
PHYSICAL REVIEW VOLUME 179, NUMBER 5 2 5 MAR C H 1969
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A new approach to the problem of the singularity of the weak interactions is presented. Its aim is to
provide a theoretical interpretation of the extreme smallness of the violation of selection rules associated
with the weak-vector-current operator appearing in the conventional Fermi or intermediate-vector-boson
jnteraction Lagrangian. To illustrate what we have in mind, we note that on account of this singular
character, the conventional. theories have not yet yielded an understanding of the weakness of strangeness

parity violation in hadronic processes and the weakness of semileptonic neutral decays. We begin with
an jnteraction Lagrangian in which the constituents of the conventional. weak current E,e.g., strangeness-
changing, axial-vector, muonic, etc.) are coupled to possibly distinct local vector operators. This is done
in such a way that the effective weak interaction between two currents decomposes into two parts, one
having the universality of the weak interaction, the other, called diagonal, acting only between a con-
stjtuent and itself. It is then possible to transfer the singularity of the weak interaction to the diagonal
jnteractjon and to impose any desired degree of symmetry upon the singular part of the diagonal inter-
action. Two realizatjons of this approach are presented. Both are intermediate-boson theories involving
gradient-coupled spin-0 bosons as well as spin-1 bosons. An important consequence of these theories is
that, apart from implying a lower bound, the weak interactions give no indication of the magnitude of the
diagonal interactions. Thus while the scattering of p,-neutrinos by electrons should be governed by the
conventjona]. universality formula, there is no reason to expect universality to hold for the scattering of
e-neutrinos by electrons.

I. INTRODUCTION

LL known weak processes can be described by a
phenomenological interaction Lagrangian

I.r = (G/~&) (A'"'+ A'")"(A'"'+A"'), (1.1)

where G is the Fermi constant,

6=10 '/Mtv'

j/1~ is the nucleon mass, J),(') is the leptonic current,

~""=4:v~(1+vs)4..+4.'v~(1+vs)4 „, (1.3)

with $„$„„1b„,and f.„standing for the fields associated
with the electron, electron-neutrino, muon, and muon-

neutrino, respectively, and the y's are the usual
(Hermitian) Dirac matrices. A&"~ is the hadronic current
operator, the algebra of whose components has been
studied so intensively during the past few years.

The Lagrangian (1.1) has been established principally
on the basis of a phenomenological analysis of the
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leptonic and semileptonic weak processes. We have in-
cluded the usual nonleptonic part contained in the
current-current theory even though the strong inter-
actions make a comparable phenomenological analysis
very dificult.

The following properties of J),(") are, among others,
fairly well established, some with great accuracy, some
with only moderate accuracy.

J&()—Y&() A ()
with Y a polar and A an axial-vector operator

(2) Vgt
"1= cosg i7&&t's=o, l&rl=&)

+ Py =
1 rI=&l ) sing (1 c)

(3) Ag&") = cosg A„&a&=o larl=&)

+A"'=' ~ "~='t'& sine, (1.6)

(4) 0~ jso (1 7)

(5) Conserved vector current (CpC):
is the charge-lowering isotopic partner
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G/K2=+g'/M '

Although at present no rigorous consequences have
been deduced from either of these theories, arguments
given below strongly suggest that they lead to the
following diKculties' —'.

y (as=0, (Dl)=&)dx0 '
y

of the isotopic vector part of the electromagnetic I.r—(1.1), with
hadronic current, J e.m. , l ~~='I hence, for example
the charge operators

and

Qt P' ids=P, [EI)=1)tdx

Qs = &pPm l~il=idx

As long as one treats 1.1 as a phenomenological inter-
action to be used only in lowest order, one finds that all

leptonic or semileptonic processes can be very well

accounted for. However, when one attempts to construct
a theory whose first-order interaction will have the
desired properties (1)—(9) above, one runs into great

difhculty.

There are two straightforward theories which have
this property:

(1) the Fermi theory, which looks just like (1.1) but
in which one is to take I.~ as an interaction Lagrangian
and not as a pseudopotential;

(2) the intermediate-vector-boson (IVB) theory,
in which a charged ~ector boson field X„ is coupled to
the currents according to the Lagrangian

—gx 1'(J (&)+J (&))+H c

In this theory, instead of two currents being coupled
at a point, they are coupled in second order according
to the effective interaction

where

(1.9)

(3 +g g/M ')e*p 1*&-~» d4g'
(1.10)

(q'+M, ') (2pr) 4

and M, is the mass of the IVB. If M is large compared
to the range of energies and momentum transfer in-
volved in the process, (1.9) will look very much like

generate the algebra ot SU(2).
(6) The axial-vector and vector hS = 0 charges

generate the algebra SU(2) XSU(2); possibly the
AS= 0 and AS= 1 charges generate the algebra
SU(3) XSU(3).

~e emphasize that (1.4)—(1.6) already implies:

(7) absence of AS=2 or higher currents;
(8) absence of neutral currents;
(9) absence of AS/AQ= —1 currents and apart from

electromagnetic corrections, absence of currents with
in lowest-order perturbation theory. One Gnds, for the
helicity amplitude (——',,—', ) ~ (0,0),

fp p, ...= (G=/47rv2)W sin8, (W —+ po) (1.12)

(with W the c.m. energy) corresponding to a partial-
wave amplitude

Fp, p, ;,1~= (1/12')GWbJ i.

On the other hand, unitarity requires

~F&) &1/q—-2/W,

(1.13)

(1.14)

so that the first-order theory embodied in (1.13) be-
comes inadequate when

GW'&24~. (1.15)

Thus at energies, and presumably virtual masses, of
order h.' 24'-/G the weak interactions must be modified
to remain unitary. One mechanism which will give rise
to these modifications is the inclusion of terms of all
orders in G. We call h. the weak interaction or unitarity
cutoR.

If no smaller cutoff exists in the theory (and there is
no obvious one), then it is not unreasonable to estimate
singularities by cutting off all divergent integrals at A..
With this rule, it turns out that for every power of G,
the higher-order weak interactions produce a correction
of order roughly

GA'/167r' 3/27r. (1.16)
' M. Halpern and G. Segre, Phys. Rev. Letters 19, 611 (1967).
P B. L. Ioffe and E. P. Shabalin, Vadern. Fiz. 6, 828 (1967)

LEnglish transl. : Soviet J. Nucl. Phys. 6, 603 (1968)7; R. N.
Mohapatra, J. S. Rao, and R. K. Marshak, Phys. Rev. Letters 20,
1081 (1968).

3 G. Feinberg and A. Pais, Phys. Rev. 133, &477 (1964).

(1) The prescribed nonleptonic interaction gives rise
in general to strong violation of parity, isospin, and
strangeness conservation.

(2) In semileptonic weak processes, the weak selec-
tion rules embodied in properties (1)—(9) are all strongly
violated.

(3) The universality embodied in the SU(2) and
SU(2) XSU(2) algebra is strongly violated.

The reason these difhculties arise is related to but not
a necessary consequence of, the nonrenormalizability of
the theories. We illustrate the mechanism for the IVB
theory.

Suppose one calculates the process
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Since the weak. interactions are selection-rule
violating, the eRect of virtual weak interactions Las
estimated in (1.16)$ will be, as claimed above, to violate
strong and weak selection rules strongly, the latter
specifically including the universality embodied in
CVC.

It had been hoped that the softening effect of strong-
interaction form factors would remove the apparent
singularity of Eq. (1.16), at least for processes involving
hadrons. However, it has become clear" that if the
weak interactions are mediated by local currents, no
such softening eRect can take place except by virtue of
an undiscovered current algebra as well as very special
strong equations of motion.

It thus appears that the quantum-number-violating

part of the weak interactions requires an effective
cutoff, A.'«A, in order to keep strangeness- and parity-
violating processes weak, 65= 2 processes doubly weak,
and 65= 1 neutral currents small. Clearly, A' cannot be
too diRerent from a few nucleon masses if it is to
accomplish these goals.

In Sec. II, we review briefly previously proposed
solutions to this problem. In Secs. III, IV, and V, we

propose and discuss our own. In Sec. VI we attempt to
pin down some free parameters by calculating several
weak processes.

II. SOME PREVIOUSLY SUGGESTED RESOLU-
TIONS OF WEAK-INTERACTION-THEORY

DIFFICULTIES

Two types of cures have been suggested for the diffi-

culties we have discussed in Sec. I.
(1) We discuss the less radical first. Here one sup-

poses that the Lagrangian (1.1) or (1.8) holds, so that
the underlying interaction still directly involves the
vector currents. One may, within this framework, take
one of two quite different points of view.

(a) One must renormalize all divergent amplitudes.
This involves an inhnite number of arbitrary constants,
and is therefore aesthetically somewhat unappealing;
nevertheless it is not without some predictive value as
long as the coupling is weak; for example, the energy
and angular dependence of elastic, low-energy, neutrino-
neutrino scattering can be accurately calculated once a
few arbitrary constants have been adjusted. Experiment
tells us that these renormalization constants cannot be
estimated, even as to gross order of ma, gnitude, by the
kind of argument that led to Eq. (1.16), but must be
arbitrarily made small (i.e., second-order weak). Of
course, the results so obtained cannot hold at high

energies, where the power series @sist fail.

(b) One may hope that the perturbation theory is
totally misleading, so that a correct non-weak-coupling
calculation might cure all the difliculties. The attempts3
that have been made in this direction have consisted of
partial summations of diagrams, which are not convinc-

ing, but, of course, such a solution cannot be ruled out.

(2) The second type of cure we call deception (as in
conspiracy, evasion, etc.). It consists of denying a
fundamental role to the vector currents, which then
appear as fortuitous low-energy approximations to the
true interaction. Here again at lea, st two diRerent kinds
of deception can be practiced.

(a) The Fermi interaction

Lr =gVr&p(1+y. )4, , (2.3)

where f. is one of the usual spin —', fields, y is a new
spin-0 boson and Pr a new spin-rs field. The Fermi
constant will be

G/v2 g'4/487r'M', (2.4)

where M is the (assumed cominon and large) mass of
the new particles. The difficulty here is that parity
violations first occur in order gs/M' G"'/M; all the
higher-order effects discussed in Sec. I may still occur
in order GM' Thus both G"'/M and GM' must be
essentially first-order weak. To determine whether these
two requirements are actually in conRict would require
a more specific strong-interaction model and more de-
tailed calculations. The GM limitation can, however,
be weakened by appropria, te selection of the strong-
interaction model and an elaboration of the system of
weakly interacting particles. ~

III. NEW THEORY OF WEAK INTERACTIONS

In this section we show how one may construct a
theory of weak interactions with the following
properties.

4 Y. Tanikawa, Phys. Rev. 108, 1615 (1957); Y. Tanikawa and
S. Nakamura, Progr. Theoret. Phys. Suppl. (Kyoto) 37 R 38, 306
(1966).

e M. M. Block et rd , Phys. Rev. Letters 12, 281 (1964.l.' W. Kummer and G. Segre, Nucl. Phys. 64, 585 (1965).
~ N. Christ, Phys. Rev. 176, 2086 (1968).

can be rewritten by a Fierz transformation4 as

Lr = (2G/W2)P, (1—ps)/cps(1+ps)fg, (2.2)

where c represents the charge conjugate particle to c,
5 to b. Equation (2.2) evidently suggests exchange of a
spin-0 particle, hence a renormalizable theory without
singular high-energy behavior. However, in this theory,
many scalars must be introduced, universality becomes
an accident, and elastic neutrino scattering by neutrons
(and hence presumably by protons) is comparable to
the observed inelastic neutrino process. The observed'
small magnitude of neutrino-proton scattering suggests
disagreement of this theory with experiment. The
experimental investigation of neutrino-neutron scatter-
ing together with some additional theoretical analysis
of the eRects of the strong interaction should permit a
more definitive determination,

(b) The Fermi interaction can be obtained as a low-

energy limit of a fourth order scal-ar interaction'
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{1) The conventional local weak vector and axial-
vector currents play the primary role in connecting
weak interactions to the known hadrons and leptons.

(2) Estimates of weak-interaction processes (making
use of the unitarity cutoff where divergences appear)
are in agreement with experiments. That is, in addition
to preserving all of the quantitative successes of the
leptonic and semileptonic processes, the violation of
hadronic selection rules in purely hadronic processes is
weak, the violation of weak selection rules is weak, etc.
Indeed a theory can be constructed in which (a) any
given weak process is 6nite in the lowest order of weak
interactions in which it occurs, and (b) for a well-defined
class of weak processes, which includes all so far in-
vestigated experimentally, estimates of corrections to
lowest-order perturbation theory based upon the
unitarity cutoQ are small.

By way of introduction we reformulate and slightly
generalize the IVB theory in the following way. We
rewrite Eq. (1.8) as follows:

I,r g(J„"Z——„t+H.c ), . (3.1)
where

J m —J (h)+ J (l)

We have simply replaced the IVB by an unspecified
local vector operator which is assumed to interact
weakly with all known particles. The eRective second-
order weak interaction is again given by (1.9), with

The J„;are assumed to be some complete set of currents
carrying unit charge and specified in a manner appro-
priate to some symmetry-respecting interaction. Within
the context of current theoretical views they could
include the complete set of SU(3)&&SU(3) charge-
bearing vector and axial-vector currents for the hadrons,
as well as the charge-bearing vector and axial-vector
currents of the muons and electrons, all regarded as
separately indexed entities. The o;; are, of course,
determined by the expressions (1.3)—(1.8) (and may,
without loss of generality, be assumed real). The over-all
normalization of the n, is determined by the fact that
Q" and Q"t generate an SU(2) algebra. Algebraic
requirements on the Q; determine the scale of the J„,.
The symbol Q, of course, refers to the space integral of
the fourth component of the corresponding current.

Equation (3.1) can now be rewritten in the form

Lt=g Q JlvvZlv; +H.c. (3.6)

Thus, if the high-momentum behavior of 6„„is less
singular than that given by the IVB theory or the
Fermi theory, it is identically zero.

We now recall the fact that the weak current J„"
consists of a linear combination of a number of com-
ponents as indicated in Eqs. (1.3)-(1.8).

(3.5)

A„„(p)=i {v
~
T*(Z„t(x),Z„(0))

~

v)e-' *d'x The weak interactions in the second-order eRective
Hamiltonian are thus mediated by the quantity

p i(M )+ (p p /M )p2(M )
dM'+F8„„

i
.

p'+M'
(3.2)

In Eq. (3.2) the quantities pi(M') and p2(M') are
defined by the expression

(i
~
z„'(x)z, (y) ~

i))

d'p 8(P0)
e'~ (* »b(p-'+M~)

(2m.)'

X
~

B„„p,(M')+ p, (M') ~dM'. (3.3)(, Pl p

M'

P.P. I ~(M')
A„„(p) F"e„„+ — dM'.

M'
(3.4)

T~ means a suitably defined "covariant" time-ordered
product, and the constant Ii is determined by the rela-
tion between the true time-ordered product and T*.It
follows from the assumption of a positive-metric
Hilbert space that p2& p~&0.

The difFiculties that we have been discussing arise
from the high-momentum behavior of

(w~ T*(Z„;(x),Z„(0))~())d'xe ' " (3.7).
Equations {3.6) and (3.1) are identical if 2„;=n,2„, in
which case 6„„,;,=o.;n,A„„.We note that universality of
the weak interactions is, in this framework, exhibited
by the fact that 6„„„;depends upon i,j only through
the factor o;,n;.

Equation (3.6) is, however, more general than
Eq. (3.1) and constitutes an appropriate framework for
defining a class of theories having the properties
described at the beginning of this section. These theories
are defined by the requirement that

(3.8)

where 6„„"is less singular at high momentum than the
expression in Eq. (3.4). We shall refer to 6„," as the
weak-interaction propagator and refer to its high-
momentum behavior as nonsingular. The argument
leading to Eq. (3.4) applies unchanged to the diagonal
parts of 6„„;,(i.e. , 6„„...), but has no bearing on the
high-energy behavior of the nondiagonal parts. We
shall indeed find that one may require that the singular
behavior be contained entirely in 6„„,,", and, accord-
ingly, that 6„„"can be chosen to be as well behaved as
experimental and theoretical considerations suggest.
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The 6„„,,"will be referred to as the diagonal propagators
and their contributions to the effective Hamiltonian as
diagonal interactions. Since all nonvanishing 6„,,; are
required to have the high-momentum behavior of
Eq. (3.4), they will be referred to as singular.

Equation (3.8) is the fundamental equation of our
theory. The properties described in (2) at the beginning
of this section are achieved by imposing appropriate
restrictions upon the index dependence of 5„„,;"and the
high-momentum behavior of 6„,". One may, for

example, go so far as to require that the index depen-
dence of 6„,,," be so chosen that the diagonal effective
interaction Hamiltonian conserves C, I', and T and,
when supplemented with a diagonal interaction between
neutral currents, have an SU(3) && SU(3) && SU(2)
&&SU(2) &&SU(2) &(SU(2) symmetry' for the combined
hadron-lepton system. There is then no danger that
singular interactions will contribute to symmetry
breaking. The finiteness of lowest-order perturbation
theory can be ensured by requiring sufficiently good
behavior of ~„," at high momentum. It is in fact suK-
cient to require that it vanishes as 1/p'.

A little examination of the situation indicates that
theories of the type described above can be most easily
realized by the introduction of spin-0 and spin-1 inter-
mediate bosons. The effective interaction of spin-1 and
gradient-coupled spin-0 bosons take the forms

~"+(p.p /~')
p'+m'

Model I
The weak interactions are assumed to be mediated

by a set of charged spin-0 fields p; carrying an index i
corresponding to the index on the J„;and carrying the
same electric charge as the current J„;, and a single
charged spin-1 field X„.The local operator 2„;(x) of
Eq. (3.6) is then defined as'

Z„,(x)=n;X„+(1/);) 8q, /Bx„ (4.1)

In order that it be possible to impose special sym-
metry requirements on the diagonal interaction, such
as charge independence or SU(3) invariance, we intro-
duce, in addition, a set of neutral Hermitian spin-0
fields y and an interaction Lagrangian density

1 8p;I1Ng p'~pi
Bx„

(4.2)

(BX„BX„)t(cjX„cjX„)"I—m'lax„ax„i &ax„ax„j

where J„are Hermitian neutral counterparts of the
Jp, go

It is assumed that the expressions for the J„,and J„,'
do not contain these fields. The dynamics of these fields
is determined by the Lagrangian density

p'+I '

respectively. For diagonal interactions all such inter-
actions combine with the same sign. For nondiagonal
interactions, however, the couplings can be arranged so
that different bosons contribute with different signs,
leading to cancellation of the singularities. In particular,
as exhibited in Sec. IV, supplementing a charged spin-1
boson with gradient-coupled spin-0 bosons can lead to
a. theory in which the coefficient of the p„p„ term of the
6„."part of the effective interaction falls off as 1/p' for
p'))M, ', where M, is some mass characteristic of the
system of bosons. The quadratic cutoff-dependent
strangeness and other selection-rule-violating effects
discussed in Sec. I then acquire M,' as an effective
cutoff.

IV. MODEL LAGRANGIANS

In this section we exhibit two Lagrangian models
which yield an effective interaction having the proper-
ties described in connection with Eq. (3.8).

8 The possibility of constructing a theory in which the
symmetry-violating part of an interaction is less singular than is
characteristic of quantum field theories has been utilized in
connection with electromagnetic sects; see T. D. Lee, Phys. Rev.
171, 1731 (1968).

gg o

sp Z 0'i Xs Zni)ti —XsgniXi
BXp

(4.3)

(p"=g ,ny);/(g n;9,s)'", .

and one notes that it is this quantity which is coupled
to the X particle in Eq. (4.3)."

The propagator is to be determined in the limit g= 0,
in which case only I.„is relevant. It is evident that L
gives rise to linear equations of motion which can be

9 We note that the presence of derivative-coupled scalars
suggests the possibility of introducing CI' violation by means of
a strong, nonderivative (and therefore nonsingular) coupling of
the same fields.

"We observe, in addition, that if the ); are chosen equal to
one another, then q" may be thought of as having the same
orientation in component space as J„".While this analogy be-
tween q" and J„"is suggestive, we do not know whether it is of
real significance.

The); and) are assumed real. We note that the inter-
action Lagrangian I.r of Eq. (3.6) contains a term
identical with Eq. (1.8). One may define in analogy
with J„"an electrically charged spin-0 6eld
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can therefore be found explicitly and are given hy

pg
"——8(m' —M2)n, n;

Q 0' (1—~)
p2;;= i

h(m' —M')+ 8(p '—M')

(4.5)

with
n=(Q X,'n;n;)/m')0 (4.7)

%e note that the Lagrangian density L„ leads to a
positive-energy Hamiltonian if and only if n(1. One
easily sees that if this inequality is satisfied, the spectral
density matrices satisfy the requirement that p&,; is
positive indefinite and p2, ,—3f'p~;, is positive indefinite
and nonzero as required by the positivity of the Hilbert-
space metric.

The vacuum expectation value of the true time-
ordered product is given by the general formula

d4p g4p'(4: »

4.e' (M')+ p.p.u2' (M')
&&

—8„,5„p„,(M') idM'.
~

~

p'+M'
(4 9)

It is obvious from Eqs. (4.5) and (4.6) that this ex-
pression splits into two terms, one proportional to o,,o.„
the other to 5;,. I'urthermore, since

p2..(M') dM' = (4.10)

only the diagonal part is noncovariant. The determina-
tion from first principles of the covariant propagator to
be used in a Feynman-diagram representation of
perturbation theory requires a more explicit specifica-
tion of the rest of the theory (i.e., of the hadron-lepton
Lagrangian). We shall assume, as is the case for a num-
ber of theories, that the covariant propagator is obtained
by omitting the 8,45.45,, terms in Eq. (4.8). While the
correct covariant propagator may involve a diagonal
contact term in some reasonable theories, its presence
would not affect the general conclusions that we reach.

solved exactly. The spectral functions defined by

(v i z„,(x)tz„;(y) i ~)

d4
e'"' &* »8(p ) 8(p'+M')

(2m)4

&(fb„„p„;(M')+p„p„p2;;(M')fdM' (4.4)

It then follows that the weak propagator is given by

&.,"(p)=——
p +

pflpv

tÃ p +t5

—n) 1 1 1
(4.11)

p2+p 2 ~ p2+p2

and the diagonal propagator 6„„,," by

p!pv
&pv, 4 (p) =

g .2 p2+p2
(4.12)

Model Il

The set of charged and neutral spin-0 fields y;, q, ' are
now supplemented by a set of charged and neutral
spin-1 fields U„,, U„,'. The charged, unindexed spin-1
field X„ is omitted. The local operator 2„, is then
defined as

Z„,(x)=y,V„,+ (1/X,) Bq ~/8x„

and the neutral interaction by

1 By,')
I.r~ ——gQ J„,' y V„,'+—

(4.13)

(4.14)

It is evident that the weak propagator now behaves as
1/p' at large momentum in contrast to its previous
singular behavior. The diagonal propagator is inde-
pendent of the n, (apart from the inequality n(1). It
follows that the diagonal interaction, when supple-
mented by the contribution from Lzz, retains any sym-
metry property possessed by the total Lagrangian, in-
cluding LI and I, in the limit n, =0. Thus one can
choose the 'A,;,). so that C, I', T, hypercharge, and
isotopic spin are strictly conserved in this limit. One
may, of course, impose even more symmetry on the
diagonal interaction, such as U(3) && U(3) for the
hadrons and 5f!(2) XSU(2) for the leptons, if it seems
appropriate. One may also wish to impose less; for
example, there is no known reason (see Sec. V) to impose
parity conservation upon the leptonic part of the
diagonal interaction, and one may therefore wish to
avoid the introduction of right-handed neutrinos. This
can be accomplished by regarding the V —2 combina-
tion for the leptons as carrying a single index in
Eq. (3.5) . We also remark that it is not necessary to take
all of the spin-0 masses equal. Ke have done so for
computational simplicity.

The high-momentum behavior of 6„„"'in the model
discussed above is sufficiently regular to avoid all of the
contradictions of weak-interaction theory which arise
from the use of unitarity cutoR to estimate divergent
expressions. It is, however, not sufficient to make
lowest-order perturbation-theory calculations hnite.
While it is not obviously necessary that they be finite,
as will be discussed in Sec. V, we wish to show that a
more regular behavior is readily achieved.
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with
Lw Lwfre, e+Lu:, r

aV.; aV„;)t (aV„aV„,)
ax„ax„) k ax„ax„I

aV„; aV„;)'
~

—m'P V„,tV„;ax„ax„j

(4.15)

It is convenient to split that part of the Lagrangian
1nvolvlng pi)pg and Vp, „', ) Vp~ only lnt. o two parts. '

Evidently,

pg,,de@'=5;)p ',

pg,,dM'=a;, —+—i,
m2 ~,2/

(4.23)

with

8p; Bp;—-', m'Q V„V„—Q
Bxp Bxp

L r= (1/m')K„tK„,

(m2 a y;)
K =Pn~ —V

ax„/

(4 17)

(4.18)

It is clear from (4.19) and (4.20) that the diagonal
interaction is independent of I.z„and hence that the
diagonal interaction retains all symmetry properties
which hold in the absence of Lr„. Equation (4.23) to-
gether with Eq. (4.9) implies that the wea¹interaction
propagator behaves as 1/p' at, high momentum.

V. THE DIAGONAL INTERACTION AND ITS
INFLUENCE UPON OTHER

INTERACTIONS

In this model, I.z and I-z~- make no direct reference
to what is usually thought of as the weak interaction.
The constants p;, p, );, and X,' will typically be chosen
so as to yield a symmetry-respecting Lagrangian in the
absence of I„z.The universal weak interaction appears
as a relatively strong Fermi-like interaction between
the "currents" K„t and K„, which is then weakened by
the buffering action of the relatively weak coupling of
the V„; and y; to the J„,.

The equations of motion generated by 1. are again
hnear, so that one can compute the spectral functions
defined by Eq. (4.4) exactly. One finds instead of (4.5)

pi; ——n.n P(mi2 —M') —b(m' —M')]
m 8$$

+h,)y,25(m2 —M2), (4.19)
and instead of (4.6)

nn( 1
p~;;——=~ —[m'a(m '—M') —m 'a(m' —3p)]'

mi2Em' —mP

1
+ i'~'~(~P —M') —~ '4' —M')1)

Py —P

7" 1
+8;; 8(m' M')+ 6(y' —hP))—, (4.20)— —'

m2 X
where

(4.21)my

(4.22)pP =p'mi2/(mi2 —Q n,9,2) .

The spectral densities satisfy the positive-metric
requirements provided m&' and p, &' are positive.

One of the most characteristic features of the class of
theories discussed in this section is the fact that the
diagonal and weak interactions are to a large extent
independent of one another. Thus, apart from in-
equalities such as n(1 in model I, which imply a
minimum strength for the diagonal interaction, no
natural connection emerges between the magnitudes of
the n; and the parameters which determine the strength
of the diagonal interaction. The theoretical treatment
that we have given does assume that the interaction
Lagrangian is suSciently weak to give relevance to an
analysis in terms of perturbation theory, and we will
continue to make this assumption in our subsequent
analysis. We have not, however, found any intrinsic
way of characterizing its strength. Indeed, the possi-
bility that some of the extra particles introduced in our
model might be strongly coupled cannot be excluded,
although some modification of the theory presented
seems necessary in that case. The comment of Ref. 10
may have some relevance in this connection.

It follows from the above observation that the
universal weak interactions are less inclusive than is
usually assumed. It is, of course, well known that what
we would call diagonal interactions among the hadrons
are not governed by the weak interactions. On the
other hand, it has been conventional to assume that the
scattering of electron neutrinos by electrons is so
governed. According to our theory, however, no con-
nection between this process and the weak interactions
should be assumed. A similar remark applies to the
experimentally less accessible scattering of p neutrinos
by muons. The experimental investigation of these
questions would. be especially relevant for theories of
this type. In considering the feasibility of such experi-
ments, the possibility that these processes may be
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substantially stronger than is typically assumed should
not be overlooked.

Because of the singular nature of the dia, gonal inter-
action, what one means by its strength is not entirely
unambiguous. Repeating the arguments of Sec. I, one
can show that unitarity considerations imply that
perturbation theory must break down when, say, in the
case of our models, g'g'/24m. X' or g'y'g'/24xnz' are larger
than unity. As a basis for discussion we shall take the
view that the diagonal interaction does not lead to an
inconsistent theory, but rather to a theory for which
conventional perturbation theory is invalid no matter
how weak the coupling constant. We shall assume,
however, that order-of-magnitude estimates can be
correctly made by evaluating perturbation-theory ex-
pressions and, when necessary, applying the cutoff,
which is determined by the energy at which the Born
approximation exceeds the unitarity bound. On this
basis, the electron-neutrino-electron interaction at low
energies is described phenomenologically by a Fermi
interaction of order g'/9, g'p'/eP, or more generally

f(pgg/M')dM', fp2;,dM'.
We now turn to the question of the effect of the

diagonal interactions upon other interactions. Because
the diagonal interaction yields self-energy and vertex
integrals which are typically quadratically divergent in
lowest order, and which diverge like A.'" in nth-order
weak, corrections to these quantities are of order unity.
In the case of the hadrons and the strong interactions,
these effects can, of course, be simply amalgamated
with the observed strong interactions. If the diagonal
interaction respects all strong-interaction symmetries,
then these large modifications will also do so. It may,
however, be unnecessary to require the full symmetry
for the diagonal interaction, because it is possible to
construct special models of the strong interactions for
which a partial symmetry of the diagonal interaction is
sufhcient to guarantee that symmetry violations be
small. An exa,mple of such a theory is a triplet spin-~
model with strong coupling mediated by a vector
unitary singlet and SU(3) &&SU(3) broken only by mass
terms. One may then regard the usual V—A combina-
tion as a single indexed entity. Strangeness-changing
and strangeness-nonchanging currents must be sepa-
rately indexed and a neutral interaction between
strangeness-changing currents must be introduced in
order to avoid strong violations of charge independence.
The only symmetry required is between the charged
and neutral interactions of the strangeness-changing
currents. The diagonal interaction is thus strangeness-
conserving, but conserves neither isotopic spin nor
parity; however, the gauge invariance of the unitary
vector coupled to baryon number ensures that the
strong effect of the isotopic spin and parity violation
cancels in any process, leaving only a weak residue.

Because the diagonal interaction carries electric
charge, electromagnetic effects can be discussed only

within the framework of some specific model. We shall
confin ourselves to a few general remarks here. First, ii.
appears that the imposition of charge conservation will
guarantee the usual Z~= Z2 relation which preserves the
universality of the electromagnetic coupling. It also has
the consequence that the most singular parity-violating
effects in the electromagnetic vertex, which arise if the
diagonal interaction is chosen to violate parity, are
cancelled by similar effects in the propagator. Con-
sequently, parity violation in the diagonal interaction
for leptons leads only to weak parity viola. tion in
leptonic processes. Second, the diagonal interaction and
its associated charged particles can be expected to have
small but observable effects on the various quantum
electrodynamics experiments, the magnetic moment of
the muon being the most likely candidate. With refer-
ence to any specific model, existing experiments allow
one to impose limits on some of the coupling coe%cients
appearing in the diagonal interaction.

We digress to summarize the situation with respect
to parity violation in the diagonal interaction by listing
three reasonable possibilities. (1) The entire diagonal
interaction conserves parity. This guarantees that all
parity violation arises from the nonsingular weak inter-
action and eliminates the possibility of larger-than-weak.
parity violation. It requires the introduction of right-
handed neutrinos. We note that these can be introduced
in a way which preserves the vanishing of neutrino
masses. The right-handed neutrinos are not produced
in weak decays nor are they produced in the scattering
of left-handed neutrinos on hadrons or leptons. They
are produced, however, in reactions like e++e ~ v+v
and consequently can have astrophysical implications.
(2) The diagonal interaction among the hadrons only
conserves parity. In the case of the leptons the vector
and axial-vector currents are not separately indexed,
the usual V—A combination being regarded as a single
current. In this case, the diagonal interaction among
the leptons is parity-violating. Parity violation does,
however, continue to be weak, that is, as weak as the
diagonal interaction. This choice has the possible
advantages of eliminating the introduction of right-
handed neutrinos and reducing the number of inter-
mediate mesons required. Its principal disadvantage is
the lack of symmetry in the treatment of electrons
vis-a-vis the hadrons. (3) The vector and axial-vector
currents appear in the combination V—A everywhere.
As compared to (2) above, this has the additional
advantage of restoring some symmetry between
hadrons and leptons and further reducing the number
of required intermediate mesons. On the basis of the
estimation methods that we are using, this choice can,
however, lead to strong parity violation in hadronic
processes. We are thus led to require a special strong-
interaction model for which large violations vanish.

We turn now to the eBect of the diagonal interaction
upon the nonsingular weak interactions. We note first
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n

(a) {e)

Fic. 1. Typical Feynman diagrams for the process A~ vr +n.
The effects of strong interactions have been omitted. Diagonal
propagator, wavy lines; nonsingular weak propagator, dashed.
lines.

{b) {c)

FH". 2. Typical Feynman diagrams for the process Z+~ cp

+p++p, . The effects of strong interactions have been omitted.
Diagonal propagator, wavy lines; nonsingular weak propagator,
dashed lines.

of all that processes mediated by weak propagators
alone are at worst logarithmically divergent and are
finite for propagators as well behaved as those of model
II. The order of the process is equal to the number of
weak propagators which appear. For a given process
there is a minimum number of such propagators which
must appear. Contributions containing only this mini-
mum number yieM the lowest-order perturbation-theory
result. The inclusion of the strong and electromagnetic
interactions presumably do not change the situation
qualitatively. We illustrate these remarks by the process
h —& ~~+n (Fig. 1) and 2+—+ P+p++p (Fig. 2), with
hadronic strong interactions ignored. The neutral lepton
pair decay of the 5+ is clearly second-order weak and
finite. The A. decay is first-order weak and, for model I,
logarithmically divergent. within the framework of
our cutoB approach such a divergence is acceptable and
not in disagreement with experiment.

The large eRects of the diagonal interaction are of the
form of Z» vertex modifications and Z2 propagator
modifications. These do not change the scale of the weak
interactions but can lead to order unity corrections to
the weak-interaction coupling constant. Phenomeno-
logically, one can deal with this problem by assuming
that the conventional coupling constants of the weak
interactions refer to the interaction after the renormali-
zation due to the diagonal interaction has been carried
out. From a more fundamental viewpoint it would be
preferable to formulate the theory in such a way that
the large renormalizations are a universal factor. The
evident similarity between electrons and muons makes
equal renormalization for these particles quite natural.

In order to include the hadrons, one could require a
similarity of structure at high energies for the hadrons
and leptons. For example, one might postulate the
existence of a heavy neutral electron and a heavy
neutral muon to form leptonic triplets in analogy with
an assumed fundamental hadronic triplet. One might
also take the view that on account of the weak-
interaction angle the establishment of universality is not
so precise as to eliminate the admissibility of a small
(but large compared to weak) difference between the
hadronic and leptonic renormalization factors.

%e remark that strong-interaction current conserva-
tion may continue to play its customary role with
respect to the renormalization eRects of the strong
interactions. So long as the strong interactions couple
entirely exteriorly to diagonal-interaction modified
vertices, the customary arguments are unchanged.
Diagrams in which the strong interactions invade the
diagonal-interaction vertex structure are assumed to be
weak because of a damping eRect of the strong inter-
actions. This is equivalent to the assumption that the
dominant singularity of structures like

where the J„,. are hadronic currents, occurring when alt
coordinates are close to one another compared to
hadronic distances, are independent of the strong
interactions.

Typical nonvertex corrections to weak interactions
due to the diagonal interactions are illustrated in
Figs. 1(b), 1(c), 2(b), and 2(c). On the basis of an
elementary denominator count, Fig. 2(b) is seen to be
logarithmically divergent, hence yielding a correction
of relative order g' ln(A. '/m'). The diagrams of Fig. 2(c)
are of order g'(g'cV/m')" ', where e—1 is the number
of diagonal interchanges. Thus all higher-order correc-
tions to the neutral decay of the 5+ are "6rst-order"
weak compared to the lowest-order process. That is, the
corrections do not continue to decrease with increasing
order. The process Fig. 1(b) is of order (g'A'/m')/
1n(A'/tm') relative to the lowest-order process for model
I. Since the numerator is presumably of order unity, the
lowest-order process may still dominate. On the other
hand, for more convergent models the relative order is
g' in(A'/nz'). The higher-order processes of Fig. 1(c)
are of relative order (g'A'/m') "/ln(h. '/m') for model I
and of order g'(g'A. '/nz') " ' for more convergent models.

These examples illustrate the following state of
affairs. (1) If the weak-interaction propagator falls off

as 1/p' or faster at large momentum, then every weak-
interaction process is finite in the lowest order e in
which it occurs and of order g' in the weak-coupling
constant. If no diagonal interaction is involved in the
lowest-order process, then higher-order corrections to
it due to the diagonal interaction are weaker by a factor
g' ln(A'/nz') or g' independent of the order to which the
diagonal interaction occurs. (2) If the weak-interaction
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propagator falls off as 1/p' at higher momentum, then
some processes may be of order g' ln(h. '/m') in lowest
order. For these processes, higher-order corrections due
to the diagonal interaction are reduced only by a factor
1/ln(h. '/m'). While we have not carried out a systematic
and complete investigation, we conjecture that these
properties are general.

(2)

7K p +p )2X~0 ~x +

~~, ~ =0.9)&10 "sec.

We consider also the I&~—E~ mass difference

We remind the reader that processes which are
quadratically divergent in the conventional IVB
theory become finite (or logarithmically dependent on
the weak cutoff) in our theory, with the quadratic
divergence replaced by the square of a mass which is
some weighted average of the intermediate boson
masses. If this mass is large compared to the character-
istic hadron mass scale, then the formerly divergent
terms continue to dominate.

The most reliable upper limit is obtained from
process (1).The weak propagator is written as

8s Ay(Q )+gsg"As(s ) (6 1)

We have found that when Ai and g'ass in (6.1) have
comparable high-g' behavior, Ai dominates. If Ai has
the form 1/(g'+M'), as in our model I, we obtain an

upper limit for M which depends on the algebra of the
weak currents: For the quark model, for example,
Mohapatra et al. And M &38 BeV, whereas the I.WZ
model gives M&50 BeV.

"T.D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

VI. APPLICATIONS

We consider now two partial lifetimes which give
fairly stringent limits on the masses of the intermediate
bosons. These are

Process (2) has been considered in the partially con-
served axial-vector current approximation by Glashow,
Schnitzer, and Weinberg. " Their calculation may be
taken over for our theory, where again we ignore the
g„g, contribution. They find

M 8 BeV,

which should probably also be taken as an upper limit,
since the E—+ 2x rate may well be a much more rapidly
growing function of M' than is indicated by their
calculation. In particular, if the second Weinberg sum
rule fails to hold, the rate grows quadratically with M
rather than logarithmically (for fixed G).

We mention brieQy the problem of the Ei—K2 mass
difference, which has also been treated by all the authors
of Ref. 2, and by Olesen. "The calculation depends on
the evaluation of strong-interaction matrix elements of
products of currents, so that it is fairly model-sensitive.
A typical contribution is quadratically dependent on M,
and yields a value M&3 or 4 BeV. One can only view
these results as order-of-magnitude estimates; never-
theless, it is hard to see how a much larger value of M
could be tolerated.

In summary, if the class of models proposed here is
correct, we would expect to find intermediate weak
bosons somewhere in the mass range 2—8 BeV.

Once a cutoff of that magnitude has been established,
it becomes particularly interesting to investigate the
nature of the most singular terms. For example, as has
been observed by Mathur and Olesen, "most models
give the most singular term in the nonleptonic decays
as a commutator, which may well have octet properties
and therefore simply account for the

i
AIi = s rule.
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