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An alternative is proposed to specific Lagrangian models of current algebra. In this alternative there are
no explicit canonical fields, and operator products at the same point Lsay, j„(x)j&(x)g have no meaning.
Instead, it is assumed that scale invariance is a broken symmetry of strong interactions, as proposed by
Kastrup and Mack. Also, a generalization of equal-time commutators is assumed: Operator products at
short distances have expansions involving local Gelds multiplying singular functions. It is assumed that the
dominant fields are the SU(3) &&SU(3) currents and the SU(3) XSU(3) multiplet containing the pion field.
It is assumed that the pion field scales like a field of dimension 6, where d, is unspecified within the range
1&6(4; the value of 6 is a consequence of renormalization. These hypotheses imply several qualitative
predictions: The second Weinberg sum rule does not hold for the difference of the E* and axial-X* propa-
gators, even for exact SU(2})&SU(2};electromagnetic corrections require one subtraction proportional to
the I= 1, I,=O 0 field; q ~ 3m. and m 0 ~ 2y are allowed by current algebra. Octet dominance of nonleptonic
weak processes can be understood, and a new form of superconvergence relation is deduced as a consequence.
A generalization of the Bjorken limit is proposed.

I. INTRODUCTION

'HERE are a number of problems in strong inter-
actions which involve the short-distance behavior

of the SU(3)&(SU(3) currents but which cannot be
solved by Gell-Mann's current algebra' alone. These
problems include the convergence or divergence of
Weinberg sum rules, ' divergences in radiative correc-
tions to strong interactions, the nature of the Bjorken
limit, ' etc. Various models have been proposed to
handle these problems, such as the algebra of fields, 4

the quark model, or the 0. model. ' These models give
conflicting answers to some of the problems mentioned.
One therefore must consider what further alternatives
to these models exist, and hence to get an idea of the
range of answers possible to the problems listed.

This paper presents a framework in which one can
discuss some alternatives to specific Lagrangian models.
The present framework does not involve Lagrangians:
There are no canonical fields in the formalism, and
operator products at the same point, for example, the
product j„(x)j&(x) of two currents, have no meaning.
To replace the Lagrangian methods of analyzing short-
distance behavior, two hypotheses are proposed. The
first is that the strong interactions become scale-in-
variant at short distances. This was proposed by Kas-
trup and Mac. ' This means that scale invariance is a
broken symmetry in the same sense as chiral SU(3)
XSU(3). The other hypothesis is that there exist

* Supported in part by the OfFice of Naval Research,
f The author thanks the Alfred P. Sloan Foundation for support.
' M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1964).' S. Weinberg, Phys. Rev. Letters 18, 507 (1967); S. Glashow,
H. Schnitzer, and S. Weinberg, ibid. 19, 139 (1967); T. Das,
V. Mathur, and S. Okubo, ibid. 18, 761 (1967).' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

'- T. D. Lee, S. steinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).' M. Levy, Nuovo Cimento 52A, 23 (1967); M. Gell-Mann and
M. Levy, ibm. 16, 705 (1960).' G. Mack, Nucl. Phys. B5, 499 (1968), and references cited
therein.

179

"operator-product. expansions" for products of two (or
more) local fields near the same point. For example,
one can construct expansions for products such as

j„(x)j„(y) or j„(x)j„(y)j (z) when y and z are near x.
These expansions contain functions m'hich are singular
when y=x or y is on the light cone through x. These
expansions give a more detailed picture of the short-
distance behavior of products than one gets if one only
knows equal-time commutators. These expansions origi-
nated in detailed studies of renormalization in pertur-
bation theory. ' The importance of scale invariance for
the analysis of short-distance behavior is apparent in
the power-counting arguments of Dyson and in the
relation betw'een the renormalizability of an interaction
and its dimension, pointed out by Umezawa et al. "

Scale invariance is sometimes thought of as a feature
special to certain strictly Lagrangian theories. However,
an analysis of the Thirring model' shows tha, t scale
invariance can persist in a theory where, for example,
the canonical commutators have been destroyed by
renormalization effects. (The Thirring model involves
a spinor field in one space, one time dimension with a
Fermi coupling. ) While scale invariance persists, the
scaling laws for particular fields change as the coupling
constant changes. This will be assumed to hold for
strong interactions also, so that the scaling laws for
strongly interacting fields will be assumed to differ
(because of renormalization effects) from free fields.

The hypotheses of this paper leave much to be deter-
mined; nevertheless, when combined in a simple way
with current algebra, one can make a, number of qualita-
tive predictions. The applications considered in this
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paper include the validity of Keinberg sum rules, di-
vergences in radiative corrections to strong interactions,

g
—+ 3x and m."—+ 2y decay, nonleptonic weak inter-

actions, and the Bjorken limit.
This paper is only a summary of the ideas involved

in the two hypotheses and a survey of their applica-
tions. Many details, some of considerable complexity,
have been omitted.

Operator-product expansions are introduced in Sec.
II. Scale invariance applied to operator-product ex-
pansions is explained in. Sec. III. The scale-invariant
part of strong interactions is discussed in Sec. IV. The
effect of mass terms in the Lagrangian (the mass terms
are to be treated as interaction I,agrangians in the sense
of perturbation theory) is considered in Sec. V. A speci-
fic set of mass terms is proposed in Sec. VI. The appli-
cations are analyzed in Sec. VII. Section VIII contains
final comments.

II. OPERATOR-PRODUCT EXPANSIONS

An equal-time commutator of two local fields A(x)
and B(x) is expected to be of the general form

LA(xp, x),B(xp,y))=+„D (x—y)0 (x), (2.1)

where the 0„(x) are a set of local fields at x Lincluding
the unit operator I which for the purposes of this paper
is a local Geld 00(x)=I; it is local because it commutes
with the other local fields for spacelike separation).
The functions D„(x—y) are 8 functions or derivatives
of 8 functions.

The generalization proposed here is that an ordinary
product A(x)B(y) has an expansion when the four-
vector y is near x, of the form

A (x)B(y) =P C (x—y)0„(x) . (2.2)

Here the functions C„(x—y) depend on a four-vector,
not a three-vector. Instead of being 6 functions, they
involve powers of x—y. They can have singularities on
the light cone of the form L(x—y)' —ie(x,—y,))—&, p
being any real number (it need not be an integer).
They also involve logarithms of (x—y)'. The complete
expansion in general involves an infinite number of
local fields 0„(x) but to any finite order in x—y only a,

finite number of fields contribute. The expansion is
valid in the weak sense: One must sandwich the product
A (x)B(y) between fixed final and initial states (n~ and

tP). The expansion is then valid for y su%ciently close
to x.

These operator-product expansions exist for the free
scalar and spinor 6eld theories and for renormalized
interacting fields to all orders in perturbation theory.
In every case they are valid for any elementary or
composite local fields: A (x) and B(y) can be elementary
scalar or spinor fields or local currents or the stress-
energy tensor or any local Wick product in a free-fieM
theory. Similar expansions exist for T products or com-
mutators at small distances or products of three or

more fields close. to the same point. (These statements
will be demonstrated in a separate paper. ) One ran
compute the equal-time commutator of A and 8, given
the operator-product expansion for A (x)B(y) (see
below); one can also compute equal-time commuta, tors
of any time derivatives of A and 8.

There are several reasons for using operator-product
expansions in place of equal-time cornmutators to des-
cribe the short-distance behavior of a field theory. One
reason is that equal-time commutators can involve in-
finite constants, whereas the expansion coefficients
C„(x—y) cannot. For example, the Schwinger term in
the commutator of tw'o quark currents contains a di-
vergent constant. "In contrast, the functions C„(x—y)
must be distributions in the four-vector x—y since the
operators A (x) and B(y) are, and a distribution cannot
contain infinite constants. " A related result is the
following: The Bjorken limit, formulated in terms of
equal-time commutators, predicts that Fourier trans-
forms of amplitudes, such as (n~ TA(x)B(0) ~P), will be-
have as a power series in the transform variable qo

'
when qo is large, q being held fixed. ' Kith the more
general operator-product expansion it is found that
fractional powers of qo are also possible; they occur in
the Thirring Inodel in one space and one time dimen-
sion. ' Other advantages of the operator-product ex-
pansions are: They are manifestly covariant, they exist
for T products of operators, and one can give a simple
discussion of symmetry-breaking e6ects to all orders.

One can relate the operator-product expansion of
A(x)B(y) to the equal-time commutator of A and B.
Suppose Co(x—y) behaves as L(x—y)' —ie(xo —yo)) & for
some power p. (If A and B are not Lorentz scalars, there
would also be a polynomial in the components of x—y.)
The ie comes in because intermediate states have only
positive energies and only intermediate states of very
large energies (larger than the fixed initial- and final-
state energies) contribute to the light-cone singularity.
These high-energy states are exponentially damped if
one gives xo a negative imaginary part. So (x—y)'
becomes (xo—yo —ie) '—(x—y) '. The commutator
LA(x),B(y)) for y near x (but not equal times) has
an expansion

LA (x),Bb))=Z- &-(x—y)0.(*),
where Eo(x y) is— (2.3)

"The calculation is similar to that of J. Schwinger, Phys. Rev.
I.etters 3, 296 (1959).

"The Wightman axioms are assumed."This is a consequence of the analysis of Sec. VII plus known
properties of the Thirring model; see K. Johnson, Nuovo Cimento
20, 773 (&96j.).

Ep(z) = EL(—z'+iezp) —&—( z' iezp—) ')—(2.4)

and E is a constant. The second term comes from the
product B(y)A(x): It makes Eo(z) vanish for spacelike
z. One can convert Zo(z) into a sum of 8 functions in z,
for any nonzero but smaH zo. One uses the definition of a
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8 function

&'(z)z (z) =
z (0), (2 5)

LV~'(z)1p(z) = Vp—(0) «c (2.6)

where p(z) is a differentiable function of z, and J;—=J'd's. One writes

p(z) I:p(a) = Lp(0)+z Vp(0)+ 3~p(a) . (2 7)

It makes sense to expand p(z) in a Taylor series because
Ep($) vanishes unless

~

z
~

&
j sp

~
. One now sees that the

function Ep(a) is equivalent to a sum of 8 functions:

where

Fp(ap) = Ep(sp, z), (2.9)

Fi(sp) =— X~ p(sp, z)z, etc. , (2.10)

The dependence of the function Fp(sp), etc. , on ap is
determined by dimensional analysis to be

~p(ap) = fpap '~',
Fi(sp) = fixp-'~+', etc. ,

(2.11)

(2.12)

where fp and fj are constants (proportional to E)
Actually fi vanishes because of rotational symmetry,
but there will be tensor quantities fz... etc. , which do
not vanish.

The equal-time commutator is obtained by letting
zp —+ 0. The coefficient of 5P(x—y)I in the commutator
is Pp(0), which is

fp,

if p(1.5
if p=1 5

if p&1 5.

Similarly, the coefficient of V;V,4'(x—y)I is nonzero if
p~& 2.5 and infinite if p) 2.5. This analysis is based on
a particular definition of the equal-time commutator
(the limit for ap ~ 0 of the unequal-time commutator).
It may not apply to other definitions. It is clear that the
operator-product expansions have greater flexibility in
the form of the coefficient C„(x—y) than do the equal-
tirne commutators unless one permits in6nite coefhcients
in the equal-time commutators.

III. SCALE XNVARIANCE

The nature of the singularities of the functions
C„(x—y) is determined in known field theories (exclud-

ing finite-mass vector-meson theories") by the exact
and broken symmetries of the theory. The most crucial
of these symmetries is broken scale invariance. ' "The
free scalar and spinor field theories with zero mass are
exactly scale-invariant. Mass terms and renormalizable
interactions" break the symmetry but the ghost of
scale invariance still governs the behavior of the singular
functions. "Exact scale invariance means that the 6eld
theory is invariant to a one-parameter group of trans-
formations U(s). The local fields 0„(x) transform as

Ut(s) O„(x)U(s) = s "O„(sx) . (3.1)

C~(sx—sy) = s ~~ a+ ~"'C~(x—y) . (3 4)

This equation says that C„(x—y) must be homogeneous
of order —d~ —da+d(n) in x—y. The Lorentz trans-
formation properties of C (x—y) then determine the
behavior of C„(x—y) completely except for one or more
constants )one, if C (x—y) must be a scalarj. In par-
ticular, the strength of the light-cone singularity is de-
termined by the dimension d~+dzz d(n) C—„can .be
singular only if d~+da~& d(n) and becomes more singu-
lar the larger d~+da is relative to d(n).

In a, free-field theory the fields O„(x) that occur in
operator-product expansions are the free field itself, its

"The short-distance behavior of vector-meson theories is com-
plicated by the longitudinal part of the vector-meson propagator.
The analysis of this paper would have to be rnodiGed to take this
into account; this the author has not done.
. '4 Scale invariance in free-Geld theories is discussed (as part of

the conformal group) by J. YVess, Nuovo Cimento 18, 1086 (1960).
'5 Treated in perturbation theory.
"See Sec. V.

In free-field theories the constant d(n) is the dimension
of the field O„(x), that is, O„(x) has dimension nz"'"'

in mass units. For example, a free spinor field f(x) is
transformed to sp"p(sx), the power of s being deter-
mined so that the canonical commutation rules are
invariant. A free spinor field has dimension m' 2, again
because of the canonical commutation rules. It is im-

portant for the dimension of P that there is no dimen-
sional constant in the canonical commutation rule. One
can always change the dimension of f by multiplying
it by a power of a mass m but this puts a dimensional
constant into the commutation rule. Multiplying P by
a constant does not change its transformation proper-
ties to U(s).

In an exactly scale-invariant theory the behavior of
the function C„(x—y) is determined except for a con-
stant by scale invariance. Performing a scale transfor-
rnation on Eq. (2.2), one has

s~ 4+saA (sx)B(sy) =Q „C„(x—y) s"&"~O„(sx) . (3.2)

Expanding the left-hand side,

s""+~aQ„C„(sx—sy)O„(sx) =P C„(x—y)s" " O (sx) .
(3.3)

If the fields O„(x) are linearly independent (this can
always be arranged), one must have
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derivatives (of any order), and all possible local Wick
products. For a free scalar field p(x), examples of fields

0„(x) are

$(x), V'„V„V p(x), :qpo(x):, V„:qp(x)V,Q(x)V p(x):, etc.

It is usually desirable to use a linearly independent set
of these 6elds, so that one would exclude V„V&g(x) and
:g(x) V„V&p(x): and others which are fixed by the free-
field equation. The set of fields O„(x) for a free-scalar-
field theory can be ordered by dimension, starting with
the unit operator (dimension zero) and the scalar 6eld
g(x) itself (dimension 1).There are two fields of dimen-
sion 2 LV„&(x) and:P'(x): j. The number of 6elds
multiplies rapidly as the dimension increases, but never-
theless there are only a finite number of linearly inde-
pendent local fields of dimension D or less, for any finite
bound D. This is true also of the free-spinor-field theory.
The ordering by dimension is a useful concept because
the functions C„(x—y) become less singular as the di-
mension d(m) increases. Co(x—y) is the most singular
function (if it does not vanish identically), and only a
finite number of the C„(x—y) can be at all singular.

One can construct explicit operator-product expan-
sions in a free-field theory. An illustration will suffice.
Consider the product:p'(x)::@'(y):. It can be written
by Wick's theorem:

:4'(*)::4'(y):=2LD( —y)3'I+4D(*—y):4(*)4(y):
+:e'(*)V'(y):, (3 5)

where D is one of the free-field singular functions. It
scales as (x—y) o. Expand the Wick products in a
Taylor series in y—x, for example,

:4( )4(y): =:4'( ):+(y—*),:4(*)V"4( ):+ .
, (3.6)

and likewise for: p'(x)@'(y): . One then has an expansion
of the desired form, except that the set of operators
involved is not linearly independent Dor example,
:P(x) V„V&g(x): is included j. The final step is to reduce
the operators to a linearly independent set, which is
formally straightforw'ard but in practice rather com-
plicated. The resulting expansion has all the properties
discussed here.

In an exactly scale-invariant theory the singularities
of the functions C (x—y) are determined by pure sym-
metry considerations (scale invariance and Lorentz in-
variance), except for constants. If there are internal
symmetries, some of these constants will be zero. The
scale-invariance requirements override any other con-
siderations; for example, one cannot demand that the
equal-time commutators of all local fields be finite. If
A(x) and B(y) are fields of high dimension, then their
commutator will contain terrifyingly singular functions
leading to an equal-time commutator with many deriva-
tives of 8 functions and many divergent constants.

The current commutators are a special case, where
equal-time commutators must exist (apart from Schwin-
ger terms). Let Q be the generator of an internal sym-

metry in an exactly scale-invariant theory. Then there
will be 6elds A (x) satisfying

t A(x),ej=qA(x) (3.7)

for some constant q. This equation is invariant to scale
transformations only if Q is invariant:

Ut()QU() =e (3.8)

If Q is the space integral of a current jo(x), then jo(x)
must transform as

U t(s) jo(x) U(s) = s' jo(sx) . (3.9)

&.o(zo, z)

are independent of time. Hence they cannot diverge
for zo —+ 0. At equal times (xo=yo) one has

LA (x),jo(y)$= Pn k~&o(x—y)On(x)+ST ~ (3 11)

where the Schwinger terms (ST) involve derivatives of
8 functions whose coefFicients may be divergent. To be
consistent with Eq. (3.7), one must have

qA (x)=P„k.O.(x) . (3.12)

Note that k„can be a nonzero constant only if K„o(z)
scales as 2: ', which means O„has the same dimension
as A(x).

A similar analysis of the translation generator E„
shows that E„has dimension 1 and the local stress-
energy tensor has dimension 4.

IV. HADRON SKELETON THEORY

Field theories with exact scale invariance are not
physically interesting, since they cannot have finite-
mass particles. But one can hypothesize that there exists
a scale-invariant theory which becomes the theory of
strong interactions when one adds mass terms to the
Lagrangian. This leads to the idea of broken scale in-
variance proposed by Kastrup and Mack. ' This idea
will now be explained in detail. In this section the scale-
invariant theory underlying strong interactions will be
discussed, and in Secs. V and VI the e6'ect of mass terms
will be considered.

It is assumed that the strong interactions contain
some arbitrary fundamental parameters just as the mass
and charge of the electron are fundamental parameters
in electrodynamics. However, the greater complication
of strong interactions means that the parameters of
strong interactions are not physical masses and coupling

Consider the unequal-time commutator of j„(y) with
A(x) which, for x near y, has an operator-product ex-
pansion

[A (x),j„(y)g=Q„E„„(x—y)O„(x) . (3.10)

Since j„is a conserved current, IS„„(x y) is co—nserved.
This means that the integrals
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constants; they show up explicitly only in the short-
distance behavior of strong interactions. Implicitly, they
determine all of strong interactions, but to calculate
physical masses and coupling constants one has to solve
the strong interactions, which is not possible at present.
In physics these parameters have particular values, but
the theory of strong interactions is assumed to be self-
consistent for any values of the parameters. In particu-
lar, if all the parameters are zero, it will be assumed that
all partial symmetries become exact. The theory with
all free parameters set equal to zero will be called the
"skeleton theory. " It is assumed that the skeleton
theory is a theory with all physical masses equal to
zero, which is exactly scale-invariant, and exactly in-
variant to P, C, PCT," SU(3) XSU(3), and baryon
number. The quark model suggests there should also be
an "axial baryon number"' but this will not be con-
sidered here for the sake of expediency. Many of the
complications of the finite-mass theory should be absent
from the zero-mass theory: All 6nite-mass thresholds
are gone, replaced by a continuum starting from mass
zero. If there are Regge families of particles, the whole
family is telescoped into the zero-mass point. A two-
point function G(z), which could be extremely compli-
cated in the finite-mass theory, is now a simple power
of s because of scale invariance.

The skeleton theory has a set of local fields. This set
divides into two linear spaces: the space of local Bose
fields and the space of local Fermi 6elds. Each set can
be defined as the set of fields which commute with the
SU(3) XSU(3) currents for spacelike separations. A
linear combination of such fields is also a local field, so
that these sets define linear spaces. Each space will be
assumed to have a countable linearly independent basis.
The two bases will be lumped together and denoted by
(O (x)}, How the basis is constructed is largely ar-
bitrary, and there will be many equally valid choices
of basis. However, it is convenient to de6ne subsets of
6elds which belong to particular irreducible representa-
tions of the symmetries and choose the basis fields from
these subsets. In practice, it is convenient to let a par-
ticular O„(x) be an individual field and not a multiplet;
it might be a component of a vector field, for example.

The skeleton theory is especially elegant if the stress-

energy tensor 8„„ofthe skeleton is a traceless symmetric
tensor, so that it belongs to an irreducible representa-
tion of the I.orentz group. This is the case for the quark
model. It makes scale invariance and I.orentz invariance
automatic, given translational invariance, because the
generators of scale transformations and I.orentz trans-
formations become

(4.1)

'7 Since I'CT is automatic in a local-field theory, it can and will
be ignored.

t x„8,p(x) —x.8„p(x)]. (4.2)

"For each field 0 (x) there is one arbitrary normalization
factor, which one chooses to be a dimensionless constant.

"An exception is in the problem of nonleptonic weak inter-
actions where the crucial question is the dimension of the 6rst
local 6eld in the basis with the quantum numbers assumed for
the nonleptonic weak Hamiltonian. See Sec. VII K.

"See the end of Sec. Vl.
"This was proposed by Gell-Mann (Ref. I).

Given that 8„, is traceless, symmetric, and conserved,
these generators are also conserved.

The skeleton theory is presumed to have operator-
product expansions like Eq. (2.2). The coeKcients
C (x—y) are determined except for constants by scale
invariance and other symmetries. No proposal will be
made here for determining these constants. However, it
will be assumed that these constants are all unique and
dimensionless. '8 Then dimensional analysis of the oper-
ator-product expansion shows that the dimension of a
local field A (x) is the same as its scale-invariance quan-
turn number d~. There are also operator-product expan-
sions for products of three local fields A i(x)32(y)A3(z),
or even more. In this case, the expansion functions
C (x—y, x—s) can depend in an arbitrarily complicated
way on the ratio (x—y)'/(x —s)' without violating any
invariance. No procedure will be offered for determining
the dependence on such dimensionless arguments.

It will be assumed that the fields O„(x) of the basis
are ordered by dimension. For any given dimension
there will be one or more multiplets of 6elds labeled

by their i.orentz representation, baryon number, SU(3)
XSU(3) representation, and P and C properties. Of

particular importance are the fields of low dimension,
since these fields have the most singular coefFicients in

operator-product expansions. As a result, they will de-
termine singularities in radiative corrections, conver-
gence of Weinberg sum rules, etc. In practice, it is the
fields of dimension 4 or less that are important. "There
are several fields that mls/ have dimension 4 or less.
First, there are the SU(3)XSU(3) currents and the
baryon current. These will be assumed to satisfy Gell-
Mann's current algebra in the skeleton theory as well

as the physical theory. So the currents have dimension
3.The stress-energy tensor has dimension 4. There must
also be an SU(3) XSU(3) multiplet including the pion
field, with a dimension 6 less than 4, and greater than or
equal to 1. The dimensional restriction is necessary to
make partial conservation of axial-vector current
(PCAC) work when SU(3) XSU(3) is broken; this will

be explained later. "This multiplet will be assumed to
be an irredubible multiplet transforming as the (3,3)
6(3,3) representation of SU(3)XSU(3).s' All these
properties are true of the SU(3)XSU(3) 0 model in

which the pion-field multiplet has dimension 1, and
the quark model in which the pion field has dimension
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3."Here no assumption will be made about the dimen-
sion 6 beyond the restriction 1(6&4.

Are there other fields besides the ones mentioned
above with dimension 4 or less? It will become evident
that this is a vital question. The author has no way to
answer it conclusively. As an ad hoc approach, it will
be assumed, to start with, that there are no other fields
of dimension 4 or less. An extra field Lan SU(3) && SU(3)
singlet scalar field] will be proposed later because it is
needed as a mass term in the Lagrangian.

In free-field models Lthe SU(3) &&SU(3) 0 model or
the free-quark model] the basis set of fields (0„(x)}
can be constructed from Wick products and derivatives
of the elementary fields. Thus, in the quark model, the
fieMs of dimension 4 or less and zero baryon number are
fields of the form: gnP: or: V„gng: or:Po.'i7„$:, where
n is any spin and SU(3) matrix and f is the quark
field. These fields all have dimension 3 or 4."A study'4
of the Thirring model has convinced the author that
the dimensions of fields in free-field models have little
or no bearing on the dimensions of fields in strong inter-
actions. In the Thirring model there is a single dimen-
sionless coupling constant X and the theory is scale-
invariant for all values of X. In the free-field limit of the
Thirring model the spinor field f has dimension 2 as
expected from the canonical commutation rules in one
space dimension. However, the dimension varies con-
tinuously with X and approaches ~ as X approaches
2'. This is a consequence of renormalization; after re-
normalization the field does not satisfy canonical com-
mutation rules and hence does not have to have dimen-
sion ~. However, the Thirring model has charge and
axial-charge conservation and the equal-time commuta-
tors of the charges with the spinor field force the cor-
responding currents to have dimension 1, which they do.
This is the same as the dimension of the product Py„f,
only in the free-field limit. So in thinking about the
dimensions of operators in the strong interactions we
do not assume that there are elementary fields satisfying
canonical commutation rules and do not assume that
the other local fields have the same dimensions as
products of elementary fields. It is also not assumed
that fields exist with the same dimension as the product
of two pion fields or the product of two currents. (The
latter assumption affects the theory of nonleptonic weak
interactions. ") This leaves one with enormous flexi-
bility in choosing dimensions of fields.

V. MASS TERMS: GENERALITIES

Now consider the problem of interactions, that is,
departures from the skeleton theory. If the skeleton
theory were a free-fieM theory, there would be four
types of interactions: mass terms quadratic in the free

-" The diQ'erence in dimension affects t.he behavior of the pion
field, in particular its operator products at short distances. This
was noted by M. Gell-Mann, Phys. Rev. 125, 1067 (1962);Ref. 20.

'3 There is also the unit operator.
'4 The results stated below can be gleaned from Ref. 12.

field, super-renormalizable interactions (which require
subtractions only in low orders of perturbation theory),
renormalizable interactions, and nonrenormalizable in-
teractions. Each interaction corresponds to a local
Lagrangian density scalar to Lorentz transformations
and invariant to exact internal symmetries. Clearly any
Lagrangian density must be a linear combination of the
basis of local fields f0 (x)}, so that it is logical to use
the subset of fields from the basis which are scalars and
exact to internal symmetries as the specific interactions.
One then has a basis (2;(z)} of possibe interactions,
culled from the complete basis (0 (x)}.It was shown by
Urnezawa et at. ' that a renormalizable interaction must
have dimension 4 or less. If it has dimension less than
4, it is a super-renormalizable interaction (e.g. , the: g:
interaction of a scalar field). Free-field mass terms (for
scalar or spinor fields) have dimension less than 4.

As long as interactions on a free-field theory are
treated in perturbation theory, one finds that operator-
product expansions at small distances )like Eq. (2.2)]
exist in the presence of interaction, but that the different
types of interaction have profoundly different effects
on the expansion coefficients C„(s). If one has only
mass terms and super-renormalizable interactions, then
the dominant term in C (s), for z small, is the skeleton
term; terms depending on the free-field mass or the
coupling constant are smaller by a power of s."If one
has a renormalizable interaction, the interaction gen-
erates terms logarithmically more singular than the
skeleton term. Finally, a nonrenormalizable interaction
treated in lowest order generates a term more singular
by a power of s than the skeleton term. For every type
of interaction or mass term, the functions C„(x—y) can
be written as a power series in the coupling constant or
mass (only to first order for nonrenormalizable inter-
actions). The wrath-order term in the series scales as
s"(4 "') relative to the skeleton term, where d; is the
dimension of the interaction. There can also be loga-
rithms of (z)'/m', where m is the free-field mass.

Similar conclusions apply to interactions on the
hadron skeleton. One defines the basis of possible in-
teractions as the subset of fields (2;(x)}from the basis
(0„}which are Lorentz scalars, even to P and C, and
have I= V=o. (One excludes the unit operator and
all derivatives of fields from this list, since these are not
meaningful interactions. ) There are three types of in-
teractions, depending on their dimensions: Generalized
mass terms have dimension less than 4,"renormalizable
interactions, if any, have dimension 4 exactly, and non-
renormalizable interactions have dimension greater than
4. A general perturbation formula can be set up to
describe any of these interactions. To avoid innumerable
complications of perturbation theory to all orders one

"This was pointed out by J. Kstberg, Ph.D. thesis, Cornell
University (unpublished) .

~' One cannot distinguish between mass terms and super-
renormalizable interactions in a strongly interacting theory be-
cause one does not write local 6elds as products of elementary
fields.
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writes only a first-order formula giving the change in
anv local (Heisenberg) field O„(x) when any coupling
constant is changed. That is, if (X,} are the set of
coupling constants associated with the interactions
f Z;), one obtains a formula for RO, (r)/RX;, The usual
(unrenormalized) formula is

(5.1)

where $ g„» means the retarded commutator (yp(xp).
This formula has to be corrected both for nonadiabatic
effects (when physical particle masses vary with X;) and
for ultraviolet singularities at x=y. The nonadiabatic
eRects are easily accounted for and will not be con-
siderd here. The ultraviolet singularities can be analyzed
using the operator-product expansion for the commuta-
tor I 0„(x),Z;(y)] and the singular terms can then be
removed by subtraction. One can then show" that oper-
ator-product expansions continue to hold in the pres-
ence of the perturbation and obtain formulas for deriva-
tives of expansion tunctions such as BC„(s)/BX;. These
formulas will not be quoted here. These formulas can
be used to show that the expansion functions have
power series in all interactions. One finds as in the free-
field case that the eth-order term scales as s"(4 ""
relative to the skeleton term, where d; is the dimension
of the interaction. There may also be logarithms of
x—y. One can avoid logarithms of physical masses
(which depend in a very complicated way on the cou-
pling constants X;) by introducing an arbitrary subtrac-
tion constant u, so that logarithms have the form
inL(x —y)'/a'$, not lnL(x —y)'/m'7, in the expansion
functions. " If this is done, it is no longer possible to
choose the subtractions for Eq. (5.1), so that the vacuum
expectation value (0~0 (x) ~ 0) vanishes.

The generalized mass terms, with d;(4, give correc-
tions to expansion functions smaller by a power of s
than the skeleton term. In this case, the divergences
in Eq. (5.1) are primarily due to the skeleton theory.
Also, the equal-time commutators of symmetry genera-
tors are to some extent unaffected by the presence of
generalized mass terms Lmore precisely, the equal-time
commutator of a current j„(y) with a local field A (x)
is changed only by fields of dimension less than A itself j.
So generalized mass terms are the logical choice of in-
teraction when one wants a symmetry of the skeleton
to be a broken symmetry of the theory with interaction.

The renormalizable interactions produce corrections
to expansion functions which are logarithmically more
singular than the skeleton terms. Hence, if an inter-
action is not invariant to a symmetry, it can destroy

27 This paragraph summarizes a very complex analysis.
'8 This possibility was noted by M. Gell-Mann and F. E. Low,

Phys. Rev. 95, 1300 (1954). It is essential to the subsequent
analysis that logarithms do not involve the couplings );. This is
because such logarithms would destroy the spurion analysis of
SU(3) &(SU(3)-symmetry breaking used in Sec. VII, for which a
pure power series in ); is essential.

the equal-time commutators associated with the sym-
rnetry. 29 However, the number of subtractions needed
in Eq. (5.1) is unchanged by the presence of interaction,
so that one has a renormalizable interaction in the con-
ventional sense. Nonrenormnlizable interactions pro--

duce expansion functions more singular by a power of
x—y than the skeleton terms and hence force one to
make extra subtractions due to the interaction in Eq.
(5.1), so that they are nonrenormalizable in the con-
ventional sense.

It will now be assumed that the interactions on the
hadron skeleton theory are all generalized mass terms.
This means that scale invariance, as well as SU(3)
XSU(3), is a broken symmetry. This is an ad hoc as-
sumption motivated in part by the success of broken
SU(3) XSU(3) and in part because it is hard to use the
ideas of this paper if renormalizable or unrenormalizable
interactions are permitted (this is not true if the renor-
malizable or nonrenormalizable interactions are present
but small; thus electrodynamic and weak corrections to
strong interactions do not create difliculties).

In order that all terms in a given expansion function
C„(x—y) have the same dimensions, one must assign
each coupling constant X; the dimension m~"&, w'here

d; is the dimension of 2;. So all generalized mass terms
have coupling constants which carry dimensions; hence,
it is possible for physical masses to be generated by any
generalized mass term.

VI. HADRON MASS TERMS

Consider now the possible generalized mass terms in
strong interactions. Given the list of fields of dimension
less than 4 assumed earlier, the only possibilities are
two fields from the pion-field multiplet. These are 0.8

and op, where op is the I= V=O, SU(3)-octet scalar
field, and op is the SU(3)-singlet scalar 6eld. Assume
that there is an SU(3) XSU(3) singlet field, w(x), also
with dimension less than 4. The need for this will be
seen shortly. Then the interaction Lagrangian can be
written"

Zr(x) = Apo'p(x)+Xpo'p(x)+Aro(x) . (6.1)

One would like an order-of-magnitude estimate for
each term in Zr. The term Xpop(x) is the SU(3)-breaking
term; this is known to cause energy separations within
a multiplet of 450 MeV (the N* decuplet) or less. As
a mean energy, say Xsa.8 300 MeV. This is a relatively
small energy, since it is now known that one should
measure energies relative to m, or maybe mz, and not
m . One can get an estimate on the Zoo.o term but by a
more indirect argument. One knows that in the limit

2' This is related to observations of K. Johnson and F. E. Low,
Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 74 (1966).

"The SU(3))&5U(3)-symmetry-breaking terms are as pro-
posed by M. Gell-Mann, Phys. Rev. 125, 1067 (1962), Kq. (5.21).
For further discussion of this choice of symmetry breaking, see
S.L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224 (1968),
and M. Gell-Mann, R. J. Oakes, and S. Renner, Phys. Rev. 175,
2195 (1968).
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of exact SU(2) XSU(2) symmetry the pion mass must
be zero." So the SU(2)XSU(2)-breaking term must
raise the pion mass from 0 to 140 MeU; in other words,
the SU(2) XSU(2)-breaking term is smaller than even
the SU(3)-breaking term. To discuss SU(2) XSU(2)
breaking, one must express both 0 o and 0.8 in terms of an
SU(2)+SU(2)-violating operator os Lbelonging to the
(2,2) representation) and SU(2) XSU(2)-conserving
Geld 0ro:

309 30&o, (6 2)

-.=(~-:)-.+v-:)".
Since O.o and 08 are part of a single irreducible repre-
sentation of SU(3)XSU(3), this decomposition of os
and os by SU(2) XSU(2) representation is unique. Now
one has

),.-.+).-.= E—(4-:)).+(v'l)).j-.
+L(V's))is+(4s) ~slants

If m were zero, the coeKcient of 0-9 would be zero.
With m only 140 MeU, the coefIicient of 0-9 should be
roughly zero, that is,

) p (Q-,')Xs. (6.5)

The error turns out to be of order m ', which even
compared to (300 MeV)s is small. This means the
SU(3)-symmetric term Xsos represents an energy of,
perhaps, 200 MeV. This is why another mass term is
needed to change the p, nucleon, and other heavier
particles from mass zero (in the skeleton theory) to
their observed masses. This requires energies of order
i BeV, so that Xm should be of order 1 SeV.

Given the interaction Lagrangian, one can derive the
PCAC formula. It follows from Eq. (5.1) (even in re-
normalized form), that if j„(x) is a conserved current
in the skeleton theory and Z~ contains only generalized
mass terms, then

&"j.( ) ='Eo("),~.( )1, (6.6)

where Q(xs) is the charge associated with j„.In the
case of the strangeness-conserving isovector axial-vector
current A„, one obtains

V 3„(x)= P
—-',v3),+ (v2/v3)Xo]g(x), (6.7)

where p is the pion field.
One can now see why the pion field must have dimen-

sion 6 less than 4. The reason is that the pion Geld must
be in the same SU(3)XSU(3) representation as the
SU(3)XSU(3)-breaking terms in Zr, due to Eq. (6.6).
But the Lagrangian contains only generalized mass
terms in order not to jeopardize the current commuta-
tion relations. The lower bound A~& 1 is an elementary
consequence of the Kallen-Lehmann representation.

"Y.Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (3961);
124, 246 (1961). See also S. L. Adler and R. F. Dashen, Current
A/gebras (W. A. Benjamin, Inc. , New York, 1968).

VII. APPI, ICATIONS

A. Weinberg Sum Ru1es

To illustrate the applications of the operator-product
expansions, consider first the question of convergence
of Weinberg sum rules. ' Let A„„(x)be an arbitrary linear
combination of vector and axial-vector meson propaga-
tors, and G„„(p) be its Fourier transform. The first
Weinberg sum rule holds for G„„(p) if h„,(x) is less

singular than x ' as x —+ 0."The second sum rule holds

if it is less singular than x . More precisely, one can

get the second sum rule if either the g„„ term or the

x„x„term in A„„(x) is less singular than x '. So one needs

the short-distance behavior of the product TV„(x)
X U,a(0) and TA„(x)A„a(0) for x near 0; n and. P are

SU(3) indices. The behavior is needed to order x '.
Since U„and A„have dimension 3, one will need to
expand in terms of operators 0 of dimension 4 or less.
Since one wants the vacuum expectation value of the
T product, one needs only operators 0 with a nonzero

vacuum expectation value. The only possibilities are
I 0'p 08 and m. Terms involving m will always be less

singular than terms involving I, so that m will be
ignored. Let O.o and 0-8 be the vacuum expectation
values (0~os(x) (0) and (Q(as(x) (0). The linear com-

bination D„„(x)has an expansion

g„„(x) H„„(x)+Hi„„(x)as+Hs„„(x)os (7.1)

for x small, with unknown functions H, H~, and H2.
The quantity A„„(x) is a vacuum expectation value

of a linear combination of T products. The linear com-

bination of T products can be chosen to belong to a
particular irreducible representation of SU(3) XSU(3).
The currents themselves belong to (8,1)Q(1,8),' so

the product of two currents can belong to (1,1), (8,1)
(1, 8), (10,1)(1, 10)Q(10,1)(1, 10), (27,1)Q3(1,27),
or (8,8). When one takes the vacuum expectation value,

the decuplet representation disappears. The propagator
combinations which correspond to the other representa-

tions are listed in Table I.To determine the singularity

of H(g), Hi(x), and Hs(x) for each linear combination,

one can do a spurion analysis. If A„„(x) belongs to the

same representation of SU(3) XSU(3) as o.s, then Hi(x)
will have a skeleton term. If not, one must find out how

many powers of the symmetry-breaking parameters A. o

and Xs are needed for Hi(x) not to be zero. This is de-

termined by a spurion analysis with the spurion repre-

senting the symmetry-breaking interaction. The spurion

belongs to (3,3)63 (3,3). Combining one spurion with o.s

or os, which also belong to (3,3)$ (3,3), one can produce
all representations except (27,1)Q) (1,27): To produce

the latter requires three spurions at least. The skeleton

term in Hi(x) would have behaved as x s+a (6 for two

currents, 5 for the dimension of the o field). With one

spurion, one has one power of Xp or A,s, and correspond-

"This would mean h~„(g) being less singular than g„,/g' and
g„x„/g'.
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TABLE I. Combinations of vector and axial-vector meson
propagators, associated SU(3) XSU(3) and SU(2) XSU(2) repre-
sentations, and maximum singularity of H, II'&, and II2.'

&p, (x) SU(3) XSU(3) SU(2) XSU(2)

p —A i (8,8) (3 3)
E~—E~~ (8,8) (2 2)

07 D (8,8) {i,t)
x (8,1)Q+ (1,8) (1,1)

(27,1)0+ (1,2&) 11,1)
8 (1,1) (1,1)
x: 3(p+A i) —2(E*+Eg*)—((p+D)
y: (p+A&) —4(E*+Ez*)+3(a&+D)
s' p+A 1+X*+Eg*+a)+D

2 —2A

2 —2d

2 —2A

2 —2A

rO —4~
—6

—2
—2
—2
—2

6—2A
—2

a Shorthand: p is the p propagator, D is the axial propagator counterpart
to co propagator, the column labeled H gives most singular power of x in
H(x), and co is the propagator made from I = V=0 SU(3)-octet current,
not baryon current.

ingly a factor xta (apart from logarithms). Hence
Hi(x) scales as x ' apart from logarithms, except for
the linear combination of propagators associated with
the (27,1)6(1,27) representation. The same is true of
Hr(x). The complete results are shown in Table I. One
sees from Table I that the second steinberg sum rule
can hold only for the (27, 1)$(1,27) combination. How-
ever, as pointed out by Weinberg, ' it should be a good
approximation to go to the exact SU(2)XSU(2) limit
(Xs ——v2)(()). Then the operator-product expansion of
Eq. (7.1) must obey SU(2) XSU(2). But the fields (rp

and o.s belong to the (1,1) and (2,2) representations of
SU(2) XSU(2), so that. they cannot appear in the ex-
pansion of the p —A~ linear combination. So the orig-
inal second Weinberg sum rule converges in the exact
SU(2)XSU(2) limit. This is not true of any of the
SU(3) XSU(3) generalizations Lexcept the (27,1)
6 (1,27) term, if it converges without the SU(2)
X SU(2) limit j."All the SU(3) XSU(3) sum rules con-
verge in the exact SU(3)XSU(3) limit; how good an
approximation this would be to physics, I do not know.
If 6 is 3 or larger, then even the first Weinberg sum
rule does not converge, except for the (27,1)$(1,27)
combination. This whole analysis is modified if there
are scalar fields of dimension 4 or less belonging to the
(8,8), (8,1)(E)(1,8), or (27,1)$(1,27) representations of
SU(3)XSU(3). Such fields would destroy the second

steinberg sum rule for the relevant linear combinations
of propagators, whether or not SU(3) XSU(3) is exact.

"This contradicts the assumptions of S. L. Glashow and S.
Weinberg, Phys. Rev. Letters 20, 224 (1968), In particular,
Glashow and Weinberg assume the second Weinberg sum rule
for the difference of the J ~ and Eg~ propagators, which con-
tradicts the analysis of this paper. Note, also, that the symmetry-
breaking mechanism of this paper is more complicated than that
of T. Das, V. S. Mathur, and S. Okubo, ibid. 19, 470 (1967);
Das et a/. propose that the second Weinberg sum rule should be
violated in first order of SU(3) breaking at least for differences
of vector-meson propagators, but hold in second-order SU{3)
breaking. In the present paper, the violation of the second Wein-
berg sum rule is caused by a combination of first-order SU(3)
XSU(3) breaking in the Lagrangian and violation of SU(3)
)&SU(3) in the vacuum expectation values of the 0. fields, which
means one can have violation of the Weinberg sum rule even in
second order of SU(3) breaking.

Zr(0) = e' Tj„(x)j„(0)D""(x), (7 2)

where j„(x) is the hadron electromagnetic current and
D""(x) is the photon propagator. The divergences in
radiative corrections come from divergences in the x
integral at x=0; they occur if the T product is as
singular as x '. One is concerned only with the isospin-1
and -2 parts of Zr(0). So one needs only fields in the
expansion of the T product which carry isospin. To
cause a singularity x ' or greater, these fields must have
dimension 4 or less. So one writes

Tj„(x)j„(0)=Q„C„„„(x)0.(0), (7 3)

with the sum over 0 (0) so restricted. Finally, the
integrals of C„„„(x)D&"(x)over x will vanish because of
Lorentz invariance unless 0„(0) is a scalar field. So one
s restricted to the I= 1, I,=0 scalar field 0.3 in the pion-
field multiplet. So the only possible divergent term in

&r(0) has the form

c„,(~)D""(z)),(0) . (7.4)

The behavior of C„.(x) is found by a spurion analysis to
be x ', except in the case of exact SU(2) XSU(2) sym-
metry, when it is identically zero. This means that, for
finite pion mass, C„„(x)has a factor m '. The standard
procedure for obtaining a finite effective Lagrangian is
to subtract the offending term and add an arbitrary
constant times cr3.

Z (0) = ' (Tj„( )j„(0)—C„„( ) (0)jD""( )+f (0),

(7 3)

where f is an arbitrary constant. The o.,(0) term is the
tadpole term proposed by Coleman and Glashow. ~4 If
there are other isospin-1 or isospin-2 scalar fields with
dimension 4 or less, they too can cause divergences in
radiative corrections.

C. q —+ a+mom Decay

Two specific problems involving electromagnetic cor-
rections will be considered here: the p —+ 3x decay and
the x'~2p decay. I'irst, consider the g~3m decay.
Experimentally the amplitude for g ~ 3z is well fitted

'4 S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 (5964).

B. Divergence in Radiative Corrections

As a second example, consider the question of di-
vergences in the radiative corrections to strong inter-
actions. Consider only the second-order radiative cor-
rections; these are described by an effective interaction
Lagrangian
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by the formula'"

gI rl ~ ~++7ro+rr )=A„(1 rN —sa(Ss—S„)j, (7.6)

netic Lagrangian, which is necessary if it is to account
for the p

—+3m decay.

where
Ss= Lq(9) —q(~') 1',

g = —0.2~0.015,

(7.7)

(7 g)

(7.9)

D. mo —+ yy Problem

The decay 7r' —+ 2y has been shown by Veltman and
Sutherland" to be forbidden by current algebra and
gauge invariance. The invariant amplitude for ~' decay
can be written

and q(ti) and q(~s) are the t1 and m' four-momenta. It
was shown by Sutherland" that the amplitude A should
vanish when any pion four-momentum goes to zero.
If the ~+ four-momentum goes to zero, then q(t1) —q(ir')
must equal q(ir ), and Ss is m '. In this case, Kq. (7.6)
gives an amplitude less than 0.1A„, in good agreement
with Sutherland's prediction. But when the x' four-
momentum goes to zero, 50 becomes M„' and the TI ~ 3z
amplitude is about 3A„.

Sutherland's calculation assumed the unsubtracted
form (7.2) for the effective electrodynamic Lagrangian.
With the subtracted form (7.5) the calculation is dif-
ferent. "Sutherland's argument applies to the first term
in Kq. (7.5) but not to the term fos(0). The field &rs

commutes with the charged axial-vector currents but
not with the neutral axial-vector current. LThe relevant
SU(3) XSU(3) commutators are given by Gell-Mann. t]
As a result, one still predicts that the q

—+ 3' amplitude
vanishes for zero x+ momentum but not for zero m

momentum. This agrees with experiment. When
q(mrs) ~ 0, the t1

—+ 3tr amplitude will be proportional
to the subtraction constant f. Since f is an unknown

parameter, it can be chosen to fit the p
—+ 3~ decay

amplitude. There remains a problem in g~ 3m decay,
namely, its relation to the K and x mass differences
obtained by erst taking two pions to zero momentum
in the g

—+3m- amplitude, which reduces it to the g-z
electromagnetic mixing amplitude, then relating the

mixing amplitude via SU(3) to the E and ir mass dif-

ferences. "This analysis does not work very w'ell, but
it involves more dubious approximations than the
simple current-algebra calculation. "

It has been proposed that the tadpole contributions
to electromagnetic corrections be obtained dynamic-
ally —in terms, say, of the 22 Regge-pole contribution
to the virtual forward Compton amplitude. "It remains
to be seen whether such a term has a different SU(2)
XSU(2) behavior from the unsubtracted electromag-

3~The value for a is taken from M. Gormley, E. Hyman,
W. Lee, T. Nash, J. Peoples, C. Schulz, and S. Stein, Phys. Rev.
Letters 21, 402 (1968}."D.G. Sutherland, Phys. Letters 23, 384 (1966).

'7 S. K, Hose and A. M. Zimmerman, Nuovo Cimento 43A,
11C)5 (l966); R. .Ramachandran, ibid. 47A, 669 (1967); R. H.
41aham, l .O'Raifeartaigh, and S. Paksava, ibid. 4SA, 830 (1967);
&. T. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 161, 1612
(1967); D. G. Sutherland, Nucl. Phys. B2, 433 (1967). For a
review of other theories of g —+ 3m. decay, see J. S. Bell and D. G.
Sutherland, ibid. B4, 315 (1968).' See S. L. Adler and R. L. Dashen (Ref. 31), p. 137.' S. Okubo, Phys. Rev. Letters 18, 256 (1967); D. J. Gross
and H, Pageis, Phys. Rev, 172, 1381 (1968).

T„,(p, k) = e„,.pp k&T(k'), (7.10)

T„„(p,k) = (k"-—m. ') (F.m,.')—' i1& xgzk z

X(QI Tj„(x)j„(0)r7"A (s)
I
0), (7.11)

where F„ is the PCAC constant,

V-A „(x)=Z.m. 'y(x), (7.12)

@ is the ir' field, and A is the neutral axial-vector field.
The quantity T(0) can be extracted from the formula

(7.13)

M. Veltman, Proc. Roy. Soc. (London) A301, 107 (1967);
D. G. Sutherland, Nucl. Phys. B2, 433 (1967). For related work
on the ~pm system, see R. Perrin, Phys. Rev. 170, 1367 (1968);
S. G. Brown and G. B. West, ibid. 174, 1777 (1968);R. Arnowitt,
M. H. Friedman, and P. Nath, Northeastern University
(unpublished)."J.S. Bell and R. Jackiw, Nuovo Cimento (to be published).
I wish to thank Dr. Jackiw for very helpful discussions on the
71-' —+2y problem. See also S. L. Adler, Phys. Rev. 177, 2426
(1969); his conclusions are equivalent to ours.

42 J. Steinberger, Phys. Rev. 76, 1180 (1949).

where p is one of the photon momenta and k is the 7r'

momentum. The photon momenta will be kept on the
mass shell Lps= (k—p)'=0/. The argument of Veltman
and Sutherland predicts that T(0) will be zero. Bell
and Jackiw4t have recently pointed out that there exists
a specific calculation of'T(0) in the tr model, and that
T(0) does not vanish. The calculation is an old calcu-
lation of Steinberger. 4'

The resolution of this contradiction is in a break-
down of the usual arguments that one uses in writing
Ward identities. Namely, one is used to taking a matrix
element such as (A I

Tj„(x)i7 j.(y) I 8& and rewriting it

~. (~
I Tj.(x)j-(x) I&&+~(xo—ys)(~ ILj.(*) job)) I&&.

But in the case of the m- —+ 2y amplitude, which involves
the matrix element (QI Tj „(x)j,(y) 7 2 (s) I 0&, extra
terms arise when V is brought outside the matrix ele-
ment. The extra terms involve the singularity at x=y
=0 and involve complicated integrals. The author has
not evaluated these integrals even in the 0-model ex-
ample, let alone strong interactions; however, one can
argue that they do not obviously vanish in either case.

A brief account of the analysis will now be given.
The ~ —+ 2p amplitude can be written
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So where

es-pT(o) =F=' x.sp(n~ Tj„(x)j„(O)V-a. (s) j n). V,"[x spF„„.(x,s)], (7.20)

(7 14)

In the O.-model calculation in lowest-order perturbation
theory, this matrix element involves the currents of a
free charged Dirac field f:

and I2 and I3 are analogous. The z integral can be writ-

ten in terms of surface integrals on the surfaces zo

and so= xone". Consider, for example, the sur-

face integrals at so= xone". They are

j.(x) =:0(x)VA (*):
a.(x)= —,'i:lt (x)~.~,lt (x): .

(7.15)

(7.16) (7.21)

These currents commute for equal times (except for
c-number Schwinger terms which cannot aGect the
three-current matrix element), just as the currents j
and 3 of strong interactions do. Also, the free-field
current j„(x) is conserved and A (x) is partially con-
served. Furthermore, T(0) is defined by a convergent
integral; in fact, if one rotates the xo and zo integrals
to the imaginary axis (thus going over to a Euclidean
metric), the integral for T(0) is absolutely convergent.
(This can be verified explicitly for the free-field currents,
and is a consequence of the hypotheses of this paper for
the currents of strong interactions. ) Consider the effect
of the conventional rules for interchanging a T product
with a gradient. One can simply bring V' outside the
T product because all equal-time commutators are
zero. Define

F„,.(x,s) = (Q~ Tj„(x)j,(0)A.(z)
~
0), (7.17)

and consider the following identity:

x.spV, F„„.( , x)=sV', Lx„spF„„.(x,s)]—(V', +V', )
X[x„s„F„p]+7',fLx„s„F. p$+x s„(V. +'rI, ")F„p

x„s„V' I~' p.—(7.18)

e„,„pT(0)= F '(Ii+ Is+ Is), (7.19)

The first three terms are total derivatives; the last two
terms vanish according to the conventional analysis
because of the conservation of j„.The integrals of the
first three terms are zero; hence T(0) should vanish.

This type of argument. treats cavalierly the intrinsic
singularities of F„„(x,s) when two or more operators
are evaluated at the same point. To set up a more
careful treatment, the first step is to define the integral
(7.14) such that the singular points do not occur in the
range of integration. This is easy to do: One calculates
the integral excluding the regions

~
xo

~
(e,

~
ss

~
(e

~xs—zs~ (e", for small but finite e, e', and e". Then
one takes the limits e —+0, ~' —+0, and e"—+0. The
integral, being absolutely convergent, is independent
of the order that one takes these limits.

One now calculates the integral for finite e, e', and e"
using the identity (7.18). Because the singular points of
F„,„(x,s) are excluded from the range of integration,
the identity holds without question, and the la,st two
terms are zero. One is left with

The x integral must be broken into two parts. In one

part, x is restricted to be far away from the origin,

compared to e".With this restriction one can let e"~ 0
inside the integral without making much error 3 and

the integrand reduces to an equal-time commutator
which vanishes. This is no longer true if x is of order
e" or smaller, for then F„„(x,s) has a nontrivial de-

pendence on the variable s a,s well as x—s 44 (this is

evident in the case of free-field currents), and one can
no longer replace e" by zero. Actual evaluation of the
integral is now nontrivial.

The difFiculty caused by x being of order e" is avoided
if one requires that e be much larger than e",' then x
is always Inuch larger than e". In this event, the surface
terms at zo=xo&e" approximately cancel. Likewise, if
e))e', the surface terms at so= ~ e' approximately cancel.
To be precise,

lim(e' ~ 0) lim(e" —& 0)Ii——0 (7.22)

for fixed nonzero e. (If the currents j„and A had a
nonzero equal-time commutator, I» w'ould have reduced
to an equal-time commutator term. ) So one can make

Ij vanish by letting e —&0 be the last limit that one
takes. Similarly, I& vanishes if e"—+0 last, and I3
vanishes if e' —+ 0 last. Unfortunately, these three re-

quirements are incompatible. If one lets e"—+0 last,
eliminating I2, then I~ and I3 need not be zero. In this
case, Ii reduces to the expression (7.21) with x unre-

stricted (so that Ii now depends only on e"). Only
small x and s (of order e") are important in the integral:
If either x or s is large compared to e", the term at
zp= xp+ e cancels the term at zs= xp —e . For x and s
of order e", F„„(x,s) scales as (e") ' because of scale
invariance at short distances. " With this scaling law
for F„„,the integral (7.21) is independent of e".

4' This is a consequence of the fact that P„„(x,s) is not more
singular than (x—s) 3 for s ~ x, x/0. The details of the analysis
use the operator-product expansion for Tj„(x)A„(s) and the
techniques of Sec. II.

44 In the free-field case F„„(x,s) includes a propagator 5~(s).
When x is large and s is near x, one can approximate S~(s) by
S~(x); this approximation is essential in relating (7.21) to an
equal-time commutator. But when x and s—x are both ~e",
this approximation is no good.

"The (e") 9 scaling law for F„„(x,s) can be seen explicitly
in the free-field example. For strong interactions the hadronic
skeleton contribution to F„„(x,s) scales as (c") ' by dimensional
analysis; 6nite mass corrections are less singular and can be
neglected.
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The conclusion of this analysis is that, if one takes
the limits e —+0, e' —+0, and then e"~0 last, I~ is
zero and I~ and I3 approach constants, but there is no
reason to suppose that I~ and I3 are zero: On the con-
trary, in the case of free-field currents, T(0) is not zero,
so that one of I~ or I3 must be nonzero. 4'

For T(0) not to be zero, it is crucial that F„„(x,s)
scales as (e") ' when x and z are of order e". If F„„(x,z)
were less singular than this for x and z —+0, then Iy
and I3 would vanish in the limit c"—+ 0 because of the
small range of integration (x, s e"). In this case, T(0)
would have to be zero. The author suspects that
F„, (x,z) will be less singular than e" ' in the algebra
of fields. 4~ Then the Sutherland argument would apply
to ~'~ pp decay in the algebra of fields. This would
make the algebra of fields in bad contradiction w'ith

the observed ~' ~ yy decay rate, which agrees well with
the Steinberger formula.

There is no proof that a theory of strong interactions
satisfying scale invariance at short distances will give
the numerical ~ ~7p rate correctly, but at least it
will not be in error by a factor of m ' (m ' in the ampli-
tude and m ' in the decay ra.te).

E. Nonleytonic Weak Interactions

The eRective Lagrangian for weak interactions can
be analyzed qualitatively, using the hypotheses of this
paper. Octet dominance in nonleptonic decays can be
understood without introducing neutral currents and
some new "four-dimensional" superconvergence re-
lations are proposed. Violation of CI' is ignored.

Consider the AI'= 1 component of the eRective weak-
interaction Hamiltonian. It will be assumed to have
the form

condition

W~"(x M) =g"" (7.24)

C„(M)= C.„„w(x)W~"(x,M) . (7 27)

Because of exact symmetry requirements the 6elds

O„(0) that contribute to Eq. (7.26) must be scalar or

pseudoscalar 6elds with AY=1, ~I,= —» and hI= 2

ol
The leading term in C„„„w(x), for any given n and

small x, scales as x"'"&, where n(rr) depends on the di-

mension of 0 (d„) and the number of symmetry-break-

ing spurions needed to make C „„w(x) nonzero. If no

spurions are needed, then

n(ir) = d.—6. (7.2g)

By dimensional analysis, C (M) behaves as

C, (M) M-'"'. (7.29)

This condition arises if the same cutoR function occurs

in semileptonic weak decays. The cutoff mass M will

be assumed to be large compared to typical strong-
interaction masses, i.e., 3f))1 GeV.

Because W""(x,M) has a short range in position space,
the integral in (7.23) involves only small x, and in this

region one can write an operator-product expansion for
Tj,w(x) j,s(0). This will have the form

Tj„(x)j„s(0)=+„C„„(x)0(0), (7.25)

which, substituted in Eq. (7.23), gives

Zw(0) = sv2G cos8 sin8 Q„C„(M)O„(0), (7.26)
w'ith

In free-field models of current algebra there are an
infinite number of SU(3)&&SU(3) multiplets of scalar
and pseudoscalar fields which can contribute to the
expansion (7.26) for Zw(0). But if M is large, the coefFi-

cients C (M) will be very different for different multi-

plets because different multiplets usually have different
values for n(tr). So only one or a few multiplets will

dominate in Eq. (7.26); apart from symmetry-breaking
considerations, the multiplet of lowest dimension will

have the largest coefFicient. The P-o. multiplet is the

multiplet of lowest dimension, by assumption. The rele-

vant fields for Eq. (7.26) are the AY= 1 o and @ fields;
however, these fields are both divergences (of the
strangeness-changing vector and axial-vector currents),
so they will not contribute to any decay process. 4'

Hence one must go beyond the list of fields proposed
in Sec. IV.

In the free-quark model, the next scalar and pseudo-
scalar multiplets with appropriate quantum numbers
have dimension 6 (Wick products of two currents).

48 See S. L. Adler and R. F. Dashen (Ref. 31), p. 133; C.
Bouchiat, J, Iliopoulos, and J. Prentki, CERN Report No.
Th.908 (unpublished); S. Nussinov and G. Preparata, Phys,
Rev. 175, 2180 (1968).

Zw(0)=s&2G cos8sin8 Tj „g (x)j„8(0) W&"( Mx),

(7.23)

where G is the Fermi constant, 0 is the Cabibbo angle,

j„s is the nonstrange weak current with 2 Q = —1, and

j,s is the AY= 1, AQ= 1 strangeness-changing current.
The function W""(x,M) might be a W-meson propagator
(apart from a scale factor), or it might be a more com-
plicated function. M is the eRective cutoff mass of
W""(x,M), i.e., W&"(x,M) falls off exponentially when
xM is large and spacelike; it is assumed that dimen-

sionally WI'"(x,M) is of the form M'W""(xM). The func-
tion W&"(x,M) is assumed to satisfy the normaliza, tion

The ambiguity in Ii associated with different limiting pro-
cedures is analogous to the ambiguity in the I'ourier transform
of F„„(x,s) already pointed out by Bell and Iackiw (Ref. 41) and
Adler (Ref. 41).

47 Field algebraists claim that the vacuum expectation value
of two currents (Q~ Tj„(x)j„(0)~B) is less singular at x=0 in the
algebra of fields than it is in an approximately scale-invariant
theory such as the quark model. See J.Dooher, Phys. Rev. I etters
19, 600 (1967); M. B.Halpern and G. Segre, r'Nd 19, 611 (1967). .
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There are several irreducible multiplets with the same
(dimension —in fact, all multiplets contained in the
product of two currents. In strong interactions, the
author considers such degeneracy in dimension unlikely:
Renormalization effects should be different for each
different irreducible SU(3) XSU(3) multiplet. This
means that one can hope that a single SU(3) XSU(3)
multiplet will dominate Eq. (7.26). The experimental
fact of octet dominance indicates that the dominant
multiplet should contain only SU(3) octets and singlets;
this means that the dominant multiplet must be either
an (8,1)9 (1,8) or a (3,3)Q (3,3) multiplet. The author
knows of no way to distinguish these two possibilities,
but will guess that the dominant multiplet is (8,1)
(I) (1,8) . This mutliplet will be denoted rr' rti' I-ts.
dimension will be called 6'. Neglecting other multiplets
in Eq. (7.26), and denoting the AY=1 I,= ——', fields

by trs' and Ps', the effective weak 6V= 1 Lagrangian is

Zs (0) = 2&2G cos8 sing aM' a'Pirs'(0) —rt 2'(0)], (7.30)

where a is an unknow'n constant depending only on
strong interactions. The combination o.s'-ps' results
from assuming pure chiral weak currents (equal vector
and axial-vector Cabibbo angles).

Formula (7.30) is not expected to be exact, but the
error will depend inversely as some power of the weak
cutoff SI. The ratio of E+ to Eog. lifetimes should de-
pend on the weak cutoff M, since the F+ decay will be
determined by a multiplet containing AI= —,fields which
will appear as one of the corrections to Eq. (7.30).4'

Equation (7.30) predicts octet dominance in all strange-
ness-changing weak processes. It must be made clear
that octet dominance is not a prediction of the hypothe-
ses of this paper. The above analysis simply allows one
to incorporate the experimentally observed octet domi-
nance into the theory without introducing neutral cur-
rents into the current-current Lagrangian.

The factor M~A' in Eq. (7.30) means that nonlep-
tonic decays can be enhanced or suppressed compared
to semileptonic processes, depending on the value of 6'.
However, recent calculations" using a local current-
current weak Lagrangian suggest that neither enhance-
ment nor suppression occurs. The relation of these
calculations to the operator-product analysis will now
be discussed. "

The calculations of Ref. 50 involve (for baryon
decays) eliminating the pion by current algebra,
after which one has a matrix element of the form
(A

~
jstv(0) js&(0) ~B) (denoted MAB), where ~A) and

"V. S. Mathur and P. Olesen, Phys. Rev. Letters 20, 1527
(1968). LThe specific mechanism of these authors for making the
violation of AI= —', be cutoff-dependent does not work (Ref. 48).]

'0 Y. Hara, Progr. Theoret. Phys. (Kyoto) 37, 710 (1967);Y. T.
Chiu and J. Schechter, Phys. Rev. Letters 16, 1022 (1966);
Y. T. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 150, 1201
(1966); 157, 1317 (1967); S. Biswas, A. Kumar, and R, Saxena,
Phys. Rev. Letters 17, 268 (1966); S. Nussinov and. G. Preparata
(Ref. 48)."I wish to thank Professor J. Schechter for raising this
question.

~B) are one-baryon states (for example, (A) might be
a nucleon and ~B) a Z state); j„tv(0) is a nonstrange
current and js&(0) a strangeness-changing current. It is
assumed that the product of currents at the same point
exists. It is calculated by putting in a complete set of
intermediate states; in practice only a few single-
particle or resonance states are kept. Define 3IIAB(q)
to be the sum over those intermediate states with mo-
mentum q relative to the initial state; then one corn-
putes first MAB(q), and one has

M AB —— 3IAB(q) . (7.31)

L~AB(q) Bl(q)trAB B2(q)rtiAB

B'(q) (a AB' y—AB')j=0, —(7.33)

where Bi(q), etc. , are the Fourier transforms of Bi(x),
etc. , and

~AB (A ~~„(=0)~B), etc. (7.34)

Because the integral converges, one can hope that only
moderate values of q are the most important values
and cut if off at a not too large q, . Then one has

9'max

where

NAB(q) Brl(qmsx)rrAB+BI2(qmax)4'AB

+Br (qma, ) (&AB ifiAB ) i (7 35)

@max

Bri(q, )= Bi(q), etc. (7.36)

Now Brt(qm~ ) and Brs(qm, ) behave as q, ' for large
q, , owing to the behavior x ' of Bi(x) and B2(x).
For very large q, , Br'(q, „) behaves as qm, ~t~a'l,
but for not too large q, , Br'(q,„) is approximately 1
due to (x)a' ' being ~1 except at very small x.

What one needs for calculating wea¹interaction
matrix elements are the matrix elements oAB' and gAB'.

To compare with the operator-product analysis, some
further assumptions will be made. Assume that 6' is
either equal to 6 or slightly smaller. This means that
for the o.'—it

' multiplet the constant tr(tr) is almost zero.
Assume that for all other scalar-pseudoscalar multiplets
(except o.-iti), tr(22) is appreciably above zero. Then one
can write an expansion for the ordinary product
j»(x) j&~(0):

j. ()j."(0)=B() -(0)+B.(*)~.(0)
+B'( )L -'(0) —0-'(0)l, (7.32)

where its is 4 or 5. The functions Bi(x) and B2(x) scale
as x ' for small x (see Sec. VII A), B'(x) as x 2+a'

The o.-P multiplet must be considered because the
baryon states ~A) and

~
B) do not have the same energy.

The error in Eq. (7.32) goes to zero as x -+ 0. As a re-
sult, one can write the following momentum-space
formula:
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3fx~;(q) =0. (7.37)

One might call this a four-dimensional superconvergence
relation. The author is not prepared to discuss the
validity in practice of either Eq. (7.35) or (7.37).

F. Bjorken Limit

As a 6nal application, consider the Bjorken limit. '
The problem is to determine the behavior of an ampli-
tude

when qp
—&~ with q 6xed. With the operator-product

expansion, there is no need to keep q fixed; one only has
to have g' large. Then the integral is domina, ted by the
behavior of the T product for small x; if C (x) are
expansion functions for the T product. , then

T d(q) p (nlO (0) lp) e"'C„(x), {7.39)

which can be written

T.,(q)=Z„z„(q)( lo.(o) IP). (7.4o)

By dimensional analysis, R„(q) contains a skeleton
term scaling as

g (q)~qdd+ds d(n) 4——

for large q. There are also 6nite mass corrections which
are smaller. Because of I.orentz invariance, each term
in E„(q) will be a power of q', not necessarily an integra, l

power, multiplying a polynomial in q. There may also
be logarithms of q'. To obtain the Bjorken limit specifi-
cally, one can let qp~~ with q held fixed, w'hich means
that q' is replaced by qp' to a, 6rst approximation, and
one gets an expansion in terms of gp, but one may get
fractional powers of qp

' in the expansion. The frac-
tional pow'ers are seldom of importance when A and 8
are two currents. They will be important if A and 8
are both from the P-o multiplet and 0 (0) is a current;

So one must somehow eliminate the matrix elements
(rda and ada )n Eq. (7.35). One can do th)s by gon)g
to the exact SU(3)XSU(3) limit. The matrix elements
0 dQ and @da do not vanish in this limit but the functions
B((x) and B,(x) do Lbecause jj and o-p belong to
orthogonal SU(3) XSU(3) multiplets]. If Br'(q „) is
approximately 1, then Eq. (7.35) gives the desired
matrix elements. If 6' is somewhat different from 6, the
matrix element cr~~' would differ from the matrix ele-
ments needed for the weak-decay calculations only by
a universal factor depending on q,„,. and M, but not
the states A and B. Even if one cannot elimina, te the
~» matrix elements, one can derive sum rules where
fT», etc. , all vanish, namely, by taking the linea, r com-
bination of Z to nucleon matrix elements w'hich projects
out the AI= ~ part of the current-current, product. Call
this linear. combination Mx~;(q); then we predict

then a fractional power dominates R„(q) unless 6 is

an in tt;.,ger or half-integer.

VIII. FINAL COMMENTS

What is proposed here is a new language for describ-
ing the short;-distance behavior of fields in strong inter-
actions. One talks about operator-product expansions
for products of operators near the same point, instead
of equal-time commutators. One discusses the dimen-
sion of an operator instead of how it is formed from
products of ca,nonical fields. Analyses of divergences in
radiative corrections, etc., are ca,rried out in position
space rather than momentum space. Furthermore, one
has qualitative rules for the strength of SU(3) XSU(3)-
symmetry-violating corrections at short distances. To
the extent that one can ana, lyze problems at short dis-
tances using only the SU(3) XSU(3) currents and the
o.-Q multiplet, the hypotheses of this paper have the
elegance of simplicity, once one is used to the language.
Even in the nonleptonic weak interactions, where a
new rnultiplet o' &f&' is int-roduced, one can. easily obtain
a rapport between theory and the experimentally ob-
served octet dominance. The results of the hypotheses
are all qualitative, but with them one can resolve some
of the qualitative difficulties with previous current-
algebra calculations of q

—& 3x and m'~ 2y decay.
There are formidable obstacles to be overcome before

the hypotheses of this paper can be made quantitative.
This is best seen by returning to the x' —+ 2p problem.
To calculate the vr' —+ 2y rate, one needs to know the
vertex function (Ql Tj„(x)j„(0)A (a)

l
0) when x and s

are small. One needs this matrix element for the hadron
skeleton theory. However, if one knows this matrix
element for small x and s, one knows it for alt x and s
in the ha, dron skeleton theory due to scale invariance.
It is hard to imagine that one could have a complete
formula for this vertex function without having a com-
plete solution of the hardon skeleton theory. The pros-
pects for obtaining such a solution seem dim at present.
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