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crossed p poles give a negligible contribution. Substitut-
ing into (4.2),
Lyry= (1.5 MeV) X[ fra(0) T,
while experimentally
Tyom=1.240.1 MeV.

Using Egs. (4.3)-(4.5) to calculate f,,(0) by the same
techniques as before gives

for(0)=1.0340.08,

(4.6)

and thus
T yomytPeer=1.640.3 MeV,

in fair agreement with the experimental value.
In conclusion, it has been demonstrated that iso-
vector form factors can be calculated quite accurately
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at low momentum transfer using two-pion intermediate
states only. The ingredients used included an effective-
range formula for the pion form factor, expressions
for annihilation amplitudes that satisfy elastic uni-
tarity while treating the principal left-hand cuts
properly, and an assumption of universality for p-meson
couplings.
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A field-theoretic model of the exchange of virtual soft neutral vector mesons between nucleons is shown to
provide the needed damping to describe pp elastic scattering and the electromagnetic form factors of the
proton at high energies and large momentum transfers. The model permits a calculation of the infinite-
energy limit of pp scattering, and suggests that pf scattering will rise to that limit at very high energies.

I. INTRODUCTION

N this paper we would like to present a high-energy,
large-momentum-transfer parametrization of nu-
cleon elastic scattering amplitudes and electromagnetic
form factors. The model is a field-theoretic realization
of the Yang-Wu idea! in which the proton’s form factors
are related to the infinite-energy limit of the pp scatter-
ing amplitude, here generalized to provide a quanti-
tative description of elastic scattering at large but
finite energies. The underlying physical mechanism
adopted is the exchange of virtual massive neutral
vector mesons between the nucleons entering into any
hadronic process. Such mesons could be regarded as the
quanta of a field coupled to a conserved baryonic
current, although this interpretation is not obligatory.
The model is defined by extracting the ‘“‘soft” meson
* On leave during 1968-69 at Centre de Physique Théorique,
Centre National de la Recherche Scientifique, Marseille, France.
t Supported in part by the U. S. Atomic Energy Commission
(Report No. NYO-2262TA-194).
1 Supported in part by the U. S. Atomic Energy Commission
[Report No. AT (30-1)2098)].
IT. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).
Similar and related arguments have been made by H. Abarbanel,

S. Drell, and F. Gilman, Phys. Rev. Letters 20, 280 (1968), and
by T. T. Chou and C. N. Yang, 4bid. 20, 1213 (1968).

contributions of all such exchanges, leaving a remaining
‘“hard,” or nonsoft part unspecified. For zero-mass
mesons, it is necessary to consider simultaneously the
soft part of virtual and real processes, in order to .
remove the latter’s infrared divergences. For massive
mesons, there are no infrared divergences and multiple
soft real emissions are strictly meaningful only in the
limit of infinitely high nucleon energies. On the other
hand, the soft virtual processes must, in principle,
contribute to every amplitude, and remain as a possible
source of interesting momentum transfer and energy
dependence.? Neutral mesons are used because their
soft effects can be obtained in closed form, without the
inhibiting isotopic complications® of charged mesons;

2 This approach is complementary to that of G. Mack, Phys.
Rev. 154, 1617 (1967), who inferred the behavior of elastic-
scattering amplitudes by an examination of the inelastic emission
of soft quanta.

3 The essence of this approach and of all such “soft” methods
is the independent emission, real or virtual, of successive quanta.
If the mesons are charged, the fact that they may be soft is not
sufficient to provide the necessary degree of solubility for the
model, since there must still be correlations between them; e.g.,
a proton cannot emit two positive pions in succession, no matter
how soft. A discussion of this point has been given by H. M.
Fried, Summer Institute Lectures, University of Colorado,
Boulder, 1968 (unpublished).
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vector mesons are used because the resulting s, ¢
distributions appear to fit the experiments.

The input information of this model, derived from
the basic interaction £'=igdv,A4,4, is described in
terms of three constants, g, u, and u., denoting the
(bare) coupling between meson and nucleon fields, the
(bare) mass of the vector mesons, and a momentum
cutoff needed to distinguish the soft quanta, respec-
tively; the latter will be described in detail shortly.
Upon extracting the desired soft portion of the virtual-
meson exchanges, we combine these parameters to form
a single constant v which is then determined by com-
parison with the experimental data. In this way, with
one parameter, it is possible to reproduce the gross
features (to within ~109, of the experimental values of
log[ (do/dt)/(do/dt)im0]) of the elastic pp data of
Allaby et al.* for large s and —¢2> 9 BeV?, indicating that
soft contributions can provide the needed damping at
large energies and momentum transfers. In conjunction
with a scaling parameter drawn from a low-momentum-
transfer description, we can fit the recent Stanford Lin-
ear Accelerator Center (SLAC) data® for the proton’s
form factors at —¢> 7 BeV?; one can, in fact, construct
an excellent fit to the form factors for all measured
momentum transfers. The physical picture which thus
emerges is one in which the hard mesons make possible
large-momentum-transfer scatterings which the soft
mesons tend to damp out.

The model predicts that the normalized pp elastic
scattering will rise to the same infinite-energy limit to
which the corresponding pp scattering descends. If the
pp system may be said to exhibit s-dependent damping
at large —if, then the pp system should display a
corresponding growth. The physical origin of this
difference is, in this model, due to the circumstance
that if a nucleon interacts with a neutral vector-meson
field with coupling constant g, an antinucleon interacts
with the same field with charge —g. Because the present
model neglects interference between soft and hard
processes, which is probably where Regge-type be-
havior arises, it cannot describe the shrinkage and
dip-bump patterns appearing at lower energies and
momentum transfers; but one might expect that the
observed antishrinkage in the pp system at lower
energies has the same simple origin.

The introduction of a second parameter in the charac-
terization of the soft quanta permits an even better
reproduction of the pp-scattering data, providing a
quantitative fit (to within 5%, of the experimental
values of log[do/dt/(do/dt)i—0]) for s2>20 BeV? and
Bc.m.> 65°. In order to describe the origin of this second
parameter, it is useful to recall similar operations

¢J. V. Allaby, G. Cocconi, A. N. Diddens, A. Klovning, G.
Matthiae, E. J. Sacharidis, and A. M. Wetherell, Phys. Letters
25B, 156 (1967).

5 D. H. Coward, H. DeStaebler, R. A. Early, J. Litt, A. Minten,
L. W. Mo, W. K. H. Panofsky, R. E. Taylor, M. Breidenbach,
J. I. Friedman, H. W. Kendall, P. N. Kirk, B. C. Barish, J. Mar,
and J. Pine, Phys. Rev. Letters 20, 292 (1968).
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performed in the extraction of soft virtual quanta in
electrodynamics. A graphical treatment may be found
in the classic paper of Yennie, Frautschi, and Suura®;
an heuristic procedure for obtaining the results of this
paper is to start from the complete, virtual soft-photon
contribution (the “B” integrals of YFS) to any process,
give the photon a mass u, coupling constant g, and to
cut off the virtual photon 4-momentum % at u.. This
last step can be done in a superficially invariant way
by cutting off &% at u2, and will be described in detail in
Sec. II. In the YFS method, where each fermion line of
four-momentum p contributes a factor (2p,+k,)/
(k*+2p-k), a cutoff is not necessary, since the renormal-
ized, momentum-transfer-dependent integral converges
and effectively cuts itself off at u2=~—t, for —£>m?,
where 7 denotes the fermion mass. One then finds an
over-all result for the B integral proportional to
In?(—¢). We have chosen the somewhat more conserva-
tive approach of using the simpler factor p,/p-%k and
effectively cutting off the integral at lower values of k.
This avoids including contributions for soft k£>>m, with
the result that, for constant u.? and at large — ¢, we find
a result proportional to In(—¢). With either method,
one constructs in this way an exponential dependence
upon the appropriate external invariant variables, ¢,
s, +++ of the form eYF®xF()£---1" which after proper
renormalization multiplies the remaining, unspecified
hard-meson dynamics; the latter is, of course, actually
responsible for scattering at large momentum transfers.
In our one-parameter calculation, v is approximately
given by

v=(g"/4m)(1/2m) In[1+4 (u?/w*) ],

and the function F(f) is a once subtracted, elementary
integral over two-particle phase space, displayed in
Sec. II.

The simplest choice, u,?= constant, is sufficient to pro-
vide an accurate fit to the proton form factors. Rather
than the asymptoticbehavior G~ (—¢)~7 of this analysis,
the YFS choice ul==—t¢ produces G~ (—¢)~7'In=0,
which is of the form of Mack’s curve (Ref. 2); our
agreement with the data seems to be as good if not
better, since our curve of Fig. 1 is almost identical to
Mack’s but runs slightly higher at large —¢. The corre-
sponding fit (Fig. 2) to the more accurate pp-scattering
data contains systematic deviations from the experi-
ments. We have found that the introduction of a second
parameter appearing in the form p2/u?=ci1+cs/|t],
or more generally ci+cz/|z|, where z denotes the
appropriate invariant variable, is sufficient to give
better agreement with the pp-scattering data (Fig. 3).
The form of such dependence is difficult to understand,
as is the fact that the effective v for pp scattering
differs from the constant v used in the proton form

6 D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. (N. Y.) 13,
379 (1961),thereafter referred to as YFS.
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factor fit.” Nevertheless, it is hard to believe that such
two-parameter reproduction of the experimental data
is merely fortuitous; rather, it suggests that there
probably is a heavy, neutral vector meson which
strongly decays into a nucleon and antinucleon pair.

II. DETAILS OF MODEL

The removal of the infrared divergences in electro-
dynamics is an excellent example of the efficacy of
functional methods in those situations where a sufficient
degree of solubility exists, and permits the formal,
functional solutions for any amplitude to be evaluated
without the need for a perturbation expansion. These
procedures shall be followed here in order to perform the
necessary derivations in the most compact way, and to
set the stage for subsequent generalizations. We are
here concerned with the soft, virtual quanta exchanged
between the nucleon ‘“legs” of the vertex function
and scattering amplitude, and for clarity shall sketch
in detail the manipulations needed to extract the soft-
meson dependence of these processes.

A. Vertex Function

In a theory with nucleon, pion, and photon fields, and
containing the assumed neutral vector-meson field as
well, the unrenormalized, configuration space, nucleon-
photon vertex function, amputated on the photon
coordinate z, has, to lowest order in the electric charge
e, the exact functional representation

8 5
Vu(y; 2)= eXp<—%i—Ac“”—~)

o om

1) é
X exp<—— li—AJA)—) G(y,z|m,A)
o4 54

ALY

X%e(l—*— 73)7116(2}96 l TJA) ’ (1)

T=A=0

where %e(1+473)y, denotes minimal coupling to the
proton, L(m,A) is the closed-nucleon-loop functional
with associated vacuum normalization constant NNV,
while the G(a,b|7,4) are nucleon propagators defined
in the presence of ¢c-number pion (=) and vector-meson
(4,) fields, as would be the case for the potential
theory interaction £ =y[ V (r)+igy.4.J¢. The use of
the physical nucleon mass # in G implies that a mass-
renormalization counter-term should be included in the
interaction.

The expansion of the functional differentiation
operators of (1) yields all the linkages which define the
complete set of radiative corrections, produced by the
virtual emission of all pions and vector mesons. We

7 For zero-mass neutral vector mesons, these constants would
depend upon the real soft-meson emissions, and hence on the
details of the experimental arrangements; it may be that a
related dependence upon the energy resolution for a large but

finite number of emitted low-energy massive mesons is involved
here.
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Fic. 1. A plot of (1—¢/0.4)71e-4F® superimposed upon the
data points of Coward ef al. (Ref. 5) and normalized to the dipole
fit. On the ordinate, ¢®= —# is in BeV?2.

wish, however, to isolate the vector-meson exchanges
between nucleon legs which would, in the case of zero-
mass vector mesons, contribute to the infrared-divergent
part of the vertex function. A straightforward way to
accomplish this is by an analysis of the Fradkin type,?
but a somewhat simpler method makes use of an alge-
braic rearrangement, as follows: We divide the com-
plete interaction U=V (w)4igy-4 into a soft part
Ug=1igy-A®, and a hard part, Ug=V (7)+igy- A,
so that 4,=4,®4+A4,# U=Ug+Upg. One can, in
some arbitrary but definite Lorentz frame, consider the
A, (k) to be defined with Fourier components #k,
less than some preassigned value, and conversely for the
A, (E), leaving the relativistic invariance to be
enforced at a later stage. As shown in Ref. 3, it does
not appear to be necessary to separate out a soft-pion
contribution if the soft-pion—nucleon interaction is of
chiral form. Using this decomposition, G can be written
in the form Gs(14+UG)=Gs(1—UxGs)'=GsK, with
Gs= (m+v-0—Ugs)™; and (1) may be replaced by

0 )
) — _li A
Valpi2) [CXP< A 5A<S)>]

X/Gs(y,WIA“’)Vu‘H’(wﬂ;5IA‘S))

XGs(ux|AS) (2)
A
where
V.4 (3,3;2| AD)
) ) o ) L 6 ()6
=exp( —3i——A, — A —
exP( Ty <H>) eXp( o 51r>
XN—le“”'A]/K(y,z]A,vr)
Xie(1+73)v.K (32| A7) 3)
A g

8 E. S. Fradkin, Nucl. Phys. 76, 588 (1966). The formal func-
tional solutions leading to expressions of the type (1) were first
written by J. Schwinger, Harvard Lecture Notes, 1954 (un-
published), and K. Symanzik, Z. Naturforsch. 9, 809 (1954). An
application to soft photons may be found in K. Mahanthappa,
Phys. Rev. 126, 329 (1962). The derivation used here follows that
presented by H. Fried, Winter Lectures in Karpacz, 1967 (un-
published), and Ref. 3.
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The desired soft-vector-meson dependence arises from
exchanges between the two G’s written explicitly in
(2); whatever else may occur, this dependence will
always be present and may be exhibited by rewriting

(2) in the form
0
),

Xst(y,WIAl(S))I‘u(H) (wu; 2)

A,

Vily,a; 2)=8Xp<—i5Al(S)

XGs(u,x|A2<S)); . @

A1,

The notation of (2) and (4) suggests that T, (y,x; z)
may be considered as the proper vertex function, con-
taining everything except the desired soft-meson ex-
changes, and this would be true were not the hard-
nucleon self-energy effects still included in T',®. Such
effects can easily be recognized upon performing a
perturbation expansion of (3), and will, if G already
contains the physical nucleon mass m, influence our
calculation only to the extent of providing extra wave-
function renormalizations upon mass-shell amputation
of the nucleon legs. It is therefore simplest to neglect
all self-energy processes completely, both hard and
soft, and hence to drop all associated renormalization
constants, performing the necessary vertex renormali-
zation at the end of the calculation.

To obtain the momentum-space vertex function
T.(p',p), with p and p’ on their respective mass shells,
we require the amputated function

(27r)_4/dz e—““'z/dx ei“'z/dy e Y (mtiy - p')

XV u(yx; 2) (m4-iy-p)

fdx e G g(u,x) (m~+v- p)

/dy e v (m+v"- p)G s (y,w)
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or

5(p+h— )T, )= (2m) / dz ik / dw f du
) é
Jor(ci b ]
BALS T A,
X/ dy 5 3 (m-tiy- )G (3] AT, (s 2)

, (9

A1=A92=0

X/dx e G g (u,x| A199) (m+1v- p)

and must now calculate the Gg combinations of (5). The
basic differential equation for the nucleon propagators

[m4+y-0—igy-A®]Gs=1 6)

is now approximated by replacing each v, by a constant
four velocity —iv,, where v*= —1; this is the well-known
Bloch-Nordsieck model® which neglects the radiative
recoil of the soft mesons on the emitting nucleons. In
the propagator G (u,x| A1) we make the replacement
v, — pu/m, while in Gs(y,w|4:®) we use v,’ — p,//m,
as the appropriate four velocities in each nucleon leg.
Within such a no-recoil model, the solution to the
modified equation

[m—iv- (0—1igd)]Gs=1 @)

may be written in parametric form as

0 £
Gs(ab)= 1/ dg e~ im exp(ig/ dn v,4,(a— nv))
0 0

Xo(a—b—¢v), (8)

from which it is not difficult to see that the amputated,
mass-shell (m.s.) combinations necessary for (5) may
be evaluated as'

The functional operations of (5) can now be easily performed and yield

S(p'+k—p)Tu(p'p)= Qn)* | dz e_””/ dw e’ "”/du e T, UD (wo; 3)

or

=eir-v eXp<ig / dtv-A(u— Ev)> , (9a)
m.s. 0
| =g 0w exp(ig/ dgv'-A (w—{-Ev)) . (9b)
m.s. 0
Xexp<ig2/ dg/ dn v’ A (u—w— Ev—n‘u')>, (10)
0 0
(11)

f‘u(P',P)=/dx2 e*ip"”/dxl e =10, D (ap, 1) exp(ig2// dEdn v ' A (61— x2— 57"””')> )
0

9 . Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

10 A discussion of the operations involved here may be found in H. Fried and G. Erickson, J. Math. Phys. 6, 414 (1965).
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where we have used the fact that I',® can only depend
upon the differences of its three coordinates, here
chosen as T, (x9,21) =T, (w—3z, u—3z). All of the
soft-meson dependence now arises from the exponential
factor of (11), which may be written in the form

ig2/ dE/ dnpv-v'AM
0 0

2 d*k
'”_faquppz/kl+w<hp—4a@-w—wo’

etk - (v1—a2)

(12)

Were up?=0, Eq. (12) would exhibit the familiar
infrared divergence at very small values of &,, with the
e -(@1—22) phase contributing nothing to the divergent
behavior. On the other hand, for w20 there is no
infrared divergence, but this phase may be expected
to be small when k-x1,,<1, with typical x1,, values
dependent upon the structure of T',¥), The most
conservative estimate is that xi.~wo™, where wuo
represents the smallest (e.g., pion) mass exchanged
in the construction of I',*®) ; but at very large values of
momentum transfer —¢, one might expect x,2~ |£]| 7172
and hence larger values of £,** would be permissible
before the phase deviates significantly from unity.
The approximation of replacing this phase by unity
decouples soft and hard effects, permitting T',(p",p)
to differ from T, (p’,p) by the multiplicative factor
of interest here; corrections to this approximation
serve to define interference, or correlations, between the
soft and hard dependence, and will be discussed in a
separate note.

Renormalization may be imposed, as in Ref. 6, by
simply subtracting from the resulting exponential
factor its value at zero momentum transfer; for this
reason the k,k,/u? part of the vector-meson propagator
has been omitted above, since its contribution would be
removed by renormalization. One finds

fM(P/)P)"‘Pu(H) (p’,P)eyF(t) ’ (13)

where

= 4 1 2w\ A\
F(z)=t/ — (1—-)(1--) . (14)
am? U U'—1 t 4

and vy is the constant mentioned previously. It is at
this point that one must specify how the constant w.
is to enter, so that overly large values of %k, can be
circumvented in the phase-approximated integral of
(12), while relativistic invariance is maintained. To
enforce invariance, we introduce an effective cutoff, at
k*~puc? into the calculation, but then integrate over
all k,. Were we dealing with a simple integral, e.g.,

of form
d*k
j 5089,
kB+u?
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where ¢ is limited only by the restriction that passage
to a convergent Euclidean integration is possible, there
would be no difficulty in effectively limiting the %, in
this way, since after the ko contour is rotated, we obtain,
with A=%2, just

® NI\
7 / d(\);
0 )\+#2

and the insertion under the integral of the real, positive
damping factor e #* serves effectively to cut off all
k, at ~B~12, Since our integral has a more complicated
structure, we introduce the cutoff in a two-step fashion,
by (i) inserting the factor e~** under the integral, with
a real and positive, and (ii) after evaluation performing
the continuation « — —i3, where 3 is real and 8~1=p,2.
This prescription is certainly not unique; but it is
simple,* covariant, and provides reasonable results
which can be compared with those of YFS in the large-
momentum-transfer limit.

For negative ¢, F is real and negative and is given by

2a+1
[o(a+ 1) ]

with the limiting forms #/3m? and 1—In(—t/m?) for
small and large —¢, respectively. Because of the multi-
plicative form of (13), the soft-meson dependence
e will appear in every nucleon form factor. We
shall discuss the detailed fits to the proton’s form
factors in Sec. III, and only remark here that a good fit
can be obtained to the SLAC data at large momentum
transfer in the form G(f)=ce?”®, using the scaling
constant ¢=0.16 and choosing y=2.4,

In(v/a+ (x4+1)"2)

x=—1/4m?,

1Tt is simplest to combine the p and p’ denominators, and
then write parametric representations for all denominators, so
that the phase-approximated integral of (12) becomes

1 © ©
= —ig?(2n)~4(4p-p’) (—i)[ dx/ cdc/ da e‘i“z/d“k
0 0 0
Xexp[ —i(a+o)k2—2ick-p],
where p=xp+(1—=x)p’ and —p*=m24x(1—x)(—£>0 for
t<4m?. The integral over % is an elementary Gaussian, and may
be followed by integration over the ¢ variable to yield I=+f(¢),
where f(t)=p-p' fi'dx/[—p] is real and negative for physical ¢,
and
e 1" de PR
"“ir2r o ata 4r 2r)o bFB

a positive constant, when the continuation a — —34g8 is made.
Approximating the b integral by *~%db/(b+8) leads to the
estimate of v quoted in the Introduction. A more complicated
result, but one having the same phase, is obtained by use of the
YFS procedure, in which our (2k-p)™*(2k-p')1 is replaced by
(k24-2k- p)1(k2+2k-p') and no cutoff is required. (More
precisely, one subtraction will be necessary when extra & depend-
ence is inserted, for reasons of gauge invariance, into the numerator
of the integral; but this complication is irrelevant to the present
discussion.) That integral has the parametric representation

S [ o[ sosiea—y—ypr

and is also real and negative for physical .

g—ian? e bn?

H
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B. Nucleon-Nucleon Scattering

We very briefly sketch the quite similar steps in-
volved in extracting the soft-meson dependence of the
pp-scattering amplitude. In this process there are
four nucleon legs to be approximated by four Bloch-
Nordsieck Green’s functions, each represented by (8)
with the appropriate mass-shell amputations given by
(9). Again, we extract only the cross-linkages between
each pair of nucleon legs, and so obtain an equation
analogous to (10) describing the elastic scattering
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amplitude for the reaction pi+ps— pi'=+po’
3(prtpr—pi'=— p )M (pr,pospr’ p2')

= (27)_4/du13ip1‘ul/dugeim'“2/(]71)16—1'7?1’1:11
X/dw28—ipz’w2M(H) (1,180,101, w5)€% , (15)

where M ) denotes that part of the amplitude con-
structed from hard-meson processes, and

o= ig2f / dEdn{v1- V28 o (11— 1o~ Evit-n0) 01" 02’ A (W1— wotEv1' — 2’ ) 01 11" A (1 — w1 — Evi—1o1”)
0 0

Fv2- 09’ Ao (o= wo— Eve—1va’) 01 02’ Ao (01— Wwo— Ev1—12") F-0a 01/ A (e— w1 — Evo—101) } .

The leading, multiplicative, soft-meson-exchange de-
pendence is now obtained by neglecting the phase terms
in each integrand of (16), and evaluating each integral
in a manner identical to that which lead from (12) to
(13), with the result

Cb(s,t,u)=27[:F(t)—|—F(u)—F(s)], (17)

where s+7+u=4m? Renormalization has again been
performed in passing from (16) to (17) by removing the
zero-momentum-transfer dependence of the phase-
approximated exponential of (16); that is, before re-
normalization, ® has the form 2y[ f(t)+ f(u)— f(s)],
with the renormalized answer given in terms of F(f)
= f(#)— f(0). Thesign change of F (s) isdue simply to the
algebraic difference in the definitions of t= — (p1— p1')?,
u=— (p1—p2)% and s= — (p1+p»)? butits consequence
is very important. The soft dependence of (17) will
produce in the differential cross section the multi-
plicative factor

647 [F()+F (u)—ReF(s)] . (16)
For s>4m?, F(s) is complex, with ReF (s) =F (4m?—s) ;
and the difference

F(u)—ReF (s)=F(4m>—s—1t)—F (4dm>—s)

vanishes as s — o for fixed /. In this limit one is left
with just the factor e**7(®  which for large —¢ and a
value of v close to that needed for the proton’s form
factor, is effectively proportional to [G(¢)]¢ This is
the manner in which the Yang-Wu idea is realized in
this model. Equation (17) is, incidentally, symmetric
under the interchange of initial or final protons (u <> ¢,
s<>s), and hence the necessary asymmetry of the
amplitude must be contained in 17D,

For pp scattering the only deviation from the pre-
ceding analysis is a change of sign, g— —g, for the
coupling to the neutral vector-meson field. This has
the effect of interchanging the F(u) and F(s) terms,

(16)

yielding, in place of (18), the factor

e4'y[F(t)+ReF(s)—-F(u)] , (19)
which obeys the same s—c limit. However, since
F(u)—ReF (s)~In(1+12/s)! for s$S>—t>m?, and F(i)
is always negative, (18) produces a pp cross section
which decreases to its s= o limit, while that of (19)
increases to the same value. Without attempting an
estimate of M@ for either case, it is impossible to
make a firm prediction, but if the large (s, —¢) pp

-6 \\
} 22.4
X
X
X
-7+
X
X
X
« }28.5
<
g '
X
X
N }3&0
X
X
4.7
-1 | | | [ | [
Og 8 10 2 14 16 18

-t (Bev)? ~

Fic. 2. A plot of exp{4v[F(@)+F dm?*—s—t)—F (4m?—s)]}
superimposed upon the elastic pp cross sections (crosses) of
Allaby et al. (Ref. 4) for five values of s (BeV?). X (s,t) = (do/dt)/
(do/dt)s—o and v=3.7. The base of the logarithms is 10.
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Fic. 3. A plot of exp{4[y () F () +v () F (u) —v (s) F (4m>—s) ]}
superimposed on the elastic pp cross sections of Ref. 4 for five
values of s (BeV?). v (f) =vo+~v1/|t|, where vo=23} and ~./4m?
‘=§)(.)71. X (s,) = (do/dt) / (do/di)io. The base of the logarithms
is 10.

scattering can be described by (18), one might expect
(19) to be relevant to similar pp scattering. From this
point of view, it is encouraging that, experimentally,
the pp cross section appears to dip below that of pp
with increasing s, —¢. It would be most interesting to
measure the behavior of the pp cross section at fixed,
large —¢, and varying s.

The model provides a natural source of dependence on
the Krisch!? variable 82p.>= (ut/s) in the wide-angle
situation where each variable is separately large. This
combination occurs, in (18), because of the asymptotic
logarithmic behavior of F, yielding (ut/s)~**, which
could be used to fit the very high end of the Krisch plot.

When the two-parameter fit described in the Intro-
duction is desired, it should be remembered that
wl/p?, and hence v, takes on the dependence of the
particular F it multiplies. Hence the exponent of (18)
is replaced by 4[y ())F (t)+ (w)F (u) —~ (s)F (4m>—s) ].
The approximation

v~ (g%/4m)(1/2x) In(1+p2/u?),

together with the choice w2/u?=ci+cs/|2|
leads to

then
YO LF (FF ()= F (4m® =) I+4y1 [F (O [ H1+T () | ul—F (4mP—s)[s]
(20)

2 C. W. Akerlof, R. H. Hieber, A. D. Krisch, K. W. Edwards,
L. G. Ratner, and K. Ruddick, Phys. Rev. 159, 1138 (1967).
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Fic. 4. A plot of the s=o limit, e7®F® for pp scatter-
ing. The solid curve shows v () =3.7; the dashed curve shows
v (&) =vo+v1/|t] with yo=3% and ~1/4m?=0.71. Experimental
points from Ref. 4 are shown for orientation. The base of the
logarithms is 10.

where
vo= (g&/4r)(1/27) In(14-¢y) ,
v1= (g¥/4m) (1/2m)cs/ (1+c1),

and it has been supposed that (cs/|z|)<<1+c; for the
rangeof variables zconsidered here. Such a choice cannot
change the normalization of X= (do/dt)/(do/dt) =0,
since, for ¢~0, the exponent of (18) becomes
~4y(H)F(t), and F(¢) vanishes linearly with ¢. For
small —¢ the assumed In(14-c:+c2/|¢|) dependence of
v is probably not true, with a constant ~m? probably
replacing —¢ inside the logarithm.

III. COMPARISON WITH EXPERIMENT

A. Nucleon Electromagnetic Form Factor

From (13) one expects the proton’s form factors to
consist of the soft term ¥ multiplying an unspecified
hard-meson contribution H (¢) which can be thought of
as due to an appropriate collection of vector mesons
and represented by simple poles. For example, one can
use H () =1+ at(3m,2—t) " for theisovector form factor,
which leads to G~ (1—a)e"™® for —£>m,2 We find
good agreement with the SLAC experiments using
v=2.4 and ¢=0.84. An excellent two-parameter (one
hard, one soft) fit at all momentum transfers is given
by G=(1—t/m¢?)e7¥® with y=1.4 and m?=0.4
BeV2x2m,? as plotted in Fig. 1, normalized to the
dipole fit, (1—¢/0.71)72. The three-parameter form,
H(f)e24F®  when normalized to the dipole fit, is
virtually identical to the curve shown in Fig. 1.

B. Elastic pp Scattering

In Fig. 2 we have superimposed, using y=3.7, the
one-parameter curves of Eq. (18) on the experimental
data of Allaby et al. for five different values of incident
energy. The figure exhibits small systematic variations

18 Both single-pole forms for H (/) appear to require a vector
meson of about Zm,? to fit the low- || experiments. See, e.g., J. S.
Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963).
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from the pp-scattering data which we attribute to
residual s and ¢ dependence of the nonsoft part of the
matrix element. In particular, for fixed energy and
large —t the curve on which the experimental points
lie is flatter than the corresponding theoretical curve.
This indicates neglected ¢ dependence. Furthermore, as
s increases for fixed angle, smaller values of v are
needed to reproduce the experimental data. A measure
of the latter behavior is obtained by the observation
that one needs ay of 2.5 to get the observed slope of the
high-energy segment of the 6,.,.=90° plot.”? The
agreement with the data is thus only qualitative, with
an error of the order of 109, in log[ (do/dt)/ (da/dt) =0 ];
but it may be remembered that only one parameter
has been used.

In Fig. 3 we have plotted the two-parameter fit to
the pp data using the values vo=3% and v1/4m?=0.71.14
The agreement with experiment is improved both
quantitatively (theory agrees with experiment to within
about 59, of log[ (do/dt)/ (do/dt) —0]) and qualitatively.
In particular the theory now reproduces the high-
energy part of the fo.m.=90° curve.

Finally in Fig. 4 we display the s= « predictions for
one parameter (solid line) and for two parameters
(dashed line). The curves resemble that of Yang and
Chou! but without any suggestion of zeros in the
differential cross section. We point out again that the
s=oo limit of pp-scattering differential cross section
has the form of the fourth power of the form factor but

4 We require the expansion of
v () = (¢¢/47) (1/2m) In(1+c1+ca/ |¢])

to be valid for —¢2>7 BeV2 The demand that the first two terms
of its expansion be a good approximation to () together with
the requirement 1/4m?=~0.71 lead to the restriction g2/4= > 20.
The third parameter is thus not completely arbitrary, and we see
that the nucleon—neutral-vector-meson interaction is very strong
indeed.
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with different values of . The relevant constant for
the form factor is y=2.4 whereas v,,~3.7.

It is also possible to fit the high-momentum-transfer
portion of the proton form factor with two or three soft
parameters corresponding to the analysis of the pp-
scattering case. The difference between form factor and
pp-scattering parameters remains, however, and no
further insight is obtained by this procedure.

IV. SUMMARY

We have here proposed a simple model to achieve
the damping observed at large energies and momentum
transfers in certain baryonic processes. The model is
obtained by assuming the existence of a fundamental
massive, neutral vector-meson field coupled to the
nucleons, and extracting the soft part of virtual-meson
exchanges between nucleon legs. The present numerical
estimates provide an excellent reproduction of the data
with just two parameters over a wide range of energies
and momentum transfers. On the basis of this analysis,
we expect that the pp cross sections will continue to
fall below those of pp scattering as the momentum
transfer is increased; and that, for sufficiently large s
and —¢ (away from the dip-bump regions) the pp
differential cross section will rise with increasing energy,
and approach the s= co limit of pp scattering.
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