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Regge-Pole Eikonal Theory of Small-Angle Kaon-Nucleon Scattering*
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A quantitative model for small-angle, high-energy kaon-nucleon scattering is presented. The model is
a generalization of an eikonal Regge model of Arnold and Blackmon. Improvements on pure Regge models
are naturally obtained. We find a natural crossover effect in X+-p scattering and we predict polarizations
in E dacha-rge-exchange processes. We use two pairs of exchange-degenerate Regge poles (the p and As
and the co and P ) and a Qat Pomeranchon with a residue function given by a product of dipoles. All differ-
ential and total cross sections are 6tted quite well.

I. INTRODUCTION
' 'T has recently been pointed out by Arnold' that many
i - difhculties with Regge-pole phenomenology can be
naturally explained by using an optical-model-type
modification to the usual pure Regge-pole model. (This
has led to the name "hybrid model. '") In this combined
optical-Regge approach, reactions which are dominated
by the exchange of one Regge pole, such as x p ~ xpII

and Ir P~ r)n, naturally exhibit polarization. In the
case of m. P —+ Irsn, the polarization calculated agrees
well with the data. ' For the reaction Ir P ~ rfri, only a
few data points have been measured and no definite
comparisons can be made. ' The optical-Regge model
also affords a natural explanation for the crossover
effects that occur in reactions Ir+p, E+p, and pp, 7Ip
elastic scattering. The pure Regge-pole model can be
made to give such crossovers, usually by arbitrarily
putting a zero in the residue function of a suitable
helicity amplitude. For example, a zero in the helicity-
nonQip p-exchange amplitude will give a crossover in
Ir+p scattering. Similarly, E'+p or pp, 7ip reactions
acquire a crossover where the co-exchange helicity-
nonfIip amplitude has a zero. This, however, brings up a
different difficulty, namely, an apparent violation of
factorization for the co Regge pole. ' The optical-Regge
model removes this difhculty, since the crossover is due
to an interference between the Regge-pole amplitude
and the absorptive correction cuts. ' ' The absorptive
corrections will vary from one reaction to the next, and
there will not be a universal value of t where an re-

exchange amplitude is forced to be zero by factorization.
In this paper, we discuss kaon-nucleon scattering

using an eikonal formulation. ' We find that the optical-
Regge model gives a good description of the data. Other
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calculations' ' ' have been done using similar models.
Most other models just calculate the 6rst term, the
second-order scattering, in the series of corrections,
whereas the eikonal formulation gives a precise way for
calculating all orders of multiple scattering. The models
all give the same second-order scattering but can vary
considerably in higher orders. The differences become
important at large momentum transfers.

We assume the Pomeranchon is a fixed pole and has a
residue function which is a squared dipole. We use two
pairs of exchange-degenerate Regge poles, the I=0 pair
being the &d and the P'(fP), and the I= 1 pair being the p
and the A&. The trajectories are linear in t with slopes
and intercepts close to values read off a Chew-Frautschi
plot. In fact, the same trajectories are used here as in
Refs. 3 and 4. The residue functions, which are also
exchange-degenerate, are chosen to be proportional to n
but are otherwise constant. This factor of o. is necessary
to eliminate the ghost for an even-signature trajectory.
Exchange degeneracy requires the factor of n to appear
for odd-signature poles as well. This is also known as the
choosing-nonsense mechanism. Notice that the p is
usually made to choose sense. It has been found, how-
ever, that a nonsense-choosing p gives a better fit to IrP
data when one uses the optical-Regge model. ' Finally,
only the I=i exchanges have a nonzero helicity-Rip
amplitude.
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II. SPECIFIC EQUATIONS OF THE MODEL

We consider altogether six reactions: E+P ~E'P,
E+&~E+ri, E p~Epri, and E+n~E-p. We work
with the amplitudes 6+ and G, which correspond to
helicity nonflip and helicity Qip in the s channel, re-
spectively. The eikonal formulas for these amplitudes
are
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where d = (—t)'/ W= s"' and t4 is the c.m. momentum. amplitudes (G"'+G/')
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and the difference amplitudes (G"'—G'),

By expanding the amplitudes to first order in &p and &f
and performing a Fourier-Bessel transform, one finds
defining equations for Xp and &y.'
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For the Pomeranchon, we take a fixed pole, with
squared dipole momentum transfer dependence

G+~= iCkWp'/(/4' t)4—

Here, the G~~ are the Regge-pole approximations to the
amplitudes, ;I
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For I=O exchanges, there are analogous equations for
(G~~'+G~"). Notice that the difference amplitudes are
purely real and that the sum amplitudes have a phase
&
—isa

In the range of values of n(t) that we will be con-
sidering (—~~&n&-,') the function n/sinprn is a slowly
varying function of t L0.3&n(t)/sinprn(t) &0.5j.We thus
approximate (n/sinprn)b; by a constant and calculate
X's for the sums and differences of the Regge-pole
amplitudes. For the I=O amplitudes, we have

The parameters C and p, are adjusted to fit the high-
energy scattering data. For the even-signature poles I"
and A 2 we take Here,
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and for the odd-signature trajectories we use
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The factor o. must appear in the residues of even-
signature trajectories to remove the pole at n=o in the
signature factor. The assumption of exchange de-
generacy for residues then gives the same factor of n in
the residue function of odd-signature exchanges. Simi-
larly, for the helicity-Rip amplitudes (for I= 1 exchanges
only) we take

En'= 2n' ln (s/sp) .

For the I=1 amplitudes, we have
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Here,

D= ((n/sin7rn) X2b~r='), E= ((n/sinprn) X2bpr='),

and E.,' and E~' are as defined before, except, of course,
that here one uses the value of n' of the I= 1 trajectories.

(For I=O exchanges we set G =0.)
It is convenient to consider sums and diGerences

of exchange-degenerate, opposite-signature Regge-pole
terms. Thus, for the I= I exchanges, we have the sum
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The choice of signs for the residues of the Regge-pole
terms in 6» can be determined from the experimental
fact that

or(K p)&—or(K .zz)&—or(K+p) or(K+n).

tional residues bI and b~. These will be
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SU(3) relates these residues, for E~X scattering, to the
residues for xE scattering
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For the helicity-Qip amplitude, there is no experi-
mental reason to prefer either the sum or the difference
amplitude for K E reactions. A recent theoretical idea
of Schmid, ' however, relates the partial-wave analysis
of a Regge amplitude to direct-channel resonances.
Since the phase of the sum amplitudes is e '™~",one
might expect circles in an Argand diagram. The phase of
the difference amplitudes, however, is real, and thus
gives no circles. This suggests using sum amplitudes in
6 for IC E and difference amplitudes in G for K+X.
We have done our fitting with both choices for the G
amplitude.

III. DISCUSSION OF RESULTS

We have obtained acceptable fits to all a,vailable total
and differential cross-section data from 5 GeV to the
highest measured values. "For the Pomeranchon, the
values that were used for C and p were

C=4.35 GeV ' p=1.15 GeV.

sp was taken to be 0.3 GeV'. Having parametrized the
two exchange-degenerate trajectories in the form n(t)
=no+n't, we have chosen

«=0.45, n'=1.0

for the I=O trajectory, and

np= 0.55, n'= 0.8

for the I= 1 trajectory. These are the same trajectories
as those used by Arnold and Slackmon. ' The residues
were fixed at the values

C= 1.5, D= 0.26, E=6D.

Recall that we have defined C, D, and E as average
values of t-dependent expressions over the interval
——,'&n(t)&-,'. Then if we take the average value of

/nsi nr 7nas ~0.4, we obtain the values for the conven-
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(196S).
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We may compare the values thus obtained for the zS
residues to the values used by Arnold and Blackmon in
fitting vrE scattering. The p residues are in agreement,
but for the I" residue we obtain b~

' "~6bjp, whereas
Arnold and Blackmon used bi~' 3bi" ——(the quark-
model relation for exchange-degenerate vector and
tensor mesons). However, the I" residue parameter is
determined much more precisely in fitting K+E total
cross sections than it is in fitting 7f2V cross sections, since
the difference between K+X and K E cross sections is
fixed by the coupling of the I" (and the exchange-
degenerate (o trajectory).

We have obtained fits for the two choices of spin-Rip
amplitudes, i.e., the case where the p and A2 contribu-
tions have the same signs in KX scattering and the case
where the p and Ao contribute with opposite signs to
EE scattering. The fits to the cross sections are not
affected by this sign change, in the region of t that we
are considering, but the polarizations that are thereby
predicted are strongly dependent on the choice of sign.

In Fig. 1(a) we have plotted the differential cross-
section data for E+p elastic scattering at the highest
available energies along with the fitted curves. The
agreement is good up to —t 1 GeV'. It is important to
notice that this model predicts a crossover effect in the
region of t~—0.35 GeV', which is consistent with the
existing data, although the uncertainties in the data do
not allow a definitive comparison. For lower energies
(down to Ei,b 5 GeV), the differential cross sections
change very little and the fit remains equally good.
Figure 1(b) shows typical differential cross sections for
K+e elastic scattering.

Figure 2 compares the E p —+ Kozz differential cross-
section data with the fitted values at several energies.
The fit is good for all available energies and for mo-
mentum transfers up to —t~1 GeV2. The turnover near
the forward direction fixes the magnitude of the
helicity-Rip amplitude, but not the relative signs of Hip
and nonQip amplitudes. Notice that there is no dip in
the cross section at the point n=0. Since we have
assumed exchange degeneracy for residue functions at
n=0, we have both Rip and nonAip amplitudes for the
p-pole term going through zero. However, the A2-pole
term, being even-signature, does not go through zero.
Thus, the pole terms show no dip structure near n=0.
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The absorptive corrections do not give any sharp dip
structure either. The wrong-signature nonsense zeros in
the odd-signature Rip and nonQip amplitudes get moved
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Frc. 1. Differential cross section for (a) E+p and (b) L+n
scattering at E1,=13.8 GeV/c. The IC+p data are for energy 14.8
GeV/c and the E P data are for energy 10 GeV/c.
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FIG. 2. Differential cross sections for E p —+ Ee. The data are for
energies 5.0 and I2.3 GeV/c.
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slightly toward t=0. The even-signature amplitudes
have zeros induced by the absorption, but at larger
values of t than the point which corresponds to n=0.
Thus, the complete amplitudes, poles and absorptive
corrections, even- and odd-signature, have only a
smooth behavior in t.

Figures 3—6 show our results for the polarization in
elastic scattering. In one case, Figs. 3 and 4, we have
used the sum (difference) of Regge-pole amplitudes
LEqs. (21) and (22)j for the helicity-fhp amplitude in
E X (E+E) scattering. This is the same choice of signs
for the Regge residues used in the helicity-nonQip
amplitude. This choice will hereafter be referred to as
the uniform-sign model. Figures 5 and 6, on the other
hand, show the results of using the difference (sum) of
Regge-pole amplitudes for the helicity-Rip amplitude in
E E (E+A) scattering. This choice will hereafter be
referred to as the mixed-sign model, since Qip and
nonAip amplitudes have different choices of signs for the
res&dues.

The uniform-sign model and the mixed-sign model
give similar predictions for the polarization in elastic
scattering for 0.3& —t&0.9 GeV2. In this region, E p
polarizations are positive and E e polarizations are
negative. For —t(0.3 GeU', the mixed-sign model
yields polarizations which continue smoothly to zero at
—t= 0, while the uniform-sign model gives polarizations
which have a zero around —t~0.2 GeV2. For —t&0.9
GeV', the mixed-model polarizations are falling smooth-

ly, while the uniform-model polarizations go through
zero around —]=0,9 Gt:V' and become large again with
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FIG. 3. Polarization for E p (solid line) and E n (dashed)
elastic scattering. The signs of the Regge residues in the helicity-
Qip amplitude are the same as the helicity-nonAip amplitude.
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FIG. 5. Polarization for E p (solid line) and E n (dashed)
elastic scattering. The signs of the Regge residues in the helicity-
Qip amplitude are different from the signs of the nonAip amplitude
(see text).
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FIG. 4. Polarization for E+p (solid line) and E+I (dashed) elastic
scattering. The same signs are used as in Fig. 3.
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opposite sign. If one tries to compare our calculation
with the low-energy data of Daum et ul. ,

"one might be
tempted to prefer the uniform-sign model. However, the

'4 C. Daum e$ sl., Nucl. Phys. 86, 273 {1968}.
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FIG. 6. Polarization for E+p (solid line) and E+n (dashed) elastic
scattering. The same signs are used as in Fig. S.

data of Daum et al. are at too low an energy and the zero
in polarization (at f= —0.9 GeV') corresponds to a
scattering angle of 45'—60'. Extrapolating an eikonal
calculation to such a region is quite dangerous.
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The charge-exchange reactions E p —& E'n and
E+m~E'p offer an unambiguous way of deciding
which model —uniform signs or mixed signs —is chosen
in nature. The uniform-sign model yields a generally
small polarization which is due to interference between
poles and absorptive correction. (In a pure pole model,
this choice of signs of Regge residues would give no
polarization even though there are two trajectories. )
The mixed-sign model gives polarizations which reach
100% near I=0. This is primarily a pure pole effect as
discussed by Arnold and Logan. " The effects of the
absorption is most noticeable at larger values of —t. Our
calculation shows )Fig. 7(a)j the E p charge-exchange
polarization reaching —100% at —3 0.9 GeV', whereas
Arnold and Logan Lsee Fig. 2(b) of Ref. 15j find a
polarization of —50% in the same region. The polariza-
tion becomes larger than the calculation of Arnold and
Logan because the absorptive correction is beginning to
produce a broad diffractive minimum in the helicity-Rip
amplitude. X+I charge-exchange polarization shows the
same qualitative features as E p charge exchange. The
mixed-sign model gives large polarizations near 3=0,
while the other model gives a small polarization. Until
more measurements of polarizations are made, however,
it will be impossible'to prefer one choice of signs over the
other.

IV. CONCLUSIONS

YVe have shown that an optical-Regge model, with
assumptions of exchange degeneracy for trajectories and
residues, is consistent with all data for EN processes.
Additional evidence for this model has been presented
in the work on ~E processes. '4 Assuming that the
uniform-sign model is chosen by nature —and this is the
sign choice preferred theoretically and, to a lesser ex-

tent, experimentally —three experiments would be cru-
cial in demonstrating the consistency of this approach.
In particular, the calculated polarizations for the three
charge-exchange reactions 7r p~ or"e, s- p —+ rin, and
E p~E'n all show small positive polarization near
f= 0 and then a large negative excursion at larger values
of —1. If these general features are not reproduced by
the data, either exchange degeneracy or the present
form for the absorptive corrections must be given up.
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