (§ ma’)

M frt

ngv(k:P:Q)

= 5vAgAp7r( —mA2y _m/-"2, '_mﬂ'z)—f_ (GA : g)

vahpr(—mAzy _'m’pz; _mrz) . (20)
We now use the following identity:
8/ 82,0| (3,4 =(3),V (), 4147(0)) | 0)
= 0] T'(3(xo—y0) [ V30(x),0ud () ], 414+ (0)) |0)
+O[ TG0 [Vso(@), 4147 (0) 1,054 = (¥))[0). (21)
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The relevant commutators are
3(@o—y0)[V30(x),0,4 () 1= — 8,4, ()4 (x—y) , (22)
d(xo)[Vso(x),41a1(0) = A 14+ (x)8%(x) - (23)

These relations follow from the fact that fd3x V30(3,0)
is the isospin generator. Therefore, Eq. (21) becomes

6/ ax,,<0 I T((’),‘A f(y);Vav(x),A 1a+(0>) IO>
= (0] T (A1t (2),044 ()] 0)5%(x)
—{0]T(41.7(0),8,4 (%)) [0)6* (x—) .

This implies the following equation:

(24)

i Wy et / dby =i+(0| T(A1+(0),0,4,-(3)) | 0)

—et / dty e v(0[ T(41a*(0),0ud, ()] 0).  (25)

We now use the following spectral representation for
the relevant time ordered products in Eq. (25):

; / dty e9'9(0] T(A1+(0),3.4,~()) | 0)
igy pa / #2px @ (u?)
—3 — du2_~w~‘a
VIm2 2w ) pipt—ie

Equation (26) can be derived from Egs. (16) and (14) by
differentiation in a straightforward manner. A deriva-
tion is presented in the Appendix. Equation (25) now
takes the form

Zoea? (ko
g W, =— <—— / du
V2m,2\27

(26)

Fe W)
u2tkr—ie

P wpr @ (u?)
—— | dp——}. (27)
2 ui-pt—ie

Expanding the spectral denominators, we obtain

gp(e“'q)<1/
- d 2 ”(0) 2 O ]2, 2
I \or u20r @ (u?)+O0(%%,p?)

ig W, = —

+ - - -higher powers of k2, p2> . (28)

We may now take the limit p,, qu, £y — 0. The result is

,(000) igp2 ma? 1 iy, © () (29)
8apr (U,U,U) = - M Pr M)
’ V2m,2 f. 2w

The prime denotes the fact that a different limiting
procedure has been used.

Finally, we equate g4,.(0,0,0) and g4, (0,0,0) as
dictated by our initial dynamical assumption. This
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leads to the following sum rule?:

pr D (1?)
/ - dp2=/p,(°)(p2)dp2.

M

(30)

If we combine this sum rule with Eq. (13) and ap-
proximate p,®(u?) by the pion pole, we obtain the
KSRF relationship, Eq. (1). Equation (30) gives the
KSRF relationship dynamical content.

III. ZERO-MASS EXTRAPOLATIONS FOR
THE p=n= SYSTEM

Calculations for the pwm system, using procedures
similar to those discussed in Sec. II, have essentially
been carried out.!® Thus, we will only briefly review the
steps involved and state the results. To perform the
PCAC extrapolation, the pions are taken out of the
state vector, partial integration is performed, and then
the current commutation relations are used. Finally,
the p meson is taken out of the state vector. When all
the masses are taken to zero, the following result is

obtained??:
fprr(oyoao)zmp2/f7r2gp' (31)

The Weinberg sum rule for the vector spectral
function is®

1 pv“’(/ﬂ)dZ m,’

- M=
27 m? £°

(32)
where py(u?) for conserved currents is defined by

; / a4 (0] (V,(0)V, (%)) | 0)

ow [ pv P (u?)
o / LV e
2r J uPpr—ie
y pv I (u?)
2 [ e o)
2r ) pA(u+p*—ie)
and where f,.- is defined by

1(2m)4et(q—kFt—k™)
(k) a= (k™ 0 =
(Tt (kD)= (k)| p°(9)) [8gowtw—(2m)¥ ]2

Xea (B~ =) afprr(—m,2, — M2, —m,2) .

(34)

To extrapolate by using pole dominance, the decay
amplitude is first reduced to the Fourier transform of
a three-point function. Then, using the field-current
identity, Eq. (6), this vertex function is related to the
pion electromagnetic form factor. The pion electro-
magnetic form factor is then taken to the zero-mass
limit by the use of the Ward identity. The result is'

fm’(o,o,o)=g,,[1+7—”L / i (fzdﬂz} (35)
T u

9 R. J. Oakes, Phys. Rev. Letters 20, 513 (1968).
10 T, Dooher, Phys. Rev. 163, 1852 (1967).
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Equating f,-.(0,0,0) and f,,.(0,0,0), the following
equation is obtained:

met oo, (u? .2
f,2<1+ / G 2@2):_1_

2 ut 22
Using Egs. (5), (13), and (32), it is a simple matter
to show that Eq. (36) is equivalent to Eq. (30). We have
demonstrated that our new sum rule is equivalent to the
equality of zero-mass extrapolations for the prr system
as well as the Aipm system. Therefore, our dynamical
assumption is consistent in the context of the vector
and axial-vector decays which are complicated to treat
by more conventional approaches.®1:'2 We now pro-

ceed to develop an experimental test of Eq. (30).

(36)

IV. TEST FOR EQ. (30)

To test this sum rule, we first show that the pion-pole
dominates fp,@(u2)du?. Continuum contributions
will be estimated to be smaller than the pole term by
a factor of 1075,

A. Continuum Contributions to the Pseudoscalar
Spectral Integral

We use the form of the pseudoscalar spectral integral
which involves an integral over the pion spectral func-
tion, i.e., S'[o+ (u?)/ut]ldu? which occurs in Eq. (36)-

o' (p?) =(2m)* gl 34(p—p) Ol (0)[m)]*.  (37)

Because of the u=* factor in the spectral integral, we
expect the low-lying states to yield the most important
contribution. We shall consider only the pr contribu-
tion to Eq. (37). This contribution involves the matrix
element, (w(k)p(q)|#-(0)|0). This element may be re-
lated to the pion electromagnetic form factor corre-
sponding to an off-shell pion of mass — p? interacting
with a virtual photon with a four-momentum of ¢, and
becoming an on-shell meson. Using standard LSZ reduc-
tion techniques and the translational invariance of the
Wightman functions, the relationship is

(g*+m,*)
mp*(p*+my?)
Xg,,Z(eP 'p)Fmr(q2; _mr2;l>2) ’

where ¢2= —m,? and the field-current identity, Eq. (6),
has been used. We next neglect the off-shell variation of
I .. and assume p-meson dominance. This is equivalent
to the approximation

(¢*+m,*)

m,?

(r(k)p(q)|$+(0)| 0)=—

(38)

ﬁ‘ww(qzy —m'lrzypz) ~1 (39)

for ¢?=—m,>.

1 D. A. Geffen, Phys. Rev. Letters 19, 770 (1967).
128. G. Brown and G. B. West, Phys. Rev. 168, 1605 (1968).
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Using Eq. (39) in Eq. (38) and applying this to Eq.
(37), the contribution to ¢,(p2) may be calculated.
Summing over the vector-meson polarizations and
integrating over the intermediate-state phase space, we
obtain

2\3/2(,,2 2 2
)= AR,
877'(;42—-711,,2)2#2

(40)

where

Naxyy,2) = (x—y—2)2—4yz. (41)

We may now evaluate the continuum integral in the
left-hand side of Eq. (36). The result is

met o'w(:uz) gpz (mﬂ'/mﬂ)4
[

271' (3mr)? ,u,4 47(' 487!'

X[14-0((my/m,)?)] <1075,

Of course, there are other low-mass contributions
which may be important such as the S-wave 3= con-
tinuum. We therefore consider Eq. (42) as only an
indication that the u—* factor in Eq. (36) depresses the
nonpole contributions. Equation (30) is now approxi-

mated by
1 [ pv®?)
fr2=~/—*‘——d#2~
27 u?

(42)

43)

B. Sum Rule for the Total Cross Section for the
Hadronic Yield of Electron-Positron
Annihilation

Such a sum rule has previously been derived and we
will only review the steps involved and state the
result.”

The total cross section for et+e¢~— hardons may be
related to the spectral function for the Fourier trans-
form of (0| 7(4,(0), 7,°(x))|0). If the field-current
identities hold independent of the value of the un-
renormalized vector meson mass, then the time-
ordered product of the electromagnetic currents has the
same spectral representation as the vector-meson
propagator [see Eq. (33)]. However, if the field-current
identities hold only in the limit of infinite unrenor-
malized mass, a spectral representation in the form of
Eq. (33) will not exist. The relationship between the
isovector part of j,*(x) and the p-meson field in this
latter situation is

2 2

. 3 "y
(Ju™)r=1= ———pu+ N
& Mo“8p

o (44)

When Eq. (44) is used in the Fourier transform of
O] T(,(0),7,°(x))|0), the presence [Jp, as a factor
in some terms will correspond to a factor of u? in the
spectral representation of these terms. Spectral integrals
such as occur in Eq. (33) with these extra factors of u?
will not exist in general, and therefore, a spectral repre-
sentation such as Eq. (33) will not exist even in the
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mo= o limit.'® Instead, a spectral representation of the
form

; / a4 €20 T(j,(0) 7,*(x))|0)

1
=(¢*0 —qugs)— f
27

7 ()

g —ie

du®  (45)

is needed. The ¢,— 0 limit of Eq. (45) is zero. Also,
none of the spin-1 integrals in the Weinberg sum rules
would exist. Therefore, the results of this paper are
valid only in the context of field-current identities in-
dependent of mq. The spectral representation that we
need then is

bw [ pV(u?)
i | dbeein=(0] T(jem (0) 4o (x)) | 0) =— [ dp?
/ | T(ju J I ) ) wtg—ie
Y p®(u?)
L dut. (46)

2r ) it gi—ie)
Since the cross section for et+ ¢~ — hadrons involves

2o 84(gn—p4—p-) 0] 7,(0) | %) |2, it may be related
to p™(g?). The result is’

or=38r(a’p(¢))/qY), a=e/4r. 47

Now, p(g?) consists of a contribution from the iso-
vector current and the isoscalar current. The first
Weinberg sum rule extended to the SU(3)XSU(3)
current commutators relate spectral integrals of these
contributions.

The relationship between the isovector and isoscalar
spectral integrals can be derived from the equality of
Schwinger terms in [ V30(x,0), V3i(y,0)] and [[Vso(x,0),
Vs:i(y,0)], and the following form for j.om:

1
Juem(x) = V() +\-/3_V8u(x) . (48)
It follows immediately that
psP) 1 [ oy
— du=- / ——du. (49)
IS 3 u?
However, Egs. (43) and (49) imply that
Lo p®(w)
— dut =41, (50)
27 u?

Therefore, using Egs. (47) and (50), we obtain the
following sum rule for o7(E):

32 *
?3622]',2 = E*sr(E)IE. (51)
2mqy

The c.m. energy of the electron-position pair is E.

13T wish to thank T. D. Lee for a discussion of this point.
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Equation (51) provides a test of the sum rule, Eq.
(30), and therefore, of the equality of the zero-mass
limits for the vector-meson and axial-vector-meson
decay amplitudes. To test Eq. (51), it is not necessary
to have an accurate value of the p-meson parameters.
In previously discussed methods of measuring g,, the
leptonic decays of the p meson were emphasized.!
However, g, as used in this paper is defined at zero-
momentum transfer whereas the decays involve g, on
the mass shell. The difference is a factor of the p-meson
renormalization constant,'® Zs#. The results correspond
only if Zz*=1, which is equivalent to pole dominance.
What is needed to test Eq. (51) is an accurate plot of
or(E) versus E over a range of energies from threshold
to a value of E large enough to include most of the
contributions to S Esr(E)dE. If there is not a large
number of high-mass resonances, p’, p”/, etc., with the
quantum numbers of the p, then this cutoff energy is
probably of the order of several p-meson masses. Satura-
tion of Eq. (43) by a p and p’ resonance yields

(52)

gp’1r7r2

Equation (52) has been derived previously by more
conventional means by Moffat.!6 At present the data
on the 27 contribution to o7 are inconclusive as far as
checking the validity of Eq. (51). Also, the existing
data do not include contributions from a possible p'.
Therefore, it is not possible to check Eq. (52). However,
it will be important in the future to see whether more
accurate data on et+e¢~— hardons verify Eq. (51).

gﬁ”"’f‘2

V. INVESTIGATION OF THE KK SYSTEM

Applying the techniques described in Sec. III to the
amplitude for ¢ — K*+K—, we may derive the analog
of Egs. (30) and (36) for the strangeness-changing
axial-vector-current. Since this has been done in a
previous paper, we just state the result

3 my? cosfy cos(fy—0xy)

4 gY2

cosfn

In Eq. (53), gy is the isoscalar coupling constant, 0y
and Oy are the two w-¢ mixing angles, fx is the kaon
decay constant, and ox’(u?) is the continuum part of the
kaon propagator spectral function. Application of the
techniques in Sec. II to the K 4pK system, where K 4
is the chiral partner of the K* meson, yields the follow-

14 7, J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).
15 N. M. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157,
1376 (1967).
(1‘;66]). W. Moffat, Phys. Rev. Letters 20, 620 (1968); 20, 977 (E)
8).

SPECTRAL DENSITY SUM RULES

1535

ing sum rule:

“px'M(u?) '
/ ——du’= / pr©@ (u?)du?,
u?

(54)

where the spectral functions are those that occur in the
K -type axial-vector current. Equation (54) is the ex-
tension of Eq. (30) to the strangeness-changing axial-
vector current. Equation (53) is the extension of Eq.
(36) to the kaon spectral integral. In the next section,
we discuss the equivalence between Eqs. (54) and (53)
and discuss the application of all these sum rules when
they are used in conjunction with the first Weinberg
sum rules.

VI. APPLICATIONS OF THE
SPECTRAL SUM RULES

A. Equivalence Eqs. (53) and (54)

To prove the equivalence of Egs. (53) and (54), we
must first examine the derivation of Eq. (53) carefully.
Following Kroll, Lee, and Zumino we treat w-¢ mixing
with a matrix formalism.'> Applying the techniques
discussed in Sec. IIT to the ¢KK system,'® we obtain
the following result for the PCAC extrapolation of
forr(—my?,—mr?,—mxg?) which is defined analogously
to forr(—m,2—m.2—m,2%) [see Eq. (34)]:

342 du?
foxx(0,0,0)= [(1M2/ —%w(ﬂz)] . (35)
4fg? w? 11

K

The relevant matrices in Eq. (55) are defined below?'s:

g=T""¢p, (56)
cosfy —sinfy
T =< ) > R (57)
sinfy cosfy
gp 0
o=(" ), (59)
0 gn
M¢2 0
M?= ( > . (59)
0 Me?

In Eq. (58), gw is the coupling of the baryon current.
The spectral density o4,(u?) in Eq. (55) is a matrix
which occurs in the K&llén-Lehmann representation of
the time-ordered product of the renormalized ¢ and w
fields.

For the pole-dominance extrapolation, we obtain

, mx* [ ox(u?)
foxx'(0,0,0) =m4>(M ~2g)uz— —dw? (60)

™ M
Equation (6) is equivalent to Eq. (16) in Ref. 10.
However, Eq. (55) reduces to its equivalent in Ref. 10
[see Egs. (15) and (17) in Ref. 10] only when the pole
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approximation is used for the propagator in the reso-
nance region —m;?<¢?<—m.?. Therefore, Eq. (53) is
an approximate equation. The exact equation is ob-
tained by equating f4xx(0,0,0) and f4xx’(0,0,0), which
occur in Egs. (55) and (60), respectively. Before pro-
ceeding, however, we must introduce the Weinberg sum
rules for the w-¢ system. Using the field-current identity
for the w-¢ system, which reads?®

Liuem () Jrmo=—3 (g M*Y)1,

o
Y= ’
W
we obtain the following form for the relevant Weinberg
sum rule:

i T o)
-——=| M dﬂ2M2gT~1 ,
3 g? u? 1

where 7" denotes transpose.

Introducing a similar field-current identity for the
baryon current,'® and noting that the Weinberg sum
rules are diagonal in the SU; quantum numbers, we
find

2
[g“lM2 / o'¢w(:1 ) dMM?gT“‘]

u

1 ‘wa(liz)
=| g M2 du?M g

u?

(61)

(62)

(63)

12

=0.

21

(64)

Therefore, the matrix

g0 (1) ‘
Ik du? Mg,
2
u
is diagonal.
If we have two 2X2 matrices, 4 and B, such that

AB-1=A, (65)
where
N O
A= ( > ; (66)
0 X\
then it follows that
A11/Bii=\1. 67)
We now let
du?
=g [ Lo, (68)
ﬂ2
B =gTM_'2 , (69)
and note that since M? is diagonal,
Bu=(grM~2)1u= (M. (70)
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The result of equating f4xx(0,0,0) and f4xx’(0,0,0) is

1nK4fK2 O“K(p,z) my
/ du2=%An/Bu=—p' .
27 2

,“4 &

(1)

Using the equivalent of Eq. (13) for K-type currents
and PCAC for kaons, we see that Eq. (71) is equivalent
to Eq. (54) and again the consistency of our initial
dynamical assumption is demonstrated. It is interest-
ing to note that if o4, is dominated by ¢ and w poles in
the resonance region (local pole dominance), Eq. (64)

implies
(72)

This result, which corresponds to the current-mixing
model,*® has been derived previously from the Weinberg
sum rules under the more restricted assumption of pole
dominance of o4,(u?) for 0<u?< o (global pole
dominance).?

tanfy= (my42/m.?) tanby.

B. Vector-Meson and Axial-Vector-Meson
Coupling Constants and fx/f.

We discussed an experimental test of the new sum
rule for 7 type currents in Sec. IV. We now proceed to
examine the experimental consequences of Eq. (54). If
we are interested in approximate relations among
vector-meson and axial-vector-meson coupling con-
stants, we may use the assumption of global pole
dominance though it is possible that this may not in
general be a good approximation.

The relevant coupling for the pole-dominance ap-
proximation are defined as follows:

O]V 3|0 =[2g0(2m) 17 %€, (m,%/ g,) , (73)
O] (4,) s=0] A1) = (290(2m)*) " 2e,4(m 4/ g4) , (74)
O (Vi) s=1| K*)= (20(2m)*) 26,5 * (i +*/gx+) , (75)
O] (4,) s=1| K 4)=(2g0(2m)*) 26,8 4(mx %/ gx4) - (76)

These couplings may all be related using the following
field-current identities in conjunction with Egs. (6)
and (14)3:

(Vi) s=1=—V2m,%/g,K ,*, (77)

(A M) 8=1= _vszZ/ng Ap- <78)

We now apply global pole dominance to the Weinberg
sum rules and ignore the scalar contribution to (V,)s=1

mA2 2m,,2
—+ft= ; (79)
g4’ &’
mi 2m,?
+ fxi= , (80)
9 9% &’
mg «2 21%,72
= (81)
9.4 +2 gp2

7 R. J. Oakes and J. J. Sakurai, Phys. Rev. 19, 1266 (1967).
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Equations (71) and (36) imply, neglecting the
continuum, that!®
f=fk. (82)

Actually, Eq. (82) provides a test of our sum rule,
Eq. (54), if according to our estimates the continuum
contributions to these pseudoscalar spectral integrals
are negligible. The neglect of the 0* contributions to
Eq. (81) imposes an additional limitation on the ap-
plicability of our sum rules. However, the derivation of
Eq. (82) does not involve this assumption but depends
only on the neglect of continuum contributions to
(36) and (71). Therefore, Eq. (81) should hold, if our
equal-limit hypothesis is valid, independently of any
significant contribution from OF states. At present, the
experimental situation on fx/f» is not clear because
of the existence of two Cabibbo angles 8y and 64 which
do not necessarily have to be equal.’
The field-current identities imply that

\/Z(mf/g,,) =ma%/ga, (83)
V2(my?/gp) =mx +*/gx*, (84)
V2(m,2/g,) =mxk,*/8x 4. (85)

Combining Egs. (83)-(85) with Egs. (79)-(82), we ob-
tain the following mass relationships:

mg=ma=2m,, (86)
ME*=M,, (87)

and the following coupling-constant relationships:
ga=gra=V28,=V2(m,/ f), (88)
gx+=(1/V2)g,= (1/V2)(m,/ ). (89)

The mass relationships, Egs. (86) and (87), which are
most easily accessible to experiment, are valid within
about 10-209,. This can be considered reasonable
agreement considering the approximate nature of
global pole dominance.

VII. DISCUSSION OF RESULTS

We have shown that a sum rule, equivalent to the
KSREF relation, can be derived under the assumption
that a unique zero-mass limit exists for the Apm, prm,
¢KK, and K 4pK amplitudes. It is logical to ask for a
motivation for this postulate. Indeed, it is logical to
ask for a motivation of the assumption that certain ex-
trapolations to zero mass are slowly varying. Since dif-
ferent methods of using the PCAC partial-integration
procedure in multipion processes determine different
extrapolations, it is not clear which extrapolation is the
most slowly varying.

Of course, those extrapolations which yield interesting
results are generally assumed to be slowly varying.

18 This result has also been derived using local pole dominance
by Acharya and Aly. See R. Acharya and H. H. Aly, Phys. Rev.
Letters 27B, 166 (1968).
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However, other extrapolations may be slowly varying
also. For example, one method of extrapolating the prm
amplitude consists in first reducing the amplitude to the
Fourier transform of a three-point function, applying
the PCAC partial integration, and the current algebra,
and then taking the zero-mass limit.!! The result is
equivalent to the Ward identity approach and the as-
sumption of slow variation yields the equation

Gorr=28 (90)

which is just global pole dominance of the pion electro-
magnetic form factor. Equation (90) is not considered
to be very interesting at present. However, the KSRF
relation, Eq. (1), which is the result of a different
PCAC extrapolation, is considered to be a very interest-
ing relation. Phenomenological theories are constructed
to yield Eq. (1).!® It may turn out that Eq. (1) is not a
good approximation. In that case, the most slowly
varying extrapolation would be that leading to Eq. (90),
and therefore, Eq. (90) would be considered to be the
PCAC and current-algebra result. We have taken the
easy way out of this dilemma by replacing the assump-
tion of slow variation of a particular well-chosen ex-
trapolation by the assumption that the zero-mass limit
is independent of the particular method of extrapolation
used. We have shown that such an assumption is con-
sistent when applied to several vector-meson and axial-
vector-meson decay amplitudes. It remains to be seen
if it is useful to generalize the equal-limit hypothesis to
other processes.

It is not possible to derive such a sum rule for ampli-
tudes like K 4K*r which do not involve a conserved
current. This is because of the presence of scalar excita-
tions in the strangeness-changing vector current which
lead to additional terms when the Ward identity ap-
proach is applied. However, this new sum rule is not
inconsistent with the Weinberg sum rules with scalar
excitations included. Indeed, several calculations using
the Weinberg sum rules ignore the scalar excitation of
the strangeness-changing current and these calculations
have yielded successful results.!”

This procedure of defining a unique limit is really not
new. For example, Sakurai’s derivation of KSRF as-
sumes that the zero-momentum limit for the =V elastic
scattering amplitude obtained by current algebra is the
same as that gotten by using perturbation theory and
keeping only those diagrams which contribute to p
meson exchange.? In a sense, we have just extended this
concept to decay amplitudes such as pww. Sakurai’s
limit using p exchange is now replaced by a limit which
is taken using either perturbation theory for the
three-point function or the Ward identity since they
must yield equivalent results.

Of course, we may relax our restriction of equality of
limits and assume only that the limits are approximately

19 K en Kawarabayashi and Shinsaku Kitakado (to be published).

20 1, J. Sakurai, Phys. Rev. Letters 17, 522 (1966).
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equal (assumption of slow variation). If we then assume
that SU3; is valid for zero-mass extrapolations of pmi,
¢KK, K 4pK, and A 1pr, we obtain the result

pr(u?) px® (u?)
[ [

J u? %

— / O de, (01)

where ¢ is close to 1. This result has been obtained by
Oakes using a special model® for SUs breaking. The
constant ¢ may then be determined by the colliding-
beam experiments by comparing the left and right sides
of Eq. (51). Finally, we may say that it is clear that the
principle of equality of zero-mass limits removes some
ambiguity in the application of PCAC and current
algebra and leads to a new sum rule with dynamical
content. If experiments bear out the implications of
this sum rule, particularly Eqgs. (51) and (82), then the
equality of zero-mass limits must be seriously considered
in the construction of any Lagrangian theory.

APPENDIX: SPECTRAL REPRESENTATION FOR
i / d*x ¢'0 (0] T(4,%(0), 024 4~ (x)) | 0)

We first integrate by parts using the following
identity:

<]
—T[eie=(0| 7(4,+(0),4.(x))|0)]
0%y

=ig.e't (0| T(4,+(0),4.=(x))|0)
+ei%(0| 7(4,7(0),8.4.(x)) | 0)
- (Zimpz/ng)eiq'xsnutaali(x)/axn] .

In Eq. (A1), we have used the following commutation

(A1)
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relations with the Schwinger term exhibited:
§(wo) Ao (x),4,4(0)]
2im,?  96%(x)
= —284x) Vyu() — Spi—— . (A2)
g° Xn
Using Eq. (A1), we find
tf 4 e =(0] T(A4,+(0),0a4 (%)) 0)
. 2im,?
= —igalua® (@) +——¢nbnu. (A3)

8"

To correctly evaluate the first term on the right side
of Eq. (A3), we must include the Schwinger term

Oper Pﬂ'(l) (:“'2) Juqa P ® ("‘2)
A ()= [ dp’ — dp* .
2m wtqt—ie 2w p(ug* —ie)

« prV(w?) m,*
42 / du 28,ba— . (A4)
2w wi-g*—ie 2,

Using Eq. (A4), the result is

i / d4xeit-=(0]| T(A,+(0),024 (%)) 0)

iq pr V(W) pr D (u?)
= [ dp————iguq’ / P

2 witg*—ie w (W +g*—ie)
q'l , pT(0>(‘u2) Zim,,z

—igu— [ du ~qu-
“27|' wtg—ie  g° ’

(AS)

We may now combine the first two terms on the right
side of Eq. (AS). We then replace the last term by the
sum of spectral integrals in Eq. (13).

The final result is

; / a5 ¢525(0| T(A,+(0),9ad o~ ()) | 0)
: 2, (0)(,,2
1 d,ﬁ“ 02O (u ).
2 w42 —te

This is the desired spectral representation.

(A06)



